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Abstract.  The specification and derivation of substitution for the de Bruijn 
representation of )~-tcrms is used to iUustrate programming with a function- 
sequence monad. The resulting program is improved by interactive program 
transformation methods into an efficient implementation that uses primitive 
machine arithmetic. These transformations illustrate new techniques that 
assist the discovery of the arithmetic structure of the solution. 

Introduction 

Substitution is one of many problems in computer science that, once understood in 
one context, is understood ill all contexts. Why, then, must a different substitution 
function be written for every abstract syntax implemented? This paper shows how 
to specify substitution once and use the monadic structure of the specification to 
instantiate it oil different abstract syntax structures. It also shows how to inter- 
actively derive an efficient implementation of substitution from this very abstract 
specification. 

Formal methods that support reasoning about free algebras from first principles 
based on their inductive structure are theoretically attractive because they have 
simple and expressive theories. However, in practice they often lead to inefficient al- 
gorithms because they fail to exploit the "algebras" implemented in computer hard- 
ware. This paper examines this problem by giving a systematic program development 
and then describing a series of (potentially) automatic program transformations that 
may be used to achieve an elticient implementatioll. 

Ttle particular program development style employed is based on the categorical 
notion of a monad. This approach to specification has been advocated by Wadler[8] 
and is strongly influenced by Moggi's work on semantics[6]. The substitution algo- 
rithln for A-calculus terms represented with de Bruijn indexes serves as the primary 
example. The development of the specification is a refinement of an example in Ilook, 
Kieburtz and Sheard[5]. It is noteworthy because a non-standard category is used; 
the earlier work did not identify this category. 

The specification is transformed into ilrst-order equations using techniques im- 
plemented in the partial evaluator Schism[4]. It is then refined to an equivalent first- 
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Tile first thing to observe about the sequence is that its general shape is qi+10 = 0 
and ai+l(n + 1) ,,~ (tin. To make it exact it is necessary to increment all global 
variables in ~rin without incrementing the local variables. This is done by another 
sequence of functions: 

fort = ~'~ + 1 f l O =  0 f20 = 0 
f l ( n +  1) = n +  2 f21 = 1 

f2(n + 2) = n -4- 3 

Observe that in the example ~t single application of f l  to the body of al 1 accounts 
for A . 0 1 being adjusted to A. 0 2. In general the fi are generated by fi+10 = 0 
and f i+~(n + 1) = ( f in )  + 1. So, assuming a map that applies a family of functions, 
the family of substitution functions, (a0, al . . . .  ), is given by the initial substitution, 
~r0, and the recurrence (ri+t0 = 0 and (ri+l(n + 1) = map ( f o , f l , . . . ) ( a i n )  �9 Given 
the sequence of functions, (or0, or1,...), mapping indexes to terms, the map function 
for sequences can be used to apply the sequence of substitution functions. This, 
however, results in terms of terms, since every variable has replaced its index by a 
term. This is not a problem, however, because the Term type constructor developed 
below is designed to be a monad; monads have a polymorphic function, mull, which 
performs the requisite flattening. 

2 M o n a d s  

A monad is a concept fi'om category theory that has been used to provide structure 
to semantics[6] and to specifications[8]. In the computer science setting a monad is 
defined by a parametric data type constructor, T,  and three polymorphic functions: 
map : (ct --~ fl) ~ T(r --~ T/3, "unit : a' --* Tc~, and mull : T T ~  --* T~:. Tile map 
function is required to satisfy map ida = idTr and map ( f  o g) = map f o map g. The 
polymorphic functions unit and mull must satisfy mult,~, o u n i l T a  = i d T a ,  mullot o 
(map unite,) = idT,~ and mult,~ o mull.r,~ = multc, o (map multc,). A simple example 
of a monad is list. For lists, map is the familiar raapcar function of Lisp, unil is 
the function that produces a singleton list, and muir is the concatenate function 
that flattens a list of lists into a single list. Other examples of monads are given by 
Wadler[8]. 

Several categorical concepts are implicit above. The fimctional programming cat- 
egory has types as objects and (computable) functions as arrows. (Values are viewed 
as constant functions--arrows from the one element type.) The requirements on map 
specify that the type constructor T and the map function together define a func- 
toy. The polymorphic types of unit and mull implicitly require them to be natural 
trausformalions. The Lhree laws given for them are the monad laws. 

Monads have been used to structure specifications (and semantics) because it 
is often possible to characterize interesting facets of a specification as a monad. 
Algorithms to exploit the particular facet, may frequently be expressed in terms of 
the map, unit and mull funct.ions with no explicit details of the type constructors. 
Finally, the many facets are brought together by composing the type constructors. 
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3 T h e  T e r m  M o n a d  

Tile development in Sect. 1 suggests that  the specification of the substitution opera- 
tion will be straightforward in a monadic data  type with an appropriate  map. To be 
monadic,  the da ta  type must be parametric.  The following simple type declaration 
is sufficient2: 

d a t a t y p e  Term(a)  = Vat(a)  

I 
[ A p p ( T e r m ( a ) ,  Term(a))  

Using techniques developed in earlier work, it is possible to automatical ly gen- 
erate map, mull and unit functions for this type realizing a monadic structure[5]. 
Unfortunately, the map function obtained with those techniques does not work with 
families of functions. 

To accommodate  tile function sequences a new category, FUNSEQ, is used. The 
objects are data  types, as before, but the morphisms are sequences of functions 
(formally HoM(A, B) = (B A)'~). Identities are constant sequences of identifies from 
the underlying category; composition is pointwise, i.e. (fl)ie~ o (gi)ie~ = (fi ogi)ie~. 

The map function for Term exploits the new structure by shifting the series of 
functions whenever it enters a new context. Its definition is given as a functional 
program: 

map (fo, k , . . . )  (Vat  x) = Var((fo, k , . . . )  x) 
map (fo, Y l , . . . )  (A bs t) = A bs(ma 1, ( f l ,  Y2,.. .) t) 
map (fo, f l  . . . .  ) ( App(C t') ) = App( map (fo, f l  . . . .  ) t, map (fo, f l ,  . . .) t') 

It  is easily verified that  (Term, map) satisfy the categorical definition of a functor. 
Looking at these definitions, it is clear how to insert an ordinary function or value 

into the category, and it is straightforward to insert tile families of functions needed 
for the example by giving tile initial element of the sequence and the functional that  
generates all others. IIowever, it is also necessary to define the mapping that  pulls 
a computat ion from FUNSEQ back into tile category of functional programs. This 
is accomplished by taking the first element of the function sequence. Tlms, one way 
to realize the map function of FUNSEQ in a functional programming setting is with 
the map_with_policy flmction introduced in Itook, Kieburtz and Sheard[5]: 

map_with_policy Z f ( Vat x) = I/ar(fx) 
map_wilh._policy Z f (Abs t) = Abs(map_wilh._policy g (Z f )  t) 
map_with._policy Z f (App(t ,  t')) = At,p(map_wilh_policy Z f l, 

map_with_policy Z f l') 

In this encoding Z is the functionM that  generates the sequence and f is tile seed 
value. Tha t  is, (map ( f ,  Z f ,  Z~'f . . . .  ))o = map_with_policy Z f .  Note the projection 

2 This is a simplified form of the Term data type in Hook, Kieburtz and Sheard[5]. An 
anonymous referee has pointed out that an Mternative structure can be used instead. 
The argument to Abs may be given the type Term(1 + cr (where + is interpreted as 
a discriminated union). While this structure is very interesting, it is not possible to 
express the map function for this type in the Standard ML type system. Preliminary 
results indicate this structure can be used to specify substitution. 
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of the first element from the family of functions on the left hand side indicated by 
the subscript 0. 

The uuit and mull functions automatically generated for Term can be lifted to 
FUNSEQ. Simple inductions show that they satisfy the monad laws. 

With these definitions in place the complete definition of substitution is given in 
Fig. 1. Note that the algorithm makes no explicit mention of the data constructors. It 
only uses the information about the type implicit in the definition of map_with_policy, 
uuil and mull.  

t im apply_substitution ao 3I = 
let funsuccx = x + 1 

fun transform_index f 
= ,~n. ifn = 0 then n else 1 + f ( n  - 1) 

fun transform_substitution a 
= )~n. ifn = 0 then unit 0 

else map_with_policy transform_index succ ( a( n - 1)) 
ill mult( map_wiih_policy transform_substitutiontro 111) 
end 

Fig. 1. Substitution function 

4 T r a n s f o r m a t i o n  t o  a F i r s t - O r d e r  S e t  o f  E q u a t i o n s  

To obtain a practical algorithm, tile substitution function apply_subsliluliou in Fig. 1 
nmst be made more efficient. This section shows how tlfis transformation can be 
done automatically. Program transformation systems operate on systems of first- 
order equations. To apply them to the specification of substitution the higher-order 
facets must be translated into first-order structures. A partial evaluation system is 
used to accomplish this. 

The software allowing a complete atttomatic transformation is not yet written. 
The transformations below have been performed with the Schism partial evaluator [4] 
and the Astre program transformation system [1], which are not yet integrated and 
do not use the same language. 

4.1 T r a n s f o r m a t i o n  of  tile map_with_policy O p e r a t o r  

The first step is to rewrite the program using the map_wilh_policy operator for 
the type Tcrnl(a.) as a system of first-order functions. A partial evaluator call 
be used to specialize higher-order functions decreasing their order level. For ex- 
ample, consider tile particular function or0 in tile example in Sect. 1, and tile call 
apply_subslitution or0. A partial evaluator produces a program that does not contain 
apply_subsliluliou in its full generality; it. specializes the definition of apply_subslilulion 
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for the particular constaut o" O. This specialization, called apply_subsliluliou_ao, does 
not have a function as an argument, so it is first-order. 

Unfortunately, this technique is insuificient for processing calls of map_with_policy, 
which is called twice in the program in Fig. 1. The specialization of map_with_policy 
for a particular policy fimction K and seed function go gives the following function 
Mwp _g: 

Mwv-<S (,a, V~r(,,.)) = 
M w m  (,s, Abs(O) = 
Mwp_g (g, A pl,( t, t') ) = 

The function Mwp_g llas a function 

Ya~(~(,,)) 
Abs(Mwp_g(K g, t)) 
App( Mwp_g(g, l), Mwp_g(g, t')) 

as an argulnent. But if it is specialized for 
a particular fimction g0, tile partial evaluator has to specialize tile internal call 
Mwp_g(K g, t); it loops on this attempt. Fortunately, the partial evaluator is able 
to detect this circumstance, allowing it to select another technique. The alternative 
technique translates the higher-order functions into a system of first-order functions. 
This standard encoding, which is due to Reynolds [7], is outlined below. 

1. The first step constructs a data type that encodes how the higher-order argu- 
ments are manipulated and applied. In this case tile functions to be encoded are 
go and K g. For the constant function, go, a constant C is introduced as a sum- 
mand in the data type Func. The argument K g cannot be encoded by a simple 
constant vahie because it contains g as a fi'ee variable. Since g is a higher-order 
parameter, it will alrea.dy be represented by a value of type Func. Itence the new 
constructor, F, representing tim application of K, must havc type Func ---+ Func. 
This gives the data type Func, defined d a t a t y p e  Fun.c = C [ F(Func).. The in- 
troduction of this type is a rediscovery of the scquence of functions go,g1,... 
because it encodes each functiola in the family. The function go is encoded by C, 
and the function g3, for example, is encoded by F(F(F(C))) ,  which is written 
/7'3. 

2. The fnnctions appearil,g as actual arguments are replaced by their encodings. 
The argument functions do not exist anymore--they are replaced by first-order 
data. In the call Mwp.g(go, M), go is no longer a function but a first-order value, 
[go], of type Func. The delinition of Mwp_g leads to the new function Mwp_gq 

M wp_~'(r,sl, y~(,,)) = va,.(rul(,O) 
Mwp_g'(fg],Abs(t)) = Abs(Mwp_g'(F([g]),t)) 
A,,s,v_.,,(r:,q, -w,,,(,., t,)) = Al, p(Mwp_g'(rgq, t), t,)) 

But since r ; ]  is not a function, the application P<S] ( '0 is nonsense. 
3, To nlake sense of Lhe applJcai, ions of functional paranleters hi tile original pro- 

grams "application" functious are introduced, Specifically the function apply_g, 
defined below, decodes applications of the form [g] (n). 

~m, lu-g(c, '0 = go(n) 

a r,.,1), ,, ) = . a , , m - , (  r:,q,,,))0,). (4) 

Note that apply-,d is a first-order function because its argument, [9], is an element 
of the type Func. The partial evaluator unfolds the definition of the policy 
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function K to get a first-order expression of apply_g(F([g]), n). The definition 
of Mwp_g ~ can be completed into: 

M,,,p_r Var(n)) = Var(apply_g(rgl, ")) 
M,,.,p_r A b~(t)) = A bs(Mwp_g'(F(i'.ql), t)) 
M,.,,_.,( r.l , A pp( t, t') ) = A pp( Mwp_g'( rg] t), Mwp_g'( r,j1, t ')) 

Recall that this encoding is done with respect to a specific call of map_with_policy 
Z go M. In the program in Fig. 1 there are twosuch calls. If the partial evaluator suc- 
ceeds in the transformation of (4), then the new functions corresponding to Mwp_g 
and apply_g will constitute a'first-order program equivalent to the functions gener- 
ated by map_wilh_policy. This step of the transformation can be automated using a 
partial evaluator. 

4.2 A p p l i c a t i o n  to apply_subslilul.ion. 

Using the precediug t,~chniques, the function apply_substitution, is successfully trans- 
formed into the first-order program in Fig. 2. The data. type Subsl and the data type 
Fseq are introduced using the techniques above for the encodiugs of transform_index 
and transform_substitution. 

d a t a t y p e  Subsl = SO d a t a t y p e  Fseq = SUCC 
I SUBST( SubsO I FSEQ( Fseq) 

fun apply_subslitution_ao( M) = 
let fun apply_f(SUGG, u) 

I apply_f(FSEQ(f), u) 

fun M,,,s,-f(f, V,,,'(.)) = 
I Mwp_f(f, Abs(t)) = 
I Mwp_f(f, App(t,t ')) = 

tklll (ipply_a ( SO, n) = 
I at,ply_a(SUBST(a), n) = 

ftul Mwp_a(a, Vat(n)) 
I Mwp:a(a, Abs(Q) 
I Mwp_~(~, App(t, t')) 

in mult( Mwp_(a)( SO, M) ) 
end 

= ,(,,.) 
= i f n = 0 t h e n 0  

e l s e  ~ ( . p p t ~ - f ( S , -  - 1 ) )  

Va r( apply_f (f, n.)) 
A bs(Mwp_f(FSEO(f), t)) 
A pp( Mwp~f ( f , t ), M~.p_f ( f , t') ) 
~o(,,) 
ifn = 0 then unit(0) 
else Mwp_f ( Succ, ( apply_a( cr, n - 1))) 

= y , , , . ( , , p p t ~ _ ~ ( < , , , . ) )  

= Ab.(Mwp_a(SUBST(a), t)) 
= App(Mwp_a(a, t), Mwp_a(a, t')) 

Fig. 2. First-order Program 

These two data types are isomorphic to tile data type NaP which is implemented 
elliciently in tile hardware. However, ~he specialized function Mwp_cr does not exploit 

.a The constructors for the data type Nat are 0 and s, i.e. da ta type  Nat = 0 I s(Nat). 
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the elIicient implementation since it. uses the (essentially unary) representation of 
the data type instead. Thus, the function apply_a must peel off all of the data 
constructors each time Mwp_a is applied to Var(n). For example, after three levels 
of abstraction, era is represented by SUBST(SUBST(SYBST(SO))).  (The same is 
also true of the function Mwp_f.) To eliminate this inefficiency, which was present in 
the calling behavior of the original specification, tile data types Subsl and Fseq must 
be changed to the uniform data type Nal. This transformation can be perforlned 
automatically by Astre. Ultimately the explicit use of Nat will facilitate the use of 
primitive arithmetic in the program. 

5 Silnple Transformations 

The following two simple transformations are performed automatically by Astre after 
introducing new function symbols. The first one introduces indexes to count the level 
of abstractions. The second replaces the composition of Mwp with the function mull 
by a single function. The order of these transformatio,ls does not matter; they can 
be done simultaneously. 

For teclmical reasons recursive definitions of the form g(u) = ifn. = 0thenelelsee~ 
are manipulated more effectively by Astre in the equivalent form g(0) = ej [0/n] and 
.q(s(n)) = e~.[s(n)/n]. The notation aid~x] denotes the substitution of expression e' 
for x in e. This restriction of the form of equations ensures the termination of the 
rewriting used by Astrc to unfold the definition of g. 

5.1 I n t r o d u c t i o n  of  I n d e x e s  

The isomorphisnl between the automatically generated type Subsl and the natural 
numbers is made explicit by introducing the function iso_er : Nat --. Subs~: 

fill, flU, iso_u( 8( i) ) : S UBST( iso_a( i) ) 
[ iso_a(O) = SO 

The functions apply_~ and Mwp_~ are replaced by the new functions er(i,n) (for 
ai(n)) and Mu'p_er', respectively. These functions satisfy er(i, u) = apply_a(iso_a(i), n) 
and Mwl,_er'(i, n) = Mwp_er(iso_er(i), n). Using these new equations, the Astre system 
implements the data type Subst using the data type Nat. New functions to imple- 
ment the data. type Fseq using Na! are also provided to the Astre system which then 
gives the program in Fig. 3. The program in Fig. 3 does not improve the perfor- 
mance of tile program in Fig. 2. lIowever, its explicit use of numbers is key to the 
improvements presented in the next section. 

5.2 C o m p o s i t i o n  S tep  

Tile transfornlation continues with a simple (automatic) step that replaces the com- 
position of mull with Mwp_a ~ by a. single function. 4 Tiffs is accomplished by intro- 
ducing a flmction symbol, Ewp, which is equated to the composition of mull with 

4 This composition is often ca.lled tile Kleisli star or nalural e:rlensiou. Ewp is a mnemonic 
for extension with policy. 
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fun apply_aubstitution_ao ( 3 1 )  = 

let fun f(0, u) = s(n) 
I f ( s ( i ) , o )  = o 
I f(4~),  4 - ) )  = 4f(~, , ,))  

fun Mwp_f'(i, Var(n)) = Var(f(i,n)) 
I Mwp_f'(i, Abs(t)) = Abs(Mwp.f'(s(i), t)) 
[ Mwp_f'(i, App(t, t')) = App(Mwp_f'(i, t), Mwp_f'(i, t')) 

fun a(O, n) = ao(n) 
I ~ ( s ( i ) , n )  = . , , i t (0)  
[ a(s.(i), s(n)) = Mwp.f'(O, a(i, n)) 

f,m M.,p_~'(i, V.4. , ))  = v ~ d . ( i , . ) )  
I mwp_~'(i, A b 4 t ) )  = Abs(Mwp_a'(s ( i ) , t ) )  
[ Mwp_a'(i, App(t, t')) = App(Mwp_a'(i, t), Mwp_a'(i, t')) 

i,~ ,.,at(M,,,p_~'(o, M)) 
end 

Fig. 3. Program with indexes 

Mwp_a', i.e., Ewp(O, M) = m ull(Mwp_cr'(O, M) ). Astre gives a program which uses 
neither mull, nor Mwp_q ~ that includes the following delinition of Ewp: 

fun  ~wp(i, Vat(u.)) = a(i, n) 
I Z.wp(i, A bs(l)) = Abs(Ewp(s(i), 1)) 
I ~.wl,(i, dl,p(t, V)) = App(Ewp(i, l), Ewp(i, t')) 

The main body of the function is then replaced by Ewp(O, M). The functions muir 
and Mwp_a ~, which have become useless, are removed. Since the Mwp_(V has now 
been eliminated, Mwp_f ~ is renamed Mwp to simplify the nomenclature below. 

6 Transformat ion  of the  Sequence of tile o" Functions 

The transformations ill this section exploit the arithmetic arguments introduced 
above to replace the expensive and redtmdaut recursive calculations ill ~ and Ewp 
with index arithmetic. 

The function a(i, n,) of the transformed program is a rediscovery of the series 
of functions (ri(n) of Sect. 1. To further refine this program a specific instance of 
apply_substitution ~o must be specified. In what follows, tile substitution function 
a0, needed for the contraction described in Sect. 1, is used to illustrate the special- 
ization. Recall that a9 replaces variables of index 0 with the term A. 0 l, which is 
represented by Abs(Al,p(Vat(O), Vat(I))). Thus, a0(O) = Abs(App(Vat(O), Vat(l))) 
and ao(s(n)) = un.il(n). UufoMing these equations yields a coml)lete definition of 
~(i, . ):  

or(O, O) = Abs(App( liar(O), Var(1))) 

o-(o, 4 . , ) )  = ,,,,i~(-) 
~ (4 i ) ,  0) = ., ,u.(0) 
a(s(i), s(n)) = Mwp(O, #(i, n)) (5) 
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Since the equational program is complete with respect to N a l ,  Nat, the computat ion 
of any instance of a(i ,  n) results in a ground constructor term. For example, a(4, 2) 
yields: 

~(s(s(s(s(0)))) ,  s(s(0))) -* (6) 
iwv(O,  ~(~( ,(~(0))) , , (0)))  -~ (7) 

Mwl,(O, Mwp(O, ~r(s(s(0)), 0))) --~* Var(s (s (O)) )  

Rewrites (6) and (7) are unfoldings by equation (5). Computa t ion  of any instance 
of or(i, n) by naturals can begin with unfoldings using (5) until a subterm, a(u,  v), 
in which u and~or v are equal to 0 is obtained. 

This suggests a target program of the form: 

a(i ,  n) = i f i  > u. t h e n  el e l se  i f i  = n t h e n  e~ e l se  e3 

where el,  e2, and c3 are expressions. The transformation wilt be beneficial if these 
expressions are efficient. This step introduces a form of function definition .by a 
conditional (instead of structural induction) that  violates the technical restriction on 
programs used to assure termination of rewriting as required by the Astre system. 
Presently, Astre does not perforln this part  of the transformation.  Moreover, the 
t ransformation does not directly generate the conditional; instead it generates the 
complete definition: (r(s(i) + k, k) = ul, ~r(k, k) = u2 and (r(k, s(n) + k) = ua. 

6.1 F i r s t  T r a n s f o r m a t i o n  S t e p  

The general strategy of tile two transformation steps that  follow is to discover arith- 
metic operations iml)licit in tile recursiou structure of programs. The first step in 
this process is a definition that  makes tile iteration structure of fimctions explicit�9 

D e f i n i t i o n 1 .  Let x be a variable of type , ,  let Yi be a term of type ]~i for each 
i = 1 , . . . ,  n, and let ~ be a fimetion of type/31 * " '" * "  * " "  */?n --* " .  The function 
!k of type Nal * (/31 * . . .  * - * . . .  * f3,,) ---* o: is defined by: 

~(8( ] r  � 9 1 4 9  ---- ~(Yl ,  � 9 1 4 9 1 4 9  � 9 1 4 9 1 4 9  � 9  � 9 1 4 9 1 4 9  

( v l ,  � 9  � 9  � 9  � 9  v , , ) )  = x 

P r o p o s i t i o n  2. 

~(k,  ( Y l , ' " ,  ~ ( Y l , ' '  ", Y,""", Y,,),""", Y,,)) = ~(W,"" ", ~(k, (W,"" ' ,  Y,' " ' ,  V, ,)) , ' ' " ,  V,,) 

Proof. By induction on k. 

An immediate  consequence of Definition 1 is ~(1, x) = ~(x),  where x : fll * ' " *  - * 
�9 " * *J~n. 

IIaving madc the il.eration structure of functions explicit, the next theorem helps 
program tra.ns['ormations exploit that  structure. To simplify the exposition, consider 
the case in which ~ :  a, --* o.. In this case ~ :  N a t * ,  - - * ,  and ~(k, n) = ~k(x),  where 
~x: denotes k applications of 9. Supl)ose now that  f : Nat * Nat  --* a" satisfies the 
equation: f (s ( i ) ,  s (u) )  = ~ ( f ( i ,  n)); then f ( , t ,  7) = ~4(f(0,  3)) = ~(4, f (0 ,  3)). More 
generally, f ( i  + k, n + k) = ~(k ,  f ( i ,  n)), which is the result expressed by Theorem 3. 
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T h e o r e m 3 .  Assume f of type Nat n ~ or, let Yi be a term of type fli for each 
i = 1 , . . . ,  n, and let ~ be a function, of type fll * " "  * (x . . . .  * fl,~ --* a. The following 
are equivalent: 

I. f(s(~,),..., s(~,)) = :(w,-.., f(x,,..., ~,),..., v,,) 
2. ~(k, (yl,..., f(xl,...,~e,,),..., fin)) = f(xl + k,...,~:n + k) 

Proof. That  1 implies 2 is obvious by instantiating k to 1. Tim converse is proved 
by induction on k. 

To apply this theorem to (5), let MwpO(x) be Mwp(O, x) and introduce the equation: 

M~wpO(k, a(i, n))) = a[i + k, n + k). This gives the equational definition of r n): 

A 

~O(i) + k, ~) = MwpO(k, ,,1,it(O)) 

r k) = MwpO(k, Zbs(mpp(Vat(O), Vat(i)))) 

r s(n) + k) = MwpO(k, unit(n)) 

This definition can be rewritten in the conditional form described at the beginning 
of the section with el = Mwp0(n, nnil(0)), e2 = MwpO(i, Abs(App(Vat(O), Vat(I)))) 
and e3 = MwpO(i, u,tit(n - i - 1)). 

6.2 Second  T r a n s f o r m a t i o n  S tep  

Tile second transformation step transforms the expressions el, e2 and e3. Tile def- 
inition of MwpO of type Term ~ Term, obtained by Definition 1, refers to the 
(inefficient) function MwpO. To get an efficient program an alternative (but equiva- 

lent) definition of Mwj~O that does not refer to MwpO must be generated. Theorem 4 
addresses this issue. 

To introduce Tlmorem 4, consider the function upto. Informally, upto(i, u) = 
[i, i +  1 , . . . ,  n.]. The function upto satisfies upto(s(i), sot)) = map s upto(i, n). Let 
map_s be tim specialization of the definition of map by s: 

,,,,~p_s D = H 
map_s (~ :: ~s) = ~(~) :: (,, , .p_s ~ )  

The operators ~ and ::: are the constructors of the data type List(o'). By Theorem 3, 

(map'~'-_s) (k, upto(i, ,i)) = (map_s) ~' (upto(i, n)) = upto(i + k, ,t + k) 

Theorem 4 will yield tim following recursive definition of (map_s) k , (that is of ma'h~_s); 
it does not refer to map_s. 

(,n~p_s)" D = H 
(,.,~p_s) ~ (~ :: ~s) = sk(~) : :  ((,,,ap_s) ~ ~s) 

Note, in this definition (map_s) k is tlm function being defined. It is to be regarded 
a.tomically; map_s is neither defined nor referred to. 
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T h e o r e m 4 .  Let Yi be a term of type fli for each. i = 1 , . . . ,  n, let ~ be a function of 
type fll * "'" * a' * . . . .  fl,, ---* a,, and let C be a constructor of type o~. The following 
are equivalent: 

1. ~(v~, . . . ,  c ( ~ , , . . . ,  ~ , , ) , . . . ,  v,,) = c ( ~ ( ~ , ) , . . . ,  ~,,(~,,)) 
e. ~(k, (v~, . . . ,  c ( ~ , . . . ,  ~ , , ) , . . . ,  v,)) = c ( ~ ( k ,  ~ } , . . . ,  ~,2(k, ~,))  

Proof. That 1 implies 2 is obvious by instanciating k to 1. The converse is proved 
by induction on k. 

If C is a constructor of arity zero, Theorem 4 degenerates to the two equations 
~ ( v , , . . . ,  c , . . . ,  v,) = c and ~(k, (W, '" ,  C , . . . ,  y,)) = C. 

To apply this result to MwpO, recall that MwpO(x) = Mwp(O, x) and that: 

M,~p(i, Vat{,,)) = Wr(f( i , . ) )  
Mwp(i, Abs(t)) = Abs(Mwp(s{i), t)) 
Mwp(i, App(t, t')) = App(Mwp(i, t), Mwp(i, if)). 

Introduction of the specia.lizations fo(x) = f(O, x), and Mwpl(x) = Mwp(1, x) allows 
the application of rpheorem 4, producing: 

A 

Mw2p0(k, Vat(,,,)) = ~&,-(L{2,,,,)) 
MwpO(L A~(t)) = An~(Mwp1(~,t)) 

A A A 

M wt,O( k, a pp( s, t ) ) = A pp( MwpO( ~, s), MwpO( k, t ) ). 

It is easy to show that J~ = gAbecause f(0, x) = s(x), and that g(k,a) = a + k 
by induction on k. Therefore MwpO(k, Vat(n)) = Var(fo(k, n)), which is equivalent 
to Var(.~(k, n)), which cat, be rewritte,~ Var(n + k). Although this appears to have 

progressed, i j : i s  incomplete because Mwpl is still defined in terms of M~pl.  Attempts 
to define Mwpl by this method, however, will require t.he flmction Mwp2; this would 
continue forever. I ortunately, there is a.nother way in wifich Theorem 3 may be 

A 

applied to (5), yielding the equation Mwp(k, (0, a(i, n))) = a(i + k, n + k). Applying 
the same transformation as above produces another conditional definition of a(i, n) 

A 

with el = u,,.it(n), e2 = Mwl,(i, (0, Abs(App( Var(0), Vat{i))))) and e3 = u,,.it(n-1). 
A 

Application of Theorem 4 produces a recursive definition of Mwp that does not refer 
to Mwp: 

M,%-p(~;, (i, W,r(,,,}}) = Yar()'(k, (,', ,))}} 
A A A 

Mwp(k, (i, App(s, t))) = App(Mwp{~, (i, s)), Mwp(k, (i, t))) 
A 

Mwp(k, (i, Abs(t))) = abs(Mwp(k, (s{i), 1})) 

(8} 

The transformation is not yet finished. Equation (8) remains to be improved by 
finding a recursive definitiorl of fi that does not refer to the function f .  



6.3 T rans fo r lna t i on  of  

Recall the equations for f :  
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f ( 0 , , )  = s ( , )  (9) 
f(s(i) ,  0) = 0 (10) 
f(s(i) ,  s(n)) = s(f(i ,  n)) (11) 

Applyiug Theorem 4 to (11) yields: 

](k, (s(i), s(n.))) = s(](k, (i, n))) .  (12) 

This suggests attempting a conditional definition for ] .  Using equations (9), (10), 
(11), Theorem 4, Theorem 3, and Definition 1 produces: 

/ (k ,  (0, s(n.))) = .~(.~(k, n)) = s(,t + k) (13) 

f(k,  (s(i), 0)) = 0 (14) 

](k,  (0, 0)) = k (15) 

Applying Theorem 3 1.o (12) gives: ](k, (i+p, n+p)) = ~(p, ](k, (i, n))) = ](k, (i, n))+ 
p. Applying that to equations (13), (14), (15) produces 

] (k ,  (s(i) + 1,, v)) = p 

] (k ,  (p, ~(,,) + p)) = ,, + 1 + k + p 

] (k ,  (p, p)) = k + p 

This equational definition is equiva.lent to the program: 

/ (k ,  (i, n)) = i f / >  n t hen  ,, else i f i  = n t h en  n + k else n + k. 

The program simplilles to: ](k, (i, n)) = if  i > n t h e n  n, else n + k. By unfold- 
ing f and by a wel!. known property of the conditional, equation (8) becomes: 

Mwp(k, (i, Vat(n))) = i f / >  n t hen  Vat(n) else I/'ar(n + k). Including the trans- 
formed form of a, which comes from above, produces tim program in Fig. 4 which 
does not perform redundant computations for tri and fi. The transformation in- 
volved in this section has been done manually. Ilowever the transformation process 
is systematic and involves equational reasoning using Theorem 3 and Theorem 4. It 
shows implicitly how to automatically transforna a function of type Nat. Nat -* Nat 
into a more efficient conditional form. 

7 D i r e c t i o n s  

The paper has presented a clearly motivated and correct specification for a subtle 
representation of ,~-terms, the implementation of which h~ ,  in tile second attthors 
experience, been prone to "off by one" errors. It has taken this abstract specification, 
with its extensive use of higher-order concepts, reduced it to a first-order program, 



fun apply_substitution_~ro( M ) = 
let  fun Mwp(k, (i, Var(n))) = 

] Mwp(k, (i, Abs(t))) = 
A 

I i.,p(k, (i, App(t, t'))) = 
f|lli a(i ,  n) = 

fun Ewp(i, l.la,-(u.)) = 
I Ewp(i, Abs(t)) = 
I Ewp(i, App(t, i')) = 

in Ewp(O, M)) 
end 
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i f / >  n then Vat(n) else Var(n + k) 
A 

Abs(M,,,p(k, (s(i), t))) 
app( Mwp(k, (i, t)), Mwp(k, (i, t'))) 
if i  > n then unit(n) 
else if l  = u then 

Mwp(i, (o, Abs(App( Vat(O), Var(l))))) 
else unit(u - 1) 
~(i, .) 
Abs( Ewp(s(i), Q) 
App( Ewp( i, t), Ewp( i, t') ) 

Fig. 4. Final result 

introduced index arithmetic and produced an efficient algorithm that exploits com- 
puter arithmetic. 

This development illustrates several new techuiques. First, it lnakes the monadic 
structure in the development of the specification explicit by showing that it is a 
monad in FUNSEQ, It supports this structure with new program transformation 
techniques which allow the implicit use of arithmetic to be "rediscovered" formally. 
Finally, it. dcmoustrates the feasibility of integrating tools for monadic programnaing 
and specification, which tend to be higher-order, with relatively standard program 
transformation technology, which is strictly first-order. The importauce of partial 
evaluatiou techuology in bridging this gap cannot be overstated. 

7.1 Techno logy  

Currently our technology is a tower of Babel. Automatic support for monadic pro- 
gramming, including automatic program generatiou, exists ill CRML, a Standard 
ML derivative developed by Sheard. The partial evaluator, Schism, uses its own 
(typed) dialect of Schenle as its object language. Astre, Bellcgarde's program trans- 
formation system, is written in CAML. It uses a very simple first-order language as 
its object language. 

In this environment, claims that the development is automatable mean that we 
have automated the process "piccewise", translating between the formalisms in a 
nearly mechanical fashion. It is, of course, our vision that one day these tools will 
all work in concert, allowing a development to proceed fi'om specificaLion to efficient 
realization with human intervention only when necessary. 

7.2 R e u s e  

Although this l)aper has focused on the )t-calculus, tile specification can be applied 
to virtually any abstract syntax with a rcgular biudiug structure provided its type 
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can be expressed as a monad and the appropriate definition of map_with_policy can 
be given. For example, adding boolean constants and a conditional has no effect 
on the specification of substitution and only changes map_with_policy by defining it 
to apply f recursively on the coml)ouents of the conditional without applying Z. 
Adding let is also trivial; again, no changes need to be made to the specification of 
subst i tut ion--only to map_wilh_policy. In this case, map_with_policy must apply Z 
to f when it enters the component in which the bound variable has been introduced. 
This ability to reuse specifications is one of the strongest arguments for the adoption 
of monads as a tool to structure program specification and development. 

But what about the transformations? Can we reuse program improvements? Ilere 
we have less experien(:e, however the decisions that are required to improve programs 
for the different scenarios outlined above are substantially the same. It appears that  
a transformation sys'~em that  records its development may be able to replay the 
development and obt..~in similar ilnprovements. 
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