
Object-Oriented Analysis in Practice 

J. Brunet, C. Cauvet, D. Meddahi, F. Semmak 

Centre de Recherche en lnformatique. 
Universit6 de Paris I - La Sorbonne 

17, rue de Tolbiac 75013 PARIS, FRANCE 

Abstract : The paper aims at proving that some object-oriented fundamental 
principles provide new suitable mechanisms for the analysis and the specification 
of  complex systems. Three principles are presented and discussed in the paper 
through a case study. The locality principle allows to concentrate on one object, 
stressing its structure and behavior through the notion of life cycle, the refinement 
principle allows to refine objects by means of inheritance links, the globality 
principle allows to enlighten different kinds of dependencies amongst objects. 
The case study is developped with the model of the Modway method. The Modway 
method is an object-oriented method which makes use of object concepts since the 
very beginning of the development process. 

1 Introduction 

During the last decade, the object-oriented paradigm has become progressively a main centre of 
interest in the field of information systems development. The basic concepts of object-oriented 
programming, object-oriented database systems and object-oriented design seem now to be 
relatively stable (e,g. [3], [15], [29]), although improvements should be done in order to take 
into account specific requirements of complex inlormation systems. In contrast, up to now, 
there is no consensus on the very notions of object-orientation in information systems analysis 
and conceptual modeling. 

Indeed, at least four families of methods are dealing with object-oriented analysis. The first one 
consists of methods originated from object-oriented design (e.g. [4], [8], [12]). Their purpose is 
to use software engineering concepts, such as the use relation, during the analysis process. 
These methods are often criticized because they don't take into account the behavior of the 
objects ([7], [18], [26]). 
The purpose of the second family is to use functional decomposition, such as process and data 
flow, in order to provide a familiar way of working to the analysts already using a functional 
method (e.g. [1], [2], [20], [21], [24], [27]). Despite of the attempts to adjust data flows with 
the object-oriented paradigm, it is now recognized that these two approaches are inherently 
incompatible ([14], [25], [28]). 
The third family of methods principally concentrates on data modeling (e.g. [13], [19], [23]). 
Objects are related with inheritance, association and aggregation constructors, and the objects 
behavior is specified by state transition diagrams. Unfortunately, these approaches have 
difficulties to handle the behavioral interactions between objects. In particular, the data flows 
diagrams technique used to represent the transformations of the system is not completely 
integrated; it does not allow to express all the dynamics of a system, and the possibility of 
visualizing together all the transforlnations applicable to an object is not supported. 
Methods of the fourth family attempt to explicitly specify this dynamics by means of events or 
rules (e.g. [5], [9], [10], [11], [16], [17], [22]), following the assumption that the coherence of 
the future information system depends to a great extent on the explicit specification of the 



294 

interactions between objects. The expression of these interactions is made either by a procedural 
or a declarative approach. 

The aim of the paper is to present some fundamental principles of object-orientation that we 
experimented on a case study. The three principles that we believe fundamental in an object- 
oriented analysis process are : locality, refinement and globality. The locality principle allows 
to concentrate on one object, stressing its structure and behavior through the notion of life 
cycle. The refinement principle allows to refine objects by means of inheritance links. The 
globality principle allows to enlighten different kinds of dependencies amongst objects. 
The case study is developped with the object-oriented model of the Modway method 1 [6]. This 
method, which belongs to the fourth family of methods mentioned above, proposes to exploit 
the useful features of the object-oriented paradigm by defining different views with which the 
analyst can apprehend a real-world system and complete a specification. 
The structure of the paper is the following. Section 2 gives a description of the principles and 
briefly presents the model supporting the Modway method. In section 3, we apply and discuss 
the three object-oriented principles on a case study. 

2 P r i n c i p l e s  a n d  C o n c e p t s  f o r  0 . 0 .  A n a l y s i s  

This part presents three fundamental principles of O.O. analysis, and provides an overview of 
the Modway concepts supporting them. 

2.1 Object -Oriented  Analysis Principles 

0 .0 .  analysis widely makes use of the lollowing principles, which purpose is to discipline the 
analysis process in order to achieve new qualities for conceptual schema such as clarity, 
integration, modularity, reusability, etc. 

Loca l i t y  

Tile locality principle consists of viewing each object in isolation from the other objects, as a 
unit being understandable as a whole. Locality is supported by two complementary concepts : 
abstraction and encapsulation. An object is an abstraction of a real world, which implies that it 
exists independently of other objects. Encapsulation ensures that an object description includes 
all structural and behavioral properties that caracterize it. These notions lead to produce object 
classes having a precise meaning, through the description of object local structure and behavior. 
Therefore, the analysis and modeling process will gain from elaborating, verifying and 
completing a specification in a local perspective. The locality principle originates from the 
abstract data types theory underlying to the object-oriented programming languages. However an 
important aspect Of this principle, concerning local constraints on objects evolution, are often 
neglected by these languages. 

R e f i n e m e n t  

The refinement principle allows to consider an object in different roles, by defining inheritance 
hierarchies on classes. Many real world phenomena can play several roles at the same time. In 

1 This research is supported by the French Association for Research Development (ANVAR) 
under the MODWAY project. The MODWAY project is a collaborative project between 
University of Paris I and ALCATEL ISR compagny. 



295 

this way, we must be able to represent a single phenomenon of the real world through several 
classes, each class providing a particular view of the phenomenon. Unlike inheritance as defined 
in object-oriented programming languages, refinement allows an object to belong to more than 
one class. 

G l o b a l i t y  

The globality principle consists in viewing a system as a set of objects interacting together. It 
states that dependencies between objects must be explicitly specified in order to insure the 
system consistency in its totality. The application of this principle needs powerful mechanisms 
to conceptually express behavioral dependencies between objects. It is the author's belief that 
the message passing mechanism used in object-oriented environments leads to. hide these 
dependencies in the method bodies, therelbre it is not convenient to the analysis task which 
purpose is to explicitly represent all the complexity of a system. 

2.2 The Concepts of tile Modway Method 

2.2.1 The Object  Concept 

The object concept is considered as a modeling concept which can be used to represent any kind 
of relevant element of the domain space. 
Object description is based upon attributes and events which respectively characterize objects in 
space and time. The generic term property is used to refer to attributes and events. 
Description of an object O consists of four parts: 

o =  (Id, S, ST, F) 

where Id, S, ST, 17 respectively refer to the object identifier, the object state, the object 
structure and the object life cycle. 

The object state is the set of attribute values as well as the set of event occurrences. We 
consider that each object is able to store its state in its memory and is also able to react to 
events which occur during its life time. 
The object structure is the set of relevant attributes which allow the object to have an existence 
in the domain space. Attribute values can be objects or data. 
The object life cycle is the set of possible events which allow an object to evolve in time. An 
event occurs on an object when the object state satisfies a specific condition so-called occurrence 
condition. An event may be initiated ill three different ways: 

- by an actor of the environment (external event), 
- by another event (internal event), in this case the event is inferred by another one, 
- by Time (temporal even0. 

The life cycle of an object O is bounded by its birth event and its death event. Events 
occurrences in an object life cycle are totally ordered according to their occurrence time. The 
notation ev(ti) refers to the occurrence of the event ev at the time t i. 
The structure and the life cycle of an object makes its static and dynamic properties explicit and 
localized. These concepts fit well with the locality principle introduced above. 



296 

2.2.2 The Objec t  Class  Concept  

An object class is a collection of objects having the same properties (attributes and events). 
Object classes are organized into a class hierarchy in which links between classes are "is_a" 
links. A class S "is_a" class G if and only if: 

(i) Every object belonging to S also belongs to G, 
(ii) properties defined in G are inherited in S. 

It results from the definition that an object can belong to more than one class. An "is_a" link 
between two classes supports object refinement in the following way : an object o considered as 
an instance of a specialized class S is a refinement of o considered as an instance of a generalized 
class G. 

Thus, an entity of the real-world may be modeled by an object which can belong to several 
classes. For example, a student might be represented by an object in the classes PERSON and 
STUDENT. The object viewed as an instance of STUDENT can be thought of as a role played 
by the PERSON. 

An "is_a" link between two classes allows refinement of properties according to the 
augmentation mechanism. 
Refinement of objects uses an augmentation mechanism (in opposition to the overriding 
mechanism) : properties defined in a specialized class are additional to the properties defined in 
the generalized class that is, they do not replace them. 
In the following, the term of object will often be used instead of the term of class, because the 
first results of the analysis of the real-world is the identification of objects, not classes. 
However defining an object comes to define its class. 

2.2.3 Object  Dependencies  

The structure and the life cycle of one object depend of other objects. An object may contain 
another one and an object may evolve by sharing events with other objects. There exists two 
types of dependencies between objects: structural and behavioral dependencies. 

Struc tura l  d e p e n d e n c i e s  

Two kinds of structural dependencies are defined : the composition link and the refering link [5]. 

(i) Formally, there is a composition link from an object 01 to an object O 2 (we say that O 2 is 
a component of the composite object O1) if and only if : 

- O 1 has an attribute with 02 as value, 
- each event within the life cycle of 02 is inferred by an event of O 1- 

It results from this definition that a component object cannot be shared and its existence is 
entirely dependent of the composite one. 

(ii) Formally, there is a refering link from an object O 1 to an object 02  (we say that O 1 refers 
to 02) if and only if: 

- O 1 has an attribute with 02  as value, 
- birth (O1) > birth(O2) and death(O1) < death (02) 



297 

As a consequence, a refered object can be shared and events may occur independently on both 
objects. 

Behav io r a l  d e p e n d e n c i e s  

There exists two types of behavioral dependencies: the synchronization link and the  

chronological link. 

(i) Events can be shared by two or several objects. A shared event may be viewed as several 
events which occur upon different objects with the same occurrence time. It defines a 
synchronization point in object life cycles. A shared event usually refers in its occurrence 
condition to the state of all the objects it is defined on, and it changes the state of all these 
objects. 
Formally an event ev is shared by O 1 and 0 2 if and only if: 

- ev ~ 1-'(O1) and ev ~ F(O2), 

- For each ev(ti), ev(ti) ~ S(O1) and ev(ti) ~ S(O2) 

(ii) Events on objects may infer events on others objects. The inference mechanism allows to 
describe chronological dependencies between events defined in object life cycles. 
Formally, an event ev on an object O 1 infers an event ev' on an object 0 2 if and only if: 

- ev ~ F(O1) and ev' ~ F(O2), 
- For each ev'(ti), it exists ev(tj) / ev(ti) < ev'(tj) 

Remarks : 
- an event ev' may be infered by several events ev 0, ev l  . . . . .  In this case, ev'(tj) call occur if 
and only if either ev0(tj) or evl(tj)  ... has occurred, 
- ev and ev' may belong to the same object. 

These four kinds of dependencies between objects support the globality principle according to 
which we can consider a system as a collection of objects which are involved in structural 
dependencies and which interact by event sharing and event infering. 

2.2.4 M o d w a y  G r a p h i c a l  Nota t ions  

The Modway model provides diagrammatic tools to graphically represent the inner structure and 
behavior of an object, on the one hand, and its structural and behavioral dependencies with other 
objects, on the other hand. They are summarized in figure 1. 

2 . 2 . 4 . 1  L o c a l  R e p r e s e n t a t i o n s  o f  O b j e c t s  

There are four local representations which encourage tile description of objects in isolation from 
others: 

- the object class enlightens object properties, that is attributes and events, 
- the composition graph provides the components of the object (at all levels), 
- the life cycle graph defines constraints on the object life cycle. A life cycle graph is a 

state diagram in which nodes correspond to object states and edges correspond to events. At a 
given time, an object can be in one and only one state of a life cycle graph. 

- the inference graph vizualizes for each event of an object its inferences on other 
objects. 



298 

2.2.4.2 Global  Represen ta t ions  of Objects  

There is two global representations which aim at enlightening the designer on the dependencies 
between objects: 

- the dependency graph consists of synchronization and reference links between objects, 
- the inheritance graph consists of "is_a" hierarchies amongst object classes. 

object schema 

refering (Onmc'r_NAME ~ /atC~rmbPtS~tion 
attribute ~ )  ~ f  

j ~  ~ attribute 

shared event / 

local event 
Witbdn a trlaagle, th~ lcttors E, I, T ate treed to detail 
the inifiafiv�9 mode of a.n event: External, Internal o r  

Temporal 

object life cycle graph 

composition link 

�9 
reference link 

synchronization link 

chronological link 

IS_A link 

Fig. I Graphical notations 

3 A n a l y s i s  o f  C a s e  S t u d y  

At first, this part presents the functionalities of a system of Air Traffic Control. Then the three 
principles defined above are applied and discussed on the case study. 

3.1 Descript ion of the Case Study 

The case study deals with an Air Traffic Control System (ATCS). The system offers the 
following functionalities : 
- it allows to visualize a geographical control zone, where several aircraft traces evolve in time 
(a trace is the radar echo of an aircraft), 
- it allows to correlate a trace with a flight plan, 
- it allows to anticipate the trajectory of some aircraft traces : 

(i) check the correcmess of the trace according to its flight plan, 
(ii) extrapolate the trace position according to its successive positions and its flight plan. 

Traces for which the controller has requested an anticipation are called anticipated traces. 



299 

- it allows to evaluate possible conflicts for a given trace : a conflict occurs when there is a risk 
of collision for this trace. 
Traces for which the controller has requested a risk evaluation are called protected traces. 

3.2 Applying tile Locality Principle on ATCS 

In the Modway approach, the local description of objects is based on attributes and events. Life 
cycle graphs allow to slate constraints on the possible occurrence of events, and composition 
links allow to define complex objects. These modeling concepts encourage the analyst in 
designing objects in isolation from others. 

Events and attributes 

Attributes allow to describe static properties of an object while events are concerned with 
dynamic properties. The set of events that may occur on an object provides a complete view of 
what can affect it, while the set of attributes defines its characteristics in the domain space. 
Figure 2 shows the description of the object TRACE resulting from a local analysis. 

"% 

TRACE 

currenLposition:GEOGRAl'HICAL_ 
POINT 

t ~  i(1: IN'IE(/I~I( I "~RACE_EVOLUTION 

altitude:FEET ] ~ISK_EVALUATION 
REQUEST 

speed: KNOT I ~SK_EVALUATION 
cape: DEGREE [ INTERRUPTION 

~7'~CE_DIS ~ 'TRAPOL~ 
~'RACE_ APPEARANCE TION 

APPEARANCE X~TANTICIPATIO N- 
CORRELATION REQUEST 

ARRIVAL 

Fig. 2 Schema of a trace object 

The local description consists of : 

- several attributes characterizing a trace in the airspace, 
- several events characterizing its life cycle : 

- a birth event TRACEAPPEARANCE corresponding to the appearance of a plane 
trace in the control zone, 

- an update event TRACE_EVOLUTION upon attributes values (new values are sent by 
the radar), 



300 

- some events representing controller requests for the anticipation of a trajectory, for the 
evaluation of conflict risks with other aircraft traces and for the interruption of anticipation and 
evaluation, 

- an event CORRELATION which correlates a trace with its presumed flight plan, 
- an event EXTRAPOLATION which extrapolates a trace trajectory, 
- an event CONFLICT_ARRIVAL which occurs when a conflict has been detected for 

this trace, 
- a death event TRACE_DISAPPEARANCE corresponding to the trace disappearance 

from the control zone. 

The local analysis of an object includes the investigation of its events, in particular the reason 
of their occurrence (External, Internal or Temporal) and their occurrence condition. This 
investigation leads to locally detect infered and shared events. 

For instance, 
- t h e  event EXTRAPOLATION is internal and it is infered by the event 
ANTICIPATION_REQUEST, because the extrapolation of a trace trajectory results from an 
anticipation request on this trace by the controller, 
- the event CORRELATION is external and it is shared with an object FLIGHT_PLAN, 
because a correlation on a trace makes sense only with a flight plan. 

In summary, this local description provides a general view of what is a trace and how it can 
behave. Merging together statics and dynamics in the same description leads to enhance 
intelligibility. 

Life cycles 

Having identified all the events applicable to an object, we may specify its life cycle. An object 
life cycle is a local view that sets some constraints on the possible occurrences of its events. 
For instance, the life cycle graph of an aircraft trace is presented figure 3. 

CONFLICT_ 
f,~Al~d~d VA L 

E~r~~176 ! } 
~ . ~ . . ~ _  AN'flCIPAIlON_REQUEST 

RISK 

RISK_EVALUATION_ U X X / /  
INTERRUPTION TRACE N / .~'I,L~.CE 

l~cE/. / cE 

Fig.3 Life cycle graph of a trace 



301 

The states UNEXISTING, ANTICIPATED and UNANTICIPATED characterize different parts 
of the life of a trace, for which only a subset of the events defined on the class may occur. An 
edge relating states represents a transition from a state to another resulting from the arrival of 
the corresponding event. 

For instance, the event TRACE_APPEARANCE can only appear if the trace does not yet exist, 
and sets the trace in the state UNANTICIPATED, on which the event 
ANTICIPATION_REQUEST can occur. 
Some events, like the event TRACE_EVOLUTION, may occur for each state of the graph 
(unless the particular state UNEXISTING). For sake of clarity, this kind of event is not 
represented in the graph. 

A life cycle graph states the possible sequences of events, considering a single object. The 
global study of relations between events of several objects will complete the behavioral 
description of the object. 

Composi t ion links 

The composition link allows to capture a strong structural relationship between objects. Within 
a local perspective, a composite object encapsulates the component objects linked with it, i.e. 
the composite object and its component objects are seen as a whole. 
In the ATCS case for instance, this link fits well to the relationship between a protected trace 
and its related conflict risks, because the existence of a conflict risk is totally dependent of a 
protected trace (let's remember that a protected trace is a trace for which the controller has 
requested a risk evaluation, and a conflict risk represents a risk of conflict between the current 
protected trace and another trace). Figure 4 describes the resulting composite and component 
objects according to the definition of the composition link : 

- a protected trace object has a multi-valued attribute 'conflict_risks' which has conflict risks 
objects as values, 

I f  PROTECTED TI(ACE 

conflict risks 

~ O N F L I C T _  
ARRIVAL 

K•ZRISK_EVALUATION 
IN'I'ERRUPTION 

CONFLICT_RISK 

distance_l : integer I 

attitude, difference: FEE1] 

X•TcoNFLICT_mSK 
CREATION 

x•ZcoNFLICT._RISK 
DELETION 

Fig.4 Composition link between a protected trace and a conflict risk 



302 

- each event of a conflict risk is infered by an event of its protected trace object; a 
CONFLICT_RISK_CREATION event on a confl ict  risk is infered by a 
CONFLICT_ARRIVAL event on a protected trace, and a CONFLICT_RISK_ DELETION 
event on a conflict risk is infered by a RISK_EVALUATION_ INTERRUPTION event on a 
protected trace. 

In a local perspective, we concentrate on the object PROTECTED_TRACE, the object 
CONFLICT_RISK being visible through its attribute 'conflict_risks'. 

Remark that the two events defined on the object CONFLICT_RISK are internal : they are 
infered and not aec~ssible outside the object PROTECTED_ TRACE. 

3.3. Applying  t h e  R e f i n e m e n t  P r i n c i p l e  on ATCS 

The refinement principle allows to refine objects by means of the inheritance mechanism : an 
object of a class may be refined in a specialized class. Object refinement implies object 
properties refinement. We illustrate how object refinement implies event refinement and how 
object life cycles may be used in refining events. 

For instance, in figure 5 are represented two specialized classes ANTICIPATED_TRACE and 
UNANTICIPATED_TRACE which inherit from TRACE. Each one corresponds respectively to 
the states ANTICIPATED and UNANTICIPATED of the trace life cycle graph (figure 3). 

I TRACE 1 

/ N  
I 1 1 

~ ~ A  TRACE 
ACE EVO 

ON 
VANTICIPATION 

REQUF~T 
CE_DIS EARANCE 
~TICIPATION_ 

ACE = INTF~RUPTION 
PEARANCE 

AN'nCIPATED_TRACE 

~RA N ~RISK EVALUATION TICIPAIION_ REQUEST EQUI~T* 
~TAN ~ISK_EVALUA'I'ION "IICIPATION tN'FERR UPllON hNTERR UP'I1ON * 

~XoT~APOLA ~CCONFUCr_ 
ARRIVAL 

~ACE 
DISAPPI~ARANCE* 

�9 .) 

Fig. 5 Refinement of a trace object 



303 

The description of an anticipated trace will include specific attributes and specific events. These 
specific events are obtained from two complementary ways. 
At first, all events of an object TRACE that apply only when the trace is in the state 
ANTICIPATED are carried down on the object ANTICIPATED_TRACE. This is the case of 
the events RISKEVALUATION_REQUEST, RISK_ EVALUATION_INTERRUPTION, 
EXTRAPOLATION and CONFLICT_ ARRIVAL. This leads to increase the modularity 
because these events are only relevant for anticipated traces. 
Secondly, some events of a trace are refined in an anticipated trace (and also in an unanticipated 
trace). Event refinement applies to each event in the life cycle graph of a trace having as origin 
or destination (but not the both) the state ANTICIPATED. This is the case of the events 
A N T I C I P A T I O N R E Q U E S T ,  ANTICIPATION_INTERRUPTION and TRACE_ 
DISAPPEARANCE, which appear in the description of an anticipated trace with a star attached 
to the event name (figure 5). For instance the event ANTICIPATION_REQUEST, considered 
on an object TRACE, changes the state of a trace from UNANTICIPATED to ANTICIPATED, 
while its refinement allows to adds the role "anticipated" to this trace. 

In order to complete the specification of an anticipated trace, its life cycle graph can be defined 
(fig.6). This life cycle graph can be seen as a refinement of the state ANTICIPATED appearing 
in the trace life cycle graph. 

TRACE I /d~ERRUPTION / 
13~s~P~Nc~ ~ TRACE / /  

RISK_EVALUATION REQUEST 

- t - " 7  

~rlCIPATION 
REQUEST 

Fig. 6 Life cycle graph of an anticipated trace object 

Like a trace, an anticipated trace can be refined, as a protected trace or an unprotected trace 
corresponding respectively to the states PROTECTED and UNPROTECTED (figure 7). It 
follows that the event CONFLICT_ARRIVAL is carried down from an anticipated trace to a 
protected trace, and the other events of the protected trace are refined. 

In conclusion it seems that the refinement mechanism is suitable for the analysis of a 
phenomenon in different contexts. Each particular role of an object is modelized as a specialized 
object which can then be studied locally. Note that refinement is more general than inheritance 
as currently used in object-oriented design, because it allows to specialize an object in 
accordance with their states. 



304 

I TRACE 1 

/ \  

/ , ,  

f ANTICIPATEDTRACE "~ 

~ K EVALUATION NTICIPATION REQUEST 
* _ REQUEST* 

" ~ S K  EVALUATION 
"~ANTICIPATION INTERRUFrION 

INTERRUI~ION* 

XTRAPOLA 
TION 

" ~ f R A C E  DIS 
APPEARANCE* 

k, j 

r 
PROTECTED-gRACE 

• 7 • S K  EVALUATION 
REQUEST* 

~ A  ~ S K  EVALUATION 
NTICIPATION_ INTERRUPTION* 

INTERRUIrl'ION * 

~ F R A C E _ D I S  x~CONFLIC'f- 
ARRIVAL 

APPEARANCE* 

Fig. 7 Refinement of an anticiped trace object 

3.4 Applying tile Globality Principle on ATCS 

The globality principle aims at emphasizing behavioral dependencies between objects. They are 
specified through synchronization and chronological links relating objects. 

Synchronisat ion links 

Contrarily to the local view in which objects evolve concurrently, in a global view, objects 
interact the ones with the others. Synchronization supported by shared events is a way to 
specify interactions between objects. 
A shared event is a synchronisation point on the life cycles of two or several objects. 

For instance in figure 8, the event CORRELATION is shared by the objects TRACE and 
FLIGHTPLAN : a correlation affects simultaneously the state of the trace and the state of the 
related flight plan. By considering the two objects, it is possible to complete the specification 
of the event occurrence condition : the event CORRELATION occurs only if the flight plan is 
not already related to a trace and if the trace position is consistent with the flight plan. 



305 

~~==~COPd~,ELATION 

Fig. 8 The correlation shared event 

In a local perspective, a shared event is placed on the border of the object class (see for instance 
figure 2). In a global perspective, it is represented by a link between the two objects. 

Synchronizational aspects are commonly encountered during an object-oriented analysis process. 
They are important elements for the preservation of the system coherence. In the context of a 
banking application, the simultaneity of credits and debits is an essential point. The non- 
recognition of these aspects can lead to serious errors during the object-oriented design process. 

Chronological  links 

Contrarily to the local view in which a composite object hides the detail of its components, in 
a global view the composite and the component objects are considered separatly. Their 
behavioral dependencies are expressed by an infering mechanism between events from the 
composite object to the component objects. 
For instance in figure 9, the event CONFLICT_RISKCREATION on the object 
CONFLICTRISK is infered by tlie event CONFLICT_ARRIVAL on the object 
PROTECTED_TRACE. In other words, ,an event CONFLICTARRIVAL is followed by an 
event CONFLICT_RISK_CREATION, and an event CONFLICT_ RISK_CREATION can 
only occur after the occurrence of an event CONFLICT_ARRIVAL. In this case, event infering 
is a way of specifying propagation of events between a composite and component objects. 

rPROTECTED TRACE 
~--~SK EVALUATK N 
~ 6~T 

fco  

Fig.9 Two event inferences 



306 

Chronological links can relate events of the same object, in order to express other local 
chronological dependencies between events. For instance, in the same figure, a chronological 
link relates two events of the object PROTECTED_TRACE. 

Chronological links allow to represent inferences between the evolution of several objects. This 
notion is different from those of message passing and client-server relation from object-oriented 
design, because it states the constraint that an infered event can occur only if the infering event 
has previously occurred. 

In summary, the globality principle has to be applied for describing behavioral dependencies 
between objects, because of the crucial impact they have on the coherence of an objet-oriented 
specification. 

4 C o n c l u s i o n  

At the present time, the principles of locality, refinement and globality are influencing more 
and more the task of system analysis. In this paper, we tried to demonstrate that these principles 
are necessary to discipline the analysis process in order to increase the quality of an object- 
oriented specification. 

A first advantage is that the use of different points of view allows to enrich the knowledge an 
analyst may have upon a system. Some properties of the system may be apprehended locally in 
the context of an object, or class. Refinement allows to study in an isolated manner each facet 
of an object, even if several facets can exist at the same time. Finally, the global perspective 
allows to take into consideration the emergent properties of the system, resulting from the 
inerrelations and the interactions between the objects. 

A second advantage is that the interdependence between these points of view allows to increase 
the flexibility of the analysis process : a given characteristics may be identified and partially 
described in a particular view, afterwards its description may be completed or verified by 
changing of perspective. For instance, an event identified locally on a single class may then be 
considered in the global perspective. 

Using these principles in practice makes necessary the extension of the usual object-oriented 
concepts : structural and behavioral links between objects, roles of objects, events, etc. 
Moreover, an analysis process should integrate these three principles in order to provide new 
perspectives in the analysis of a system : local, contextual and global perspectives, instead of 
classical static and dynamic perspectives. 
The avantages of these principles will be substantial when they will be supported both by a 
model and by the afferent methodological process. 



307 

REFERENCES 

[1] B. Alabiso, "Transformation of Data Flow Analysis Models to Object Oriented Design", 
OOPSLA, San Diego, California, Sept. 1988 

[2] S.C. Bailin, "An Object-Oriented Requirements Specification Method", Communications of 
the ACM, May 1989 

[3] F. Bancilhon, "Object-Oriented Database Systems", 7th Symposium on Principles of 
Database Systems, Austin, March 1988 

[4] G. Booch, Object Oriented Design With Applications, Benjamin Cumming Ed., 1991 

[5] J. Brunet, "Modeling the World with Semantic Objects", in the Proceedings of the IFIP 
WG8.1 Working Conference on the Object-Oriented Approach in Information Systems, Quebec, 
Canada, octobre 1991 

[6] C. Cauvet, C. Rolland, "An Event-Driven Approach to the Dynamic Modelling of 
Objects", 3 rd International Working Conference on Dynamic Modelling of Information 
Systems, Delft, 1992 

[7] C. Chee, C. Ng, M. Sim, "TOAD : Towards an Object-Oriented Analysis & Design 
Methodology, Experiences & Preliminary Observations", 3rd Int. Workshop on Software 
Engineering & its Applications, Toulouse, France, Dec. 1990 

[8] P. Coad, E. Yourdon, Object-Oriented Analysis, Second Edition, Yourdon Press, 1990 

[9] U. Dayal, A.P. Buchmann, D.R. McCarthy, "Rules Are Objects Too: A Knowledge Model 
For An Active, Object-Oriented Database System", 2nd Int. Workshop on Object-Oriented 
Database Systems, Springer-Verlag, Sept. 1988 

[10] L.J.B. Essink, W.J. Erhart, "Object Modelling and System Dynamics in the 
Conceptualization Stages of Information Systems Development", IFIP TC8/WG8.1 Working 
Conference on the Object-oriented Approach in Information Systems, Quebec, Canada, Oct. 
1991 

[11] M. Fowler, "The Use of Object-Oriented Analysis in Medical Informatics for Large 
Integrated Systems", TOOLS 4, Prentice Hall, Paris, 1991 

[12] J.G.M. van den Goor, "A Practical Approach to Object-Oriented Software Engineering", 
TOOLS, Paris, 1990 

[13] B. Henderson-Sellers, "Analysis and Design, Methodologies and Notation", Tutorial, 
TOOLS, Paris, 1991 

[14] P.H. Loy, "A Comparison of Object-Oriented and Structured Development Methods", 
Pacific Northwest Software Quality Conference, 1989 / reprinted in System and Software 
Requirements Engineering, IEEE Computer Society Press, Washington, DC, 1990 



308 

[15] B. Meyer, Object-Oriented Software Construction, Prentice Hall, Hemcl Hemstead, 1988 / 
Conception et programmation par objets, InterEditions, 1990 

[16] J. Morejon, R. Oudrhiri, "Le module EA2 : Entit6 - Association / Ev6nement - Action", 
Congr~s Autour et h l'entour de Merise, Sophia Antipolis, April 1991 

[17] B. Pernici, "Objects with Roles", ACM/IEEE Conference on Office Information Systems, 
Boston, MA, April 1990 

[18] B. Pernici, "Requirements Specifications for Object-Oriented Systems", Nouvelles 
perspectives des Syst~mes d'Information, INFORSID, Biarritz, France, May 1990 

[19] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented 
Modeling andDesign, Prentice Hall, 1991 

[20] U. Schiel, "OKAY- Object-Oriented Knowlcdgc Analysis and design", COMAD, Inde, 
Dec. 1989 

[21] E. Seidewi~, M. Stark, "Towards a General Object-Oriented Software Development 
Methodology", SIGAda Ada Letters, July 1987 

[22] A. Sernadas, J. Fiadero, C. Sernadas, H.D. Ehrich, "The Basic Building Block of 
Information Systems, Information Systems Concept", North Holland, Namur, 1989 

[23] S. Shlaer, S. J. Mellor, Object Lifecycles : Modeling the World in States, Prentice Hall, 
1991 

[24] P.D. Sully, "Essentially Objects", TOOLS'90, Paris 

[25] A.G. Sutcliffe, "Object-oriented systems development : survey of structured methods", 
Journal of Information and Software Technology, vol. 33, n~ July 1991 

[26] M. Teisseire, P. Poncelet, A. Cavarero, S. Miranda, "A-HOOK, The object-oriented 
analysis of the HOOK system", report of External European Research Project, 1991 

[27] P.T. Ward, "How to Integrate Object Orientation with Structured Analysis and Design", 
IEEE Software, March 1989 

[28] R.J. Wicringa, "Object-Oriented Analysis, Structured Analysis, and Jackson System 
Development", Int. Conference on the Object-Oriented Approach ill Information Systems, 
Quebec, Canada, Oct. 1991 

[29] R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designing Object-Oriented Software, Prentice- 
Hall, Englewood Cliffs, N.J., 1990 


