
Types as Parameters 1

Giuseppe Longo

LIENS (CNRS) et DMI, Ecole Normale Sup6rieure

45, Rue d'Uhn, 75005 Paris; longo@dmi.ens.fr

Abstract. This note is a brief survey and a discussion of recent ideas and open
problems in the understanding of an important aspect of Type Theory: how terms
may depend on types. This problem is at the core of the distinction between "ad
hoe" and proper polymorphism and inspired the large amount of work on
"parametricity".
Contents. 1 Types; 2 Parametricity; 3 Genericity; 4 Axiom C and Dinatural
Transformations; 5 ~xiom C and the Isomorphisms of Types; 6. Types as
Parameters; 7. True type dependency or "ad hoc" polymorphism.

1 Types

In Mathematics, functions are typed. One always talks of functions from reals to reals, or

from integers to reals, or from a given vector space to another, or of homomorphisms of
groups and so on so forth In a sense, functions are always viewed as arrows with
specific source and target, in the intended category. The objects of the category are the
types. The formalization of mathematics in the frame of a type-free Set Theory was an
oversimplification of Frege. A fruitful one, though, as it clarified matters and stimulated
the design of a rigorous type-theoretic approach, after a simple inconsistency was pointed
out by Russell.

The "mistake" was iterated by Curry and Church, in their functional approach to
foundation. Again, this gave rise to a paradox, Curry's paradox, which is similar to
Russell's when xx, self application, stands for xe x. In this case though, the solution
was twofold: one could add types, in Russell's style [Church41] or, by dropping negation,
One could obtain a computationally very expressive type-free system, where Curry's
paradoxical combinator was turned into the key tool for computing all partial recursive
functions. And this was the type-free 7~-calculus. Its many relevant properties are

1The presentation is directly endebted to joint work and many stimulating
discussions with Giuseppe Castagna, Giorgio Ghelli, Roberto DiCosmo, Simone
Martini, Kathleen Milsted, Sergei Soloviev. With Simone, in particular, I discussed of
the dinatural interpretation (w while Sergei and Roberto pointed out to me the
connection to the isomorphisms of types in w

659

discussed in [Bare84].
It is worth pointing out that this branching of the functional approach to foundation,

which had no impact on the practice of mathematics, originated the relevant areas of type-
free and typed functional programming languages and that, in computing, these two
directions nicely interact. Ordinary typed languages, both in the case of type checking and
of type assignement, deal with types at compile time, while computations are meant to
be type free. As well known, one can reconstruct types for (typable) type-[ree terms and,
conversely, erasing type information preserves the computational power of terms, an
issue to be discussed later.

2 P a r a m e t r i c i t y

More richness has been embedded in programming by borrowing from higher order logic:
just allow type variables, not just term variables, similarly as one considers set-variables
or variables ranging over the objects of a category. In this case, terms may have several
types, namely, all the instances of their type schema obtained by the use of type
variables, and, hence, programs are (implicitly) polymorphic [Mi178]. When the
analogy with higher order systems is more fully pursued, one considers quantified type
variables and obtains explicit polymorphism (Girard's system F; [Gir71], [Rey74]).

Clearly, when type variables, X, Y, Z are allowed, then they naturally arise both
in types and typed terms: ~,x:X.M is a term of type X ---> p, where p is the type of
M. But, then, terms, as functions, may depend on types. This is perfectly clear in
explicit polymorphism, where one may abstract w.r.t, to type variables and terms may be
applied to types: P --- ~.X.N of type VX.a and Px of type [x/X]a are well formed.
In particular, ~.X.N is an (explicitly) polymorphic functions from types to terms. Note
the peculiar "dimension" (or type) of polymorphic functions: if constant types are objects
in a category and terms are morphisms, then they are maps going from the objects of a
category to the mo~hisms.

Several questions then come to the mind. Write M[X] and ~[X] in order to stress
that X may occur in M and cr. Then the rule

MIX] : ~[X]

~.X.M[X] : VX.cr[X]

gives a uniform definition of the family of maps {M[X]} X with components M[X].

Note that this definining rule does not depend on the parameter X, or it is "uniform" in
it.

Does the syntactic uniformity of the definition have some relevance in the
computational meaning of M? Or, also, how do polymorphic terms, as functions from
types to terms, actually behave?

What does it mean that types can be erased at compile time?
These questions are clearly related; the fast two raise the issue ofparametricity.

3 G e n e r i c i t y

The main motivation of this note is the need to relate the recent result in [LMS92] to

660

(some o0 the formal descriptions of how types act as parameters in functional languages.
The result can be very easily stated. In a moderate extension of system F, the explicitly
polymorphic calculus, types do not affect computations, in the sense that they are
"generic" or "act like variables". More formally, call Fc the extension of F by "Axiom
C" of the next section, then the following holds:

Theorem (Genericity) Let M, N :VX.~. If, for some type 'c, M'c = Fc N'c, then M

=Fc N.

The proof relies on a non trivial technique of generalizing the two terms M and N, to
obtain a (well-typed) common term from which the two terms can be equated. The
meaning (and the strength) of the theorem should be clear: if two polymorphic functions
of the same type agree on *one* input, then they agree on all inputs. Note that the terms
Mz, Mp in general may live in different types, namely Ix/X]6, [p/X]6 A
suggestive pictorial representation of functions from types to terms, as parametric in
types, may be the following:

S
types

Indeed, the Genericity Theorem tells us that different functions "never cross"; Reynolds'
Abstraction Theorem (see w tells us that polymorphic functions "preserve relations
between inputs", or that they are "regular", in some precise sense to be discussed later.

The next two sections are meant to understand and justify the intended extension Fc of
system F, by relating it to the semantics of F and the syntax of ML.

4 A x i o m C a n d D i n a t u r a l T r a n s f o r m a t i o n s

The Genericity Theorem is valid in a simple extension of system F, namely, Fc -- F +
Ax.C below. The idea is to impose that a polymorphic term, which outputs all values
in the same type, is a constant function:

Ax.C If M : V X . o , with X ~FV(o), then Mp = M'~ : ~, for any type p and "c.

This axiom is clearly compatible with F: the PER model, Girard's model over coherent
domains and stable functions as well as other models realize it (see [LMS92]). More than
this, Ax.C is truly in the spirit of system F: its negation, where MY # MZ is
interpreted by "they have a different erasure", yields a non normalizing system (see the
remark in [Gir71] quoted in [LMS92]). We simply observe here that Ax.C is realized in
all models where terms are understood as "dinatural Iransformations", defined below.

In w we observed that the intended meaning of a polymorphic term ~,X.M is that of
a function from the collection Ob C of objects of a category C to the collection of

661

morphisms. However, types may contain type variables. Thus, they are maps from
objects to objects, more than just objects. Functors do have this dimension, hence
natural transformations between functors may seem to provide the fight meaning to
polymorphic terms. Natural transformations are collections of morphisms, indexed over
objects: v = { v A} Ae Ob is a natural transformation, between functors F and G, if for

any morphism f : A ---) B, one has:

v A
FA ,,,> GA

FB > aB
V

B

Thus, if |o l were the meaning of a type o as object, the map v, with v([o]) = vlo l,

could interpret the polymorphic application of a term XX.M to a type o. Unfortunately
though, types are not functors, but just maps from Ob to Ob. The rub is that any type,
in which the same variable occurs both at the fight and the left of an "-->", should be at
the same time a covariant and a contravariant functor. This is impossible, in general.

An interesting partial solution to this problem has been provided by [BFSS90] mid
further pursued by [GSS91], [FRR92]. The idea is that the interpretation of types,
viewed as maps over the objects of a category, may be extended to functors, by
distinguishing between the covafiant and contravariant occurences of variables. Thus, an
n-variable map is turned into a multivariant functor of nxn arguments. Over these kind

functors, F,G : c n x c n --> C, say, one may define dinatural transformation each family

of morphisms u = (u A : FAA ---> GAA I A e C n} such that, for any vector of

morphisms f : A -> B, one has:

U
A

FAA ~ GAA
FfA.~

FBA GAB

F .f"-..~ ~GfB
FBB > GB__B

u B
The problem here is that, in general, dinatural transformations ~1o not compose. Thus, a
category with all required properties to yield a model, cannot always interpret terms as
dinaturals, simply because terms can be composed. However, in [BFSS90] and [GSS91],
some interesting models are given, where dinatural transformations do compose. These
models then yield the dinataral interpretation of terms.

662

It is easy now, to point out that Ax.C is realized in any model for dinatural
transformations. Indeed, equivalently rewrite Ax.C as

Ax.C* If F 1- N : o, with X ~ FV(F) t..) FV(O), then [p/X]N = ['c/X]N : o

where the context F is explicitly mentioned (it was irrelevant before; the condition
X~ FV(I') is required now in order to satisfy the side condition in the (VI) rule of
system F and obtain the equivalence with Ax.C). Then the intepretation of N is a
dinataral transformation which goes from the interpretation of F, as a product functor, to
the interpretation of o. The point is thatboth F and o do not contain X free, thus
the exagon above collapses to a pair of paralleRr arrows, Or, the models of terms as
dinaturals realize Ax.C*. (Note that Ax.C* cai, be stated also in the frame of implicit
polymorphism, where type variables are allowed but no explicit quantification).

5 A x i o m C a n d t h e I s o m o r p h i s m s o f T y p e s

As already recalled, ML style languages allow type schemata. Namely, types may
contain type variables and a term possesses as types all instances of its type schema.
Indeed, an algorithm assigns to each typable term its most general type, from which all of
its types may be derived, by instantiation. If preferred, explicit universal quantifications
may be used, but, in the spirit of types as schemata, they can be only external.

It may seem obvious then that ML is strictly "weaker" than system F: only certain
kinds of quantifications are allowed. In particular, provable isomorphisms of types in
ML should be provable also in F (as for the relevance of isomorphisms of types, see
[DiCoLo89] and [DiCo93]). This is not so and the difference is expressed by Ax.C.

To see this fact more closely, consider the extension F x of F obtained by adding

cartesian products (that is add product types, projections and surjective pairings axioms,
since usual descriptions of ML include them). In [DiCo93] it is shown that the
isomorphism

(Split) VX.ox'c _= VXVY.ox[Y/X]% for Y~ FV(o),

can be derived in ML, but not in F x. This is so by the peculiar use of variable

substitution as given by the "let... in..." variant of (13) reduction: one may allow different
types for the same term, while performing the substitution. In particular, file type-free
terms Xx.x and Xx.<PlX,P2X>, where the Pi are projections, yield the isomorphism

in the implicitly polymorpbic system, while their explicitly polymorphic versions, in
system F, do not. Indeed, ~,z:(VXVY.ox[Y/X]x).X,X.<PI(ZXX),P2(zXX)> and

Z,z:(VX.ox'O.Z.X.Z,Y.<pl(ZX),P2(zY)> only yield a retraction, in F, from

VXVY.ox[Y/X]x into VX.oxx. Note that (Spli0 is the only isomorphism in the
"difference" between ML and F (but, of course, F x proves many more; see [DiCo93] for

details).
The point here is that Ax.C fills the difference, as (Spli0 is provable in Fxe. Observe

first that, in Fc one has

(Iso.C) VY.o = o, if Y~FV(o)

663

where Z,x:(VY.o).xX and ~.z:cr.~,Y.z yield the isomorphism, by an explicit use of
Ax.C. (Conversely, F extended by Iso.C, as given by the terms above, is equivalent to
Fc.) Compute then

VXVY.ox[Y/X]x - VX.(VY.o)x(VY.[Y/X]x) since VY.axp ~. (VY.c)x(VY.p), in P x,

= VX.ax(VY.[Y/X]x) by Iso.C, as Y~ FV(o),

-- (VX.c)x~VXVY.[Y/X]~) as above

= (VX.a)x(VY.[Y/X]x) by Iso.C,
_-__ (VX.t~)x(VX.x) by renaming
= VX.ox~.

In conclusion, we observed, following DiCosmo, that F x is not an extension of ML,

in spite of the popular belief (clearly, an isomorphism of types corresponds to the
equations of two terms to the identity). We noticed though that Ax.C allows to
overcome the difficulty and establishes, by this, a novel connection between the two
systems. The observation is one more step towards justifying the usual practice in higher
order functional programming, where types are not used at run-time. Indeed, in ML,
types are only used at compile time. Programs are written as type free terms and an
automatic type assignement system performs a partial correcteness check by assigning
type schemas. Finally, programs run with no type information. This is perfectly fair in a
programmming style where types are only used as a melalinguistic "dimensional con~'ol",
at compile time. Why should running programs use no type information also in
explicitly higher order systems such as Cardelli's Quest (see [CL91])7 In those
languages, types are first class citiziens of the language and they may be explicitly
manipulated; why should the type erasures preserve the computational meaning of the
intended computations, in these cases as well?

This is the core question discussed by the work on parametricity. Before getting into
this issue, we note that the implicit use of Ax.C, by better establishing the theoretical
connection to NIL, already justifies the analogy at run time. As a matter of fact, in a
recent investigation on the theoretical core of Quest, F< of [CMS91], a strong version of

Ax.C is assumed. By the present remark, F< more closely relates to ML.

6 T y p e s as P a r a m e t e r s

In the last two sections we introduced a preliminary understanding of the peculiar way in
which terms depend on types in polymorphic functional languages and, at the same time,
we justified the extension of system F by Ax.C, In particular, the meaning of terms as
dinatural transformations sets an elegant connection to relevant areas of mathematics,
where (di)naturality expresses a key categorical uniformity between functorial
transformations. The validity of Ax.C in crucial models, see [LMS92], and in the
dinatural intepretation, as well as its significance, shed some preliminary light on the
"uniformity" of the dependence of terms from types.

A further insight into parametricity is given by a blending of two results, one of which
has already been mentioned, the Genericity Theorem. The other is a syntactic
understanding of Reynolds' work. In [Rey83] and [MaRey91] some abstract conditions
are given such that, if a model satisfies them, then the intended meaning expresses a
strong uniformity of terms w.r.t, types as inputs. In [ACC93] a syntactic treatment of
Reynolds' approach is proposed. The advantage is given by a simpler presentation and by

664

some relevant applications in the description of properties of programs (on the lines of
[Wad89]). The key idea is the introduction of a (strong) extension of system F, system
R, which deals with terms, types and relations between types. The main result, besides
the applications to properties of programs, may be stated as follows (and it may be
considered as a reunderstanding of Reynolds' "Abstraction Theorem"). In R, a type
variable may be instantiated also by a relation R between types p and 'c; this
substitution, in a type o, say, yields a relation o[R/X] between types o[p/X] aud
o[x/X].

Theorem (Abstraction) Let M: VX.o. If a relation R is given between types p and
x, then Mp : o[p/X] is related to M'~ : o[x/X] by o[R/X].

In other words, a polymorphic term takes related input types to related term values, in
their output types (the result may be stated in a more general fashion by taking two
related terms M and M' instead of one). The first point to be noted, now, is that R
realizes Ax.C. Indeed, under the further condition X ~ FV(a), the relation a[R/X] -= o
collapses to the identity over o[p/X] -= o ---- o[x/X]. Thus, for any two types p and "c,
whatever is the relation R between them, by the Abstraction Theorem, one has Mp =
M'c : o.

A most relevant application of parametricity, as described by the Abstraction Theorem,
has been recently given by Hasegawa, [Hase93]. As well known, in intuitionistie second
order logic implication and universal quantification, the type constructors of system F, are
sufficient to form all other connectives. In particular, the absurdum, ..L.I, the existential
quantifier 3, and and or are all definable. However, all these definable connectives
are weak, in the sense that _..I (intuitively, the empty set or unprovable statemen0 is
not initial and the others do not have the required projections or injections to be
interpreted in all models as true existential, product and coproduct. The surprising result
of Hasegawa is that the definable connectives have the right properties (initiality,
projections...) exactly in those models of system F which are parametric, in the sense that
they provide the relational frame for the Abstraction Theorem. Moreover, in [I-Iase93] it
is shown that also initiality of free algebraic constructions holds exactly in presence of
parametricity. In short, it is known that "free" algebraic types are representable in system
F, see [BB85]: given an endofunctor G, VX.((G(X) ---> X) ---> X) defines the algebraic
type freely generated from G (for example, G(X) = 0+X, for a terminal object 0,
generates the natural numbers). So far so good, but, the crucial algebraic property of
initiality is usually lost by this weak definition, inside system F. Well, parametricity
gives it back and allows to embed algebraic definitions, in their full expressiveness, into
all parametric models of system F. If nothing else could be said about the relevance of
parametricity, this should be enough to convince the reader of the interest of this
uniformity property of system F. Indeed, it tells us why lambda calculus, by uniformely
coding proofs by terms, is much more than just the logical systems of their types as
propositions.

One final remark. The Abstraction Theorem (or its instance, as presented here) is, in a
way, "dual" to the Genericity Theorem. Given one term M of type VX.ct, if two

input types p and x are related, then so are the output values Mp and M'c. Dually,
Genericity says that, given two terms M and N of type VX.o, if they coincide on
one input type x, then M and N are equal. Thus, the two results study the
consequence of applying one term on two inputs vs two terms on one input. Jointly,
they give some robust information on the parametric dependence of terms on types, as we
tried to suggest, very informally, by the picture at the end of w polymorphic functions

665

never cross and are all similarly regular (or preserve relations, all in the same way). The
difficulty (and the research issue) here, is that the Genericity Theorem does not hold in
system R. Indeed, R realizes Ax.C, but does not need to realize its implicative
consequences. Namely, the equational theory of R is an equational variety and nothing is
known, a priori, about the implications between equations that it realizes. A formal
understanding of this problem or of the relations between the two theorems, by a unified
frame for parametricity, would surely shed further light on this crucial property of lambda
calculus.

7 T r u e t y p e d e p e n d e n c y o r " a d hoc" p o l y m o r p h i s m

The results just mer~tioned stress the faithful correspondence of system F, the core of
higher order functional programming, to constructive logical system. The intended
meaning of a type, as formalized in intuitionistic type theories, is that of possibly
infinite collection of individuals. Effective computations can only be carried on
individuals or elements of types and cannot use the infinite amount of information
implicit in the notion of type. Thus, a properly constructive second order system, where
type or set variables are explicitly allowed, cannot compute with these variables nor with
their instantiafiou by type symbols. In a sense, this justifies the practice of erasing type
information at run-time: only the type, not the result of a computation can depend on
type parameters.

However, in actual programming languages, types may be coded. After a l l type
symbols are countably many and programmers are not always very eoncerued by the
intended interpretation of second order variables. Thus computations depending do exist
in the practice of programming. Usually, though, true type dependency are resolved at
compile-time. For example, the familiar overloaded functions of many imperative
languages (or of imperative features of functional languages) are given different values,
according to type inlbrmation, before computing. Typical examples are the "+" or "print"
functions in most running languages, where their overloaded meaning is decided when
checking the type of the inputs, at compile-time. Usually these constructions are as
untidy as low level code writing. Moreover, the early resolution of overloading has little
expressivity and little mathematical relevance. However, this should not mislead us
from this further expressivity of programming; as already mentioned, codes for types can
be manipulated. Thus, in an even more constructive approach to reality, i.e., in actual
programming, one may have functions whose output values depend on input types. As a
matter of fact, "ad hoc" polymorphism is a powerful and useful feature and a further
mathematical challenge. Too had that it has been given a name with a negative
connotation by the founding fathers of programming language theory; this name and their
influential role may have diverted or delayed investigation from an important aspect of
computing.

The point is to e~nbed "ad hoc" polymorphism into a sound mathematical frame and
turn it into a general, non ad hoe, programming tool.

We summarize here the proposal for the investigation of a true type dependency,
viewed as overloading, made in [CGL92]. In that paper, a robust use of overloading is
proposed in order to investigate some aspects of Object Oriented Programming in a
functional frame. We directly borrow from [CGL92] a brief introduction to this typically
"ad hoe" polymorphism.

The motivation come from considering overloading as a way to interpret message-
passing in object-oriented programming, when methods are viewed as "global" functions:

666

they are named "outside" the objects and their (operational) value is specified as soon as
the name of a global function is associated to an object. This value may entirely change
according to the given object: overloading is not parametric in the sense of system F.

In short, in object-oriented languages computations evolve on objects. Objects are
programming items grouped in classes and possess an internal state that is modified by
sending messages to the object. When an object receives
a message it invokes the method (i.e., code or procedure) associated to that message. The
association between methods and messages is described by the class the object belongs to.
In particular, objects are pairs (internal state, class_name).

The idea then is to consider messages as names of overloaded functions and message
passing as overloaded application: according to the class (or more generally, the type) of
the object the message is passed to, a different method is chosen (this is similar to
programming in CLOS, for example). Thus, we pass objects to messages, similarly as
types are Passed as inputs to the polymorphic functions of system F. The crucial
difference is that parametricity is lost by allowing a finitely branching choice of the
possible code to be applied. And this choice will depend on types as inputs (or, more
precisely, on the type of the inputs).

In the formalism designed in [CGL92], terms describe overloaded functions by "gluing
up together" different "pieces of code". Thus the code of an overloaded function is formed
by several branches of code. The branch to execute is chosen when the function is applied
to an argument, according to a selection rule which uses the type of the argument.

A key feature of this approach is that the branch selection is not performed on the basis
of the type the argument possesses at compile-time. As already mentioned this is a
fundamental limitation of overloading as used in imperative languages (early binding). In
the present approach, the selection is performed each time the overloaded application is
evaluated during computation. Moreover, the branch selection can be performed only
when the argument is fully evaluated, and depends on its "run-time type" (late binding)
which may differ from the compile-time type.

For example, suppose that Real and Nat are subtypes of Complex and that add
is an overloaded function defined on all of them, and suppose that x is a formal
parameter of a function, with type Complex. Assume also that the compile-time type
of the argument is used for branch selection (early binding). Then an overloaded function
application (here denoted ,), such as the following one

: Complex.(...add �9 x...),
is always executed using the add code for complex numbers; with late binding, each
time the whole function is applied, the code for add is chosen only when the parameter
x has been bound and evaluated. Thus the appropriate code for add is used on the basis
of the run-time type of x and according to whether x is bound to a real or to a natural
number.

In summary, in [CGL92] a simple extension of the typed lambda-calculus is designed,
which is meant to formalize the behavior of overloaded functions with late binding in a
type discipline with subtyping. The first point id to add to ordinary X-terms, new terms
such as (MI&...&M n) that represent the overloaded function composed by the n

branches M i, for i a n . We extend then the ordinary functional application MN by

an operation of overloaded application M,N.
The types of the overloaded functions are finite lists of arrow types

{U1---) V 1 Un --~ V n } (denoted by {U i ~ Vi}ie I for a suitable set I), where

every arrow type is the type of a branch. Overloaded types, though, mast satisfy relevant
consistency conditions, which, among others, take care, in our view, of the longstanding

667

debate concerning the use of covariance or contravariance of the arrow type in its left
argument. More precisely, the general arrow types will be given by contravariant "--->"
in the first argument: this is an essential feature of (typed) functional programs, were type
assignment (type-checking) helps avoiding run-time errors. Instead, the types of
overloaded functions are covariant families of arrow types, as explained later.

We stress that the subtyping relation introduced is a complex, but expressive, feature
of the calculus: it aliows multiple choices, as a type may be a subtype of several types
and subtyping is used to chose branches of overloaded terms. The blend of &-terms and
subtyping makes this calculus an expressive and original mathematical formalism which
shows, we claim, that "ad hoe" polymorphism may have also theoretical relevance. Here
is a short survey of some basic idea in the calculus and its reduction rules.

The subtyping relation is defined as usual on an'ow types. On overloaded types, it
B B t t

expresses that a type T' = { Uj ~ Vj}je J is smaller than another T B' = {U" i ~ V i

}je I, if the programs in T' type check also when given as input an argument meant for

programs in T" (set, the rule [~ ELIM (<)] below):

! t t~

forall ieI, there exists jeJ suchthat U" i<U j and Vj_<V i

i t t t t t

{ Uj---> Vj}je j < {U i--~V i }ieI

WeU-formed types are defined by using the (pre-)order on them (in case the preorder gives
a set instead of a single element, e.g. the greatest lower bound, we choose a canonical
one). The definition gives the structure of family of covariant types to overloaded types:

1. AE Types
2. if V 1, V2eTypes, then Vl---> V2eTypes

3. if for all i, j e I
(a) ~ i , VieTypes) and

(b) (U i < Uj ~ V i < Vj) and

(c) If, when U i and Uj have a common lower bound, there is a unique (or

canonical) he I such that U h = inf {Ui, Uj}, then {U i --4 Vi}ie I eTypes

Terms are difined by adding &-terms and overloaded application:

M :: = xV I c I k xV. M I MM I M&VM I M.M

The crucial type-checking rules are tile following. Note the type label over the &, in
&-terms.

[--~ ELIM (_)]

I - - M : U ~ V I - N : W < U

I- MN: V

[{}INTPO]

668

I - -M:W 1 < { U i ~ V i J i < (n . l) I---N:W2<Un--->Vn

l- (M& {Ui~ ViIi < n N) : {Ui~ V i i i _ < n

[{}ELIM]
I-M:{Ui-->Vi}ia I [- N : U U j = m i n i a i { U i l U < U i}

I-M'N: Vj

The last rule says that the output of an overloaded application lives in a type depending

on the type of the input, namely the type Vj corresponding to the least U i which

contains the type of the input In a sense, U i is the least type which allows the rule [---~

ELIM(<)] to be applied (this is were subtyping blends with overloading in a crucial
way). Indeed, the reduction rule below says that also the value depends on the type of the
input, as the intended Mj is chosen inductively by using, again,/he type of the input

and the type label on the &.

[~&) If N : U is closed and in normal form and Uj = min {U i I U < U i } then

((MI&[Ui--> Vi}i=l..n M2).N) ,---> "if j < n then MI.N, else M2.N forj = n"

Clearly, the choice performed by the ([~&) rule may give essentially different output
values, as no restriction is set on the computation expressed by the terms. Iformally, one
obtains a reduction (MI&...&Mn).N ,--> MjN, for j < n depending on the type of the

input N. The motivations for the conditions on N are discussed in [CGL92]. (~)
reductions are defined as usual (but [---> ELIM (<)] may let the type decrease during

computations).
The non-obvious fact of this calculus is that it satisfies Strong Normalization and the

Church-Rosser theorem, see [CGL92].
We believe that this sets on solid "functional" and non "ad hoc" grounds some aspects

of Object Oriented Programming, when message passing is described as overloading.
Much more is said in [CGL92 and 93]. We only wanted to mention here some
motivations and a proposal for true type dependency or computations depending on input
types. The approach though is just a preliminary attempt, as the goal would be to reach
the smoothness and "uniformity" of higher order 2.-calculi. The gluing together of terms
given here is rather heavy. It lakes care of many aspects, beyond type dependency,
namely lat e binding and flexible subtyping, but it should be turned into an explicitly
second order system, if ever possible. One should allow, say, notations such as

~.X.(...&X...) and still preserve the effectiveness (normalization?) of the present system
(ongoing work of Castagna and Pierce is exploring this and other directions). Then we
would really reach an alternative language to current functional approaches, restricted as
they are by the limitations of paramelricity.

669

R e f e r e n c e s

[ACC93] M.Abadi, L. CardeUi, and P.-L. Curien, Formal parametric polymorphism. In
Proc. 20th ACM Symposium on Principles of Progranuning Languages, 1993.

[Bare84] H. Barendregt, The Lambada Calculus, its syntax and semantics, North-
Holland,Amsterdam, revised edition, 1984

[BB85] Berarducci and C. Boehm, Automatic synthesis of typed A-programs on term
algebras, Theoret. Comput. Sci. 39 (1985) pp.135-154

[BFSS90] E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott,. Functorial
Polymorphism. Theoretical Computer Science, 70:35-64, 1990. Corresgendum
ibid., 71:431, 1990.

[Church41] A. Church, The Calculi of Lambada Conversion, Princeton University
Press, Princeton

[CGL92] G. Castagna, G. Ghelli and G. Longo, A calculus for overloaded functions with
subtyping ACM Conference on LISP and Functional Programming,
San Francisco, Juillet 1992.

[CGL93] G. Castagna, G. Ghelli and G. Longo, The semantics for Lamda &-early: a
calculus with ovedaorading and early binding, Report LIENS.

[CL91] L. Cardelli and G. Longo, A semantic basis for Quest. In Journal of
FmtctionaIProgranm~ing I(4), October 1991, pp.417-458.

[CMS91] L. Cardelli, J.C. Mitchell, S. Martini, and A. Scedrov, An extension of
system F with Subtyping. To appear in Information and Computation. Extended
abstract in T. Ito and A.R. Meyer (eds.), Theoretical Aspects of Computer
Software, Springer-Verlag LNCS 526, 1991, pp. 750-770.

[DiCo92] R. DiCosmo, Deciding type isomorphisms in a type assignment framework.
Journal of Functional Progranmdng, To appear in the Special Issue on NIL.

[DiCo93] R. DiCosmo, Isomorphisms of Types, PhD Thesis, Universita di Pisa.

[DiCoLo89] R. DiCosmo and G. Longo, Constructively equivalent propositions and
isomorphisms of objects (or terms as natural transformations). Workshop on
Logic for Comptuer Science, Moschovakis (ed), MSRI, Berkeley, November
1989.

[FrS92] P.J. Freyd and A. Scedrov, Categories, Allegories. Mathematical Library,
North-Holland, 1990.

670

[FRR92] P.J. Freyd, E.P. Robinson, and G. Rosolini, Functorial parametricity. In
Proc. 7th Annual IEEE Symposium on Logic in Computer Science, 1992.

[Gir71] J.-Y. Girard, Une extention de rinterpr~tation de Godel/ranalyse et la th>orie et
son application/l',limination des coupures darts ranalyse et la th}orie des types,
In Proceedings of the Second Scandinavian Logic Symposium, Studies in Logic
63, J.E. Fenstad (ed.), North-Holland, Amsterdam, pp.63-92.

[GLT89] J.-Y. Girard, Y. La/ont, and P. Taylor, Proofs and Types. Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, 1989.

[GSS91] J.-Y. Girard, A. Scedrov, and P.J. Scott, Normal forms and cut-free proofs as
natural transformations. In: Y.N. Moschovakis, editor, Logic from Computer
Science, Pro. M.S.R.I. Workshop, Berkeley, 1989. M.S.R.I. Series Springer-
Verlag, 1991.

[Hase93] R. Hasegawa, Categorical data types in paramelric polymorphism, To appear in
Mathematical Structure ht Con~puter Science.

[LMS92] G. Longo, K. Milsted and S. Soloviev, The genericity theorem and the notion
of parametricity in the plymorphic Lamda-calculus, Report LIENS 92-25
(submitted to LICS93).

[MaRey92] Q. Ma and J.C. Reynolds, Types, abstraction, and parametric
polymorphism, Part 2. In S. Brookes et al., editors, Mathematical Fundations
of Programming Semantics, Proceedings 1991, Springer-Verlag LNCS 598,
1992, pp. 1-40.

[Mai 91] H. Mairson, Outline of a proof theory of parametricity. In Proc. 5-th Intern.
Syrup. on Functional Progranvning and Computer Architecture, 1991.

[Mi178] R. Milner, A theory of type polymorphism in programming. In Journal of
Computer and Systytem Science, 17(3): 348-375, 1978.

[Mit88] J.C. Mitchell, Polymorphic type inference and containment. Information and
Computation, 76(2/3): 211-249, 1988. Reprinted in Logical Fundations of
Functional Progranm~ing, ed. G. Huet, Addison-Wesley, 1990, pp.153-194.

[Rey74] J.C. Reynolds, Towards a theory of type structure, in LNCS, Springer, Berlin,
pp.408-425.

[Rey83] J.C. Reynolds, Types, abstraction, and parametric polymorphism. In R.E.A.
Mason, editor, Information Processing'83, pp. 513-523. North-Holland, 1983.

[Wad89] P. Wadler, Theorems for free! in 4th internat. Syrup. on FP Languages and
Computer Architecture, London, pp.347-359, ACM, 1989.

