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A b s t r a c t  

This paper discusses a formal semantics for an existent event-action system, Yeast, 
developed at AT&T Bell Laboratories. Yeast is a good case study for the use of (true- 
concurrent) semantic techniques since causal dependence among events, concurrency, 
nondeterminism and conflicting behaviour of specifications can all be modeled in Yeast. 
We discuss the use of the formalization in the verification of correctness of real Yeast 
applications with respect to various properties. 

1 I n t r o d u c t i o n  

In this paper we present a formal semantics for an existent event-action system, Yeast, 
developed a t  AT&T Bell Laboratories[l]. Yeast supports cooperative work  in a dis- 
tributed computing environment. It allows users to define event-driven specifications 
which when matched can trigger actions. Yeast manages events through a global space 
shared among all the users. Some of the events are asynchronous since they can come 
from the external environment. Yeast is used for a variety of applications, from deadline 
notification to software configuration management. A Yeast application consists of the 
set of specifications written to model the domain as well as the events that  match the 
specifications. 

The motivation for our work is twofold: i) From the theoretical side, Yeast represents 
a good case study for the use of (true-concurrent) semantic techniques [7]. Despite their 
conceptual simplicity, Yeast specifications exhibit a number of interesting behaviours such 
as causal dependence aiaong events, concurrency, nondeterminism and conflict; ii) From 
the applicative side, we are interested in verifying the correctness of Yeast applications 
with respect to various properties. Along with creating Yeast applications we would 
like to be able to identify specifications that  could be enabled by conflicting events, or 
perform a run-time ordering of specifications. A practical need thus emerges for a formal 
basis on which to carry out reasoning over Yeast applications. 

We define the Yeast semantics in two steps: First,  we provide a distributed opera- 
tional semantics by means of structured inference rules. This operational semantics is 
distributed in the sense that in each rule only the requirements (pieces of the state) to 
enable it are expressed, i.e. no global information is required. The second step defines 
how to retrieve a Petri net representation of Yeast applications from the operational 
description. A Petri net allows dependency (causality), independency (concurrency) and 
contraposition (conflict) among a collection of Yeast specifications to be clearly repre- 
sented. At this second semantic level, we formally define some properties a Yeast user 
may want to verify on the application. 

tI.E.I-C.N.R., Pisa, Italy. Research partially funded by Progetto Finalizzato Sistemi Informatici e 
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3Dipartimento di Informatica, UniversitY. di Pisa, Italy 



106 

Once the semantics has been provided, there are two approaches to verifying the 
correctness of Yea:st applications. The first one is to perform analysis and verification 
on the Petri net. This approach relies entirely on the Petri net representation. Given 
the state of the-art ,  we do not think that this approach is always practical due to the 
strong limitations in the ability to translate reasonable scale applications efficiently into 
the net semantic description. Even when the translation has been accomplished, the 
management of the net description both in terms of computational and space complexity 
can be hard. 

The second approach is to build verification tools that perform the required analysis 
directly at the application level, i.e. over Yeast source specifications based on the semantic 
description we have provided. In this work we are interested in pursuing this approach. 
This is not a simple task and one cannot expect to be completely successful. There can 
be a price to be paid in terms of completeness of the verification process. In fact, in 
order to be practical, sometimes it may be convenient to apply heuristics or ask for user 
intervention. 

We first describe Yeast briefly and then discuss a scenario of a Yeast application 
together with properties of interest. We then review operational semantics and Petri net 
preliminary definitions and results. The formal model section provides the operational 
semantics and Petri net representation of the subset of Yeast we consider. Then, this 
is applied on the specifications in the scenario along with an analysis of the properties 
of interest. In the same section, the approach we are taking to check these properties 
on Yeast specifications together with hints on our prototypal implementation in Prolog 
of two simple analysis tools are presented. We conclude with a section on current and 
future work. 

2 Y e a s t  

Yeas t  (Yet another Event-Action Specification Tool) is a general-purpose platform for 
constructing distributed event-action applications using high-level specifmations. Yeast 
supports a wide variety of applications, including calendar and notification systems, 
computer network management, software configuration management, software process 
automation, software process measurement, and coordination of wide-area software devel- 
opment. A general-purpose event-action system makes it easier for arbitrary applications 
to eliminate special purpose event-action matchings. 

Yeast was designed with some requirements in mind: 

�9 The specification language must be simple, yet powerful. 

�9 There should be no restriction on the actions that users can specify to be performed 
in response to the occurrence of user-specified event patterns. 

�9 Users of the system must be able to interactively query tile status of specifications 
they have registered with the system. 

Yeast is based on a client-server architecture in which distributed clients register, 
manipulate and query event-action specifications, and a server performs specification 
matching and management. A Yeast specification consists of an event pattern along 
with an action; the server triggers the action whenever it detects an occurrence of the 
associated event pattern. The action part of a specification can perform any number of 
actions in response to the matching of the event pattern,  including Yea.st-related actions. 
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Event patterns consist of either temporal events or object events. Temporal events 
are the familiar calendar events (e.g., at a particular time) whereas object events are 
changes in at tr ibute values of an object. Example objects that Yeast knows about are 
files, directories and machines. Example attributes of files are size, owner, etc. Yeast 
can match patterns that  are connected by the connectives and, or, and then, which have 
straightforward semantics (e.g. both sides of an and pattern have to be true for the 
pattern to be true). The then connective implies that  the left hand side must be true 
before checking is performed on tile right hand side. 

The significant difference between other event-action tools such as cro,, and Yeast 
is that Yeast can be told about new events. Users can define new object classes and 
attributes for them. Since change in values of user defined attr ibutes cannot be detected, 
they have to be announced to Yeast. 

A simple example shows the extensibility of Yeast. The defattr command (part  of 
Yeast) defines a new attr ibute of a particular type. 

defattr file debugged boolean 

Users can now make specifications that are matched when the debugged attr ibute 
attains a particular value. For example, 

addspec file libx debugged == true do make system 

Once Yeast is notified that the file libx has been debugged, the system is automatically 
rebuilt via the make system action. The user who has authentication over the at tr ibute 
debugged, after debugging the libx file, sends the following announcement: 

announce file libx debugged = true 

The announcement facility makes Yeast extensible and thus applicable to a wide range 
of tasks. 

3 A S o f t w a r e  D e v e l o p m e n t  S c e n a r i o  

In this section we present a small Yeast application that  at tempts to model a portion 
of a software development process. We then present a set of questions of interest which, 
while specific to the scenario, outline hints at the general properties of specifications that  
we would like to analyze. 

3.1 Scenario 
In a software development environment, change that needs to be done as a result of 
suspected problems or enhancement requests is labeled Modification Request or MR for 
short. Typically MRs are reviewed by an MR review board who decide which version of 
the software needs to be changed and which developers are responsible for each change. 
The MR is assigned to the responsible developers who fix the problem. After testing 
their changes locally, the developers submit the MR., upon which the modified software is 
rebuilt by an integrator. An approval team typically then approves the modified software, 
enabling it to be distributed. 

For the purposes of  this scenario we will consider a simplified example skipping over 
the MI~ review process and selection of the appropriate version of the software. 
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When a MR comes in, it is assigned a number and its status is set to active. Suppose it 
is assigned to a group of three people who have authority to fix the problem. Theoretically 
they are supposed to agree amongst themselves that  the problem has been fixed and then 
notify the integrator of this fact. 

The steps in the portion of the process we model via Yeast are: 

�9 Submitting an MR, 

�9 Rebuilding of software component by the integrator. 

�9 Approval by the approver. 

Additionally, suppose that  there are temporal constraints in the process. Say, the 
MR has been assigned at 8AM Monday; developers have until 5PM Wednesday to fix the 
problem; the integrator then has until 5PM Thursday to rebuild it and the approver must 
approve it by 5PM Friday. The dependencies are clear: software ca~mot be approved until 
it is rebuilt, and rebuilding cannot occur until the MR has been submitted. 

With this as background, let us look at a Yeast model of the above process. We 
consider some potential problems with this model later. For the scenario, let us assume 
MR23 is the MR in question on the software module ml, and that it was assigned to 
developers Anna, Bale, and Chico, the integrator is Dan and the approver is Eduardo. 
The Yeast command defobj  defines a new object class~ and d e f a t t r  defines a new 
attr ibute for an object class. 

defobj MR # models a modification request 

defattr MR status string # string attribute of MR status 

defobj module # module that has associated MR 

defattr module rebuilt boolean # boolean attr of module status 

defattr module approved boolean # boolean attr of module status 

After the developers test their changes, any of them can send an announcement stating 
that  the MR has been submitted by the developer as follows: 

announce MR MR23 status = devsub 

The specification that  the above announcement would match is made by the integrator 
Dan: 

addspec MR MR23 status --= devsub do rebuild ml (sl) 

where rebuild is presumably a script for rebuilding software modules. If tile rebuild script 
succeeds in rebuilding ml, then the following announcements are generated as part of the 
script. 

announce module ml rebuilt = true 

announce MR MR23 status = submitted 

If the rebuild script fails then the following announcement is sent 

announce module ml rebuilt = false 

Likewise, the following specification is made by the approver Eduardo 

addspec module ml rebuilt == true do TestAndApprove ml (s2) 
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where TestAndApprove is a script that tests the module and if the tests are successful 
generates the following announcements 

announce module ml approved = true 

announce MR MR23 status = approved 

Only Dan has the necessary authentication on tile at tr ibute rebuilt of the object-class 
module. Similarly, only Eduardo has authentication on the at tr ibute approved.  

If the status of the MR, is still active at 5PM Wednesday then the integrator needs 
to be notified about this. Likewise, if the module ml has not been rebuilt by 5PM 
Thursday the approver needs to be notified. These are the temporal constraints in this 
mini-process. 

addspec at 5pm Wednesday and MR MR23 status == active do 

Nobuild dan ml (s3) 

where Nobuild is a script that  notifies the integrator via mail and announces the failure 
of the rebuild: 

Mail -s missed_MR23_deadline dan 

announce module ml rebuilt = false 

addspec at 5pm Thursday and module ml rebuilt == false do 

Noapprove eduardo ml (s4) 

where Noapprove is a script that  notifies the approver Eduardo and announces the failure 
of the approval: 

Mail -s missed_MR23_deadline eduardo 

announce module ml approved = false 

3.2 Properties of interest 
The Yeast modeling of the process has potential problems and some properties of interest. 
An analysis of the specifications should bring these out. 

Since any of the three developers (Anna, Bala, Chico) can set the status attr ibute of 
MR23, there is a possibility that one person may set it to be devsub which matches speci- 
fication $1 triggering a rebuild of ml. If another developer sets the status to active later, 
that  will match $3 at 5PM Wednesday triggering a ml r e b u i l t  -- f a l s e  announcement. 
We would like to know about such possibilities a priori. 

The following questions are of interest as it relates to analysis of the specifications: 

�9 What  is the dependency pattern on the specification/events? 

0 Is there a time ordering of the specification matching times? 

�9 What  are the contrary events possible that could cause a deadlock or lead to po- 
tentlally erroneous conclusions? 

�9 Which specifications will be the last to be matched? 

�9 Which specification will be matched/at tempted to be matched first? 
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4 T h e  F o r m a l  M o d e l  

In this section we present the formal model we have defined for the Yeast language. 
Before introducing the model we recall the preliminary definitions and notions we need. 
In the following section we introduce the notion of Place/Transitions nets and operational 
semantics. For a detailed presentation of these topics the reader should refer to [5] and 
[6] respectively. 

4.1 Preliminary Definitions 
In this section, we review the main definitions of Place/Transition ( P / T )  nets and of 
operational semantics. 

Def in i t ion  1 P / T  Net 
A net N = (S, T,  W~ Mo) consists of disjoint sets S and T of places and transitions, the 
weight function W : S x T U T x S -* ~V and the initial marking Mo : S --* ZW , where ~W 
is the set of  natural numbers. 

Def in i t ion  2 Pre- and post- sets 
Given a net N = (S, T, W, Mo) and an element x E S U T,  

�9 the pre-set of z is "x = {y e S U T I W(y,  x) # 0} 
�9 the post-set o f x  is x" = {y E S U T I W ( z , y )  ~ 0} 

Def in i t ion  3 Markings and enabling 
Given a net N = (S ,T ,  W, Mo), a marking is a function M : S --* ~W. A transition t E T 
is enabled under a marking M,  denoted M[t > if for all s E* t, we have M(s )  >_ W(s ,  t). 
An enabled transition may occur, producing a follower marking M I, written M[t > M I, 
if  i [ t  > and M'(s)  = i ( s )  - W(s ,  t) + W( t ,  s) for all s E S. In this case, U[t  > M 1 is 
called a step. 

A marking M is called reachable if for some sequence of steps Q . . . t n ,  Mo[tl > 
M1. . .M~_l[ t , ,  > M.  

As far a.s the operational semantics is concerned we take the usual SOS approach [6]. 
That is we describe the operational behaviour of a system in terms of inference rules 
which define a relation between states of the system. 

Def in i t ion  4 Operational Semantics 
Let S denote the states of the system under description and Act the actions produced by 
the system when evolving from a state to another state. Then an operational semantics 

Premises 
O P is a set of  inference rules of the form defining a relation D C_ S x Act x S ; 

Conclusion 
D is the least relation satisfying the rules. 

In the following section we precisely define what are, in our case, states and actions. 
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4 . 2  O p e r a t i o n a l  S e m a n t i c s  

In this section we develop the operational semantics reflecting the dynamic behaviour of 
the language. T!m operational semantics is defined starting fl'om a syntactic presentation 
of the language which is slightly different from the grammar presented in the Appendix. 
The main differences are on the representation of events and of actions. Events are to be 
considered as unique. That  is, two specifications which use the same event give rise to 
two distinct events. In practice, this is realised by subscripting the event with the speci- 
fication identifier. As far as actions are concerned, we introduce the notion of action with 
parameters with the convention that action sequences are built with the ' ; '  operator,  and 
0 denotes the empty action sequence (i.e. do nothing). When an action has more than 
one parameter,  it indicates a branching upon a condition, and depending on the condition 
one among the actions (or action sequences) is executed. In this way complex scripts, 
or the intervention of a user, are modelled as a nondeterministic choice, i.e. a branch 
which depends on a condition that is outside of the system. For instance, the complex 
script described as Testandhpprove in the specification s2 of the SDS example in section 
3.1 can be modelled as T&A 0(announce(ml.approved =true); announce(mr23.status = 
approved)), which reflects the fact that if the test fails, nothing is done otherwisetwo an- 
nouncements are issued. Actually this is exactly the formalization we will use in Section 
4.4 when modelling the whole SDS example. 

Before introducing the rules of the operational semantics we define what is a state 
and an action of the system. Informally, a s t a t e  of the system is given by a set of 
specifications plus the conditions that  are fulfilled at a particular moment, that  is, events 
that  are true and which enable a specification. 

Notice that  Yeast attributes are not variables, i.e. the value of an at tr ibute is not 
persistent. For example, if an announcement of the event art1 = false is done and after 
that ,  a specification of the form art1 == false do mail(vladimiro) is included, the mall to 
vladimiro is not sent, since the announcement of attl  = false has been done previously 
and the system does not remember it. 

Def in i t ion  5 Let A be a Yeast event and s be a Yeast specification. Then, As is a 
state component. Moreover, if  A is of the form objeclattribute = value, then art(As) = 
objecta~tributc and vat(As) = value. 

For instance, att( (mr23.status = aetive),a) = mr23.status 
and val( (mr23.status = active)s3) = active. 

A state component is an event with a subscript identifying which specification it 
(partially) enables. We define the subindex cl for clock, and events subscripted with a cl 
are consumed by the system clock to produce new time events. Sub-indexes are omitted 
when they are obvious from the context, for example if the event corresponds to just one 
specification. 

The state of the system is composed of the current set of specifications plus the set 
of possible enablings, i.e. the events which are valid; which leads to our next definition. 

Def in i t ion  6 The states o / the  system are pairs (S ,E) ,  where S is a set o f  specifications 
and E is a set of state components. 

The set {sl, s2, . . . s , ,  } is denoted by Sl @ s2 . . .@sn.  Similarly {el, e2, . . . en  } is 
denoted by el (9 e2 . . . S e n .  Notice that (~ is associative and commutative. The sets 



112 

S and E have Cs and CE as neutral element respectively; furthermore (9 is idempotent 
with respect to these neutral elements. 

As far as ac t ions  are concerned, we just take the action part of Yeast specifications. 
Therefore the rules we are going to present define a relation among states of the system, 
i.e. O P  C_ (S x E) • Act x (S x E). 

The operational semantics is defined by means of one inference rule schema. This rule 
schema stands for different rules which are obtained by instantiating the ACT parameter 
with the action parameters of the yc function and substituting the bottom left part  with 
the corresponding output value of the yc function. The rule schema is: 

E ~" e, S ~- addspec(e, ACT)  

S, E AC-~T'yc( ACT,  S - addspec( e, ACT) ,  E - e) 

where yc is recursively defined as follows: 

ye : A C T x  S • E--* S x E 
yc( {al , . .  ., an}, S, E) = yc(an, ye( {al,.  . . ,  an-1 }, S, E)) 
yc(spee, S, E) = (S U spec), Z 
yc(defobj, S, E)  = yc(defaltr,  S, E) = S, E 
yc(announee(e), S, E)  = S, Z U e 
yc(shell_cmd, S, E) = S, E 

and 

e E E  s E S  

E k e  S ~ ' s  

E~-e  E b e ,  d 

E I - e o r e  ~ E b e a n d e '  

For example, an instance of the rule schema for A C T  = addspec(e ~, A) is: 

E k e, S ~" addspec(e, addspec(e', A)) 

T:~ add~pec(el,A) t ~ ,  , 

S, z~ ~ ta  u {addspec(e', A)}), E 

The obvious semantics of these rules is that  if the preconditions (i.e. all the expressions 
which appear in the upper part of the inference rule) are true then it is possible to infer 
the conclusions (what appears in the bottom part of the rule). In our case we say 
that  if from the set of events E it is possible to derive the existence of the event e 
and similarly, from the set of specifications S it is possible to derive the existence of 
the specification addspec(e, ACT)  then it is possible to activate the specification. This 
amounts in executing its action part,  thus resulting in a new state of the system in which 
the enabled specification has been removed from the set of specifications S and in the 
set of events E the event which has caused the enabling has been consumed. 

The last four inference rules define the notion of derivability (t-) in terms of set 
membership (E). In general, more complex notions of derivability can be defined, for 
example when tackling the full Yeast language we must be able to deal with more complex 
event patterns which may require different assumptions to be verified. 

Note that  the definition of yc shows that in our model the action part of a specification 
is atomic. This fact is justified since it reflects the actual behaviour of the Yeast system. 
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Since Yeast includes timing facilities, an important point is how time is modeled. The 
optimum would be a model where time is specified only when i t  is needed, and ignored 
otherwise. And since time in Yeast applications can be considered discrete, we model 
time explicitly in the operational semantics. Thus, time events axe ordered, and for each 
pair e, e I of time events such that e ~ is a immediate successor of e in the (total) timing 

ordering, a rule of the form S, E (9 e c t ~  S, E (9 e I is considered�9 
Some actions are identified to be external, i.e. actions that  a user or an external 

agent may perform. Such actions can occur at any moment. For instance, a user can 
make an announcement based on the success or failure of his/her work. Clearly it is a 
nondeterministic choice for the system, and this is modeled by external rules. So, for 
each external event e a rule of the form S, E L ~  S, E (9 e is included. To choose such a 
transition represents the fact ' that  a user intervention has produced the event e. 

A computation is just a sequence of states and rules of the form 81, E1 tab_~e/l S~, E2 Z~b__~2 
�9 . . S ~ , E , .  

4 . 3  A P e t r i  N e t  for Yeas t  

The operational semantics of the language has been given in such a way that  it is possible 
to obtain a Petri net from the rules above. In fact, in [4] it is shown that  transition systems 
whose set of states have monoidal structure (that is, a binary operation that  is associative, 
commutative and idempotent with respect to a zero) are in fact P / T  Petri nets. We use 
this result here in order to derive a Petri net representation for Yeast specifications. 
As has been pointed out earlier, Petri nets provide a natural representation, since the 
properties we want to check involve causal dependencies among events and require a clear 
distinction between nondeterminism and concurrency�9 

Masty proposals have been made for Real-time Petri nets (see for example [2]). Timed 
Petri nets are more complex than the model we are proposing�9 Here, the clock is consid- 
ered a process that  updates the events associated with time. Places are associated with 
times that  are used in specifications, and the treatment of time is homogeneous since, 
for instance, the restrictions about time are included in the partial order associated with 
the net. 

The Petri net corresponding to a Yeast specification is obtained directly from the 
operational semantic rules, since by replacing the comma with the @ operator a transition 
system with monoidal structure on states is obtained. 

However, only places which appear as causes of some transitions are considered in the 
net. In fact, no "dead places" (i.e. places with no outgoing transitions) are taken into 
account �9 

We first show how to specialize the meta-rule given in the previous section to a 
particular set of Yeast specifications. 

Def in i t ion  7 Let Y be a set of  Yeast specifications. Let y i  be Y plus all the specifications 
appearing as addspec(E, A) actions in the specifications of  Y .  Let E Y  be the set of state 
components appearing in y i  (either as preconditions or inside actions). Then, the rules 
associated with Y are obtained by getting all the instances of  the meta=rule choosing a 
specification s and an state component e for the premises such that s E Y~ and e E E Y ,  
and S and E are chosen to be minimal with respect to set inclusion. 

Moreover, for each external state component e E E Y ,  a rule Ca, eE ~ q~S, e is added, 
and for each pair of time state components el,e2 E E Y  such that e2 is the immediate 
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successor of  el in E Y  with respect to the time ordering, a rule dps, ex ~ r  e2 is added. 

Notice that  the rules obtained are axioms of the form S, E ~ S' ,  E ' .  The rules of 
the case study given in section 4.4 are obtained in this way. 

Def in i t ion  8 Given a set of rules defining a Yeast specification Y ,  with E Y  and Y t as in 
the previous definition, the corresponding net N is N = (S, T, W, Mo) where S C Y'U E Y  
is the set of  state components and specifications which appear at the left of  a rule, T is 
the set of rules, W(s , t )  = 1 iff  s appears at the left of  the arrow in t and W(t , s )  = 1 iff  
s appears at the right of  the arrow in t, and Mo = Y .  

From a brief analysis, it is.easy to observe that contradictory situations may arise from 
a computation of the net. We call inconsistent markings these contradictory markings 
containing more than one value for an attribute.  

Def in i t ion  9 A marking Sl @ s2 ~ . . . ~  an is said to be inconsistent i f f  there exist i and 
j such that si and sj are state components and att(si) = att(sj)  and val(si) ~ val(si) .  

4.4 Case S tudy  
In the following we show the operational semantics reflecting the dynamic behaviour the 
sub-processes under consideration. 

In the case of our example the object under consideration are modelled as follows: 

Event ::= mr23.status = Valstat I ml.rebuilt -- Bool 
I ml.approved = Bool I 5pmWed [ 5pmThu 

Action ::= announce(Event) I mail(User) [ rebuild(Action)(Action) 

I TaA(Action)(Action) [ Action ; Action ] () 

Valstat ::= devsub I submitted I active [ approved 

Bool ::= true I false 

User ::= eduardo [ dan [ ... 

We recall here that action T~A is used in the specification with two parameters, T&A 

0(announce(ml.approved =true); announce(mr23.status = approved)), which reflects 
the fact that if the test fails, nothing is done, else two announcements are sent. 

The system consists of four specifications: 

(s l)  mr23.status = devsub do rebuild 0(announce(ml.rebuil t  = true)i 
announce(mr23.status = submitted)) 

(s2) ml.rebuil t  = true do W&h ()(announce(ml.approved = true); 
announce(mr23.status = approved)) 

(s3) 5pmW A mr23.status = active do mail(dan); 
aanounce(ml.rebuilt  = false) 

(s4) 5pmT A ml.rebuil t  = false do mall(eduardo); 
announce(ml.approved = false) 

The initial state of the system is composed of the four specifications. Formally, the 
initial state is the pair (sl  (9 s2 @ s3 (9 s4, CE)- 

The rules for the system are shown in Table 1. Each transition has a label, which is 
the set of actions performed when the transition is executed. In this way, side effects (as 
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Table 1: Trans i t ion  

t2) c~S , c~E . . . .  
rebuild 

t31) sl  , mr23.status = devsub ~ 
rebuild t4) sl  , mr23.status = devsub ----* 

t5) s2, ml.rebuilt = true 

t6) s2, ml.rebuilt = true 

Rules for SDS 
Cs, mr23.status = devsub 
Cs, mr23.status = active 

Cs, r 
Cs, mr23.status = submitted @ 
ml.rebuilt = true 

T&A 
Cs, CE 

T&A --'* Cs , ml.approved = true 
mr23.status = approved 

q~s, ml.rebuilt = false 
~bs, ml.approved = false 

Cs, 5pmWedcl @ 5pmWeds3 

~bs, 5pmThu 

t7) s3, 5proWs3 @ mr23.status = active nou._.~]v 
noappro~e 

t8) s4 , 5pmT @ ml.rebuilt = false -----, 
clock 

t9) Cs , Cg - ' ~  
clock 

t l0)  CS , 5pmWedd 

sending a mail, or compifing a file) are modeled as labels of transitions, and hence can 
be easily identified in any execution. 

Each rule specifies only its r equ i r emen t s  (i.e. what does it need to be enabled) on the 
left hand side, and its outpu t  (i.e. what does it produce when it is enabled). Itence, the 

label 
condition that  enables a rule of the form s,  e ~ s I, e t in a state (S, E)  is that  s C_ S and 
e C_ E.  The m a t c h i n g  of the left hand side of the rules with the current state is done 
modulo associativity and commutativity of the @. 

Itence, the clock has a number of rules (t9, t l0  in the table) which relate the time 
events which appear in the specification. In the example we are considering, only 5pro 
Wednesday and 5pm Thursday appear, and hence only they are considered in the rules: 
(t9) shows that  5pro Wednesday will be eventually true and ( t l0)  simply says that  
Wednesday precedes Thursday. 

The initial marking is M0 = 31 @ s2 @ s3 @ s4. 
For example, suppose that  a user announces m r 2 3 . s t a l u s  = act ive ,  and after that 

another user announces m r 2 3 . s t a t u s  = devsub.  After that ,  at 5pm Wednesday, specifi- 
cation s3 will be matched, in spite of the fact that  the last announcement involving the 
value of rnr23 . s ta tus  has set it to be devsub,  tlowever, there is still a token on the place 
m r 2 3 . s t a t u s  = act ive.  In fact, the marking reached after the execution of both events 
contains two values for mr23 . s ta tu s .  

4.5 Propert ies  Analysis 

We now formally specify the properties we want to analyze. 

�9 What  is the dependency pattern on the events of a specification S? 
> Let N[S] be the net derived from S. Then, the dependency pat tern on Yeast 
events corresponds to the set of partial orderings of Yeast events obtained from the 
partiai  orderings of the places in the net by substituting each place with its label. 
Notice that  more than  one pattern is possible. For instance, if the system has three 
specifications: 
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t4~ ~ ~SpmW~ rnwedd 

P 

! ml.rebui|t = f~e t '  

Figure  1: The  Petr i  net for SDS 

- E do script(announce(x=l))(announce(y=l))  

- x = l  do announce(y=1) 

- y = l  do announce(x=l)  

there are two different patterns of dependencies: in one of them x = l  depends on 
y = l  and in the other y = l  depends on x = l .  

�9 Which specification will be the last/first to be matched/at tempted to be matched? 
> Find the set of specifications corresponding to the greatest / least  events in an 
admissible partial  order. 

�9 What  are the possible contrary events that  could cause a deadlock or lead to po- 
tentiaUy erroneous conclusions? 
> As far as deadlock is concerned, some known techniques can be used (see for 
example [5]). For "erroneous conclusions" we assimilate them to the generation of 
i n c o n s i s t e n t  mark i ngs ,  thus a specification can end up with an erroneous conclusion 
iff its net allows a computation to reach an inconsistent marking. For instance, in 
the example in correspondence with the conflict situation described in the previous 
section, there is a step sequence, namely 

81 @ 82 @ ~3 @ 84[ext2 > 81 (]) 82 @ 83 ~ ~4 (D m 2 3 . ~ t a t u 8  = a c t i v e [ e x t l  > 

81 $ 82 @ 83 @ 84 (t) m 2 3 . s t a t u 8  = a c t i v e  @ m 2 3 . s t a t u s  = d e v s u b  

which ends up in a state (marking) containing both m23 . s ta tu8  -= devsub  and 
m 2 3 . s t a t u s  = act ive.  This conflict is propagated in the net and the step sequence 
above can be extended to reach a marking containing both m l . r e b u i l t  = t rue  and 
m l . r c b u i l t  = fa lse .  
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4 .6  Checking Yeast Properties 
In the previous section we have identified the properties of the net that  correspond to 
the desired properties of Yeast specifications. However, as has been pointed out in the 
introduction, our aim is to check properties directly on the Yeast specification: we do 
not want to build the net and then to verify the net, since this strategy would be too 
hard for a real verification tool. Moreover, checking some net properties can in many 
cases be very difficult. For instance, checking the absence of inconsistent states, which 
is the translation in the net of "no possible erroneous conclusions exist", implies to 
verify that  some markings are not reachable, which can be very complex. In fact, the 
reachability problem, even for restricted classes of nets, has been shown to have a very 
high complexity [3]. Thus, the strategy of building the net and subsequent checking for 
reachable inconsistent states is infeasible. Our strategy is to build correct tools for the 
system, based on the formal model but not working directly on it. 

Many interesting properties can be dealt with just by using non standard operational 
semantics, i.e. by deriving from the rules of the operational semantics more abstract 
interpreters [10]. An abstract interpreter, based on the net description, filters some 
pieces of information out and presents an abstract view of the computation. In our 
case one possibility is to build an abstract interpreter for the construction of dependency 
patterns of specifications/events. For instance, let C be the computation of the SDS 
system corresponding to the conflict situation (and to the step sequence) of subsection 
4.5. The (labeled) graph of specifications/events dependencies we want to obtain from 
our tool is the following: 

We have tested this approach with a prototype implementation of an interpreter of the 
operational semantics and of an abstract interpreter for detecting dependencies among 
specifications/events of a given set of Yeast specifications. The implementation of the two 
interpreters is in Prolog whose input are a set of specifications to be analyzed obtained by 
directly interfacing the Yeast environment. Since Yeast specifications are dynamic (i.e. 
they constantly shrink as event patterns are matched and grow when new specifications 
axe added), to generate a snapshot of the current set of specifications, we wrote a new 
Yeast client command called dumpspee. Actually, it was a trivial modification of an 
existing client command that was used to dump the contents of a set of specifications. 
Tile only modification needed was the format. Dumpspee merely has to traverse the 
specification da ta  structure and output the contents. 

More precisely, what is obtained is a list of the specifications, for example the input 
generated in correspondence of the SDS system is: 

[addspec(object(MR, 'MR23', userdefined,tba),'rebuild ml ',1), 
addspec(object(module, 'ml', userdefined,tba),'TestAndApprove ml ',2), 
addspec(and(time(718477200),object(MR, 'MR23', userdefined,Zba)), 

'Mail -s missed_MR23_deadline dan '~3), 
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addspec(and(time(718563600), object(module, 'ml', userdefined,tba)), 
'Mail -s missed_MR23_deadline eduardo ',4)] 

A Yeast specification, as mentioned earlier, consists of an event pattern portion and 
an action portion. The event pattern consists of either a simple event pattern or a 
combination of two or more simple patterns connected with connectors and, or. A 

simple event is either a temporal event or an object event. The output of a temporal 
event simply contains "time" and the absolute time at which the event would match. 
Output of an object event has three components: object class, object and the attribute. 
If the attribute was user defined then an extra field was output to indicate the fact 
that the value of the attribute is to be announced ("tba"). The final element is the 
specification label since it is a. crucial item for analysis. 

The structure of the Prolog programs is very simple since they stralghforwardly reflect 
the structure of the operational semantics rules. The abstract interpreter is of course 
more abstract: it does not perform an execution of the Yeast program i.e. it is not 
concerned with the modification of the state S, E. The control flow among specifications 
is simulated in order to capture the dependency relationships. 

However, not all properties can be checked in this way. Checking for teachability of 
inconsistent states seems to be as difficult as in the net. It is still possible to use our 
tools to approach the problem in a more flexible and interactive way. In general, the 
Yeast specifier has a certain degree of knowledge of which can be weak points of his/her 
set of specifications. In this context the 0S interpreter we have realized can be used to 
implement the following strategy: 

�9 Construct a set of hypothetical conflicting states, either by proper knowledge or 
via an algorithm that checks all possible pairs of conflicting attribute/values that 
appear in the specification. 

�9 Use the two ways property of logical variables to run the OS interpreter with a 
partially instantiated goal where the output state contains a conflicting condition. 
In this way we can check if there exists a final state containing this condition. 

�9 If the partially instantiated goal succedes then a possible conflict has been detected. 
Otherwise, the system is safe. 

This is just an outline of the technique that we expect to use in order to perform 
vcrification of complex properties. Notice that (1) it works directly on specifications 
using the standard operational rules, and (2) the use of heuristics in the search can help 
in dealing with an otherwise intractable problem. 

5 C o n c l u s i o n s  

We have examined a way to formally study a practical event-action system, Yeast, which 
is presently being used for a variety of applications. We have presented a formal model 
of Yeast applications, and through the model we were able to answer several interesting 
properties about the specifications, which would otherwise be hard. Further, the model 
has already provided insights into the operation of the system pointing out potential 
conflicts in the construction of future Yeast applications. 

We have also started the experimentation of building verification tools based on the 
formal model, the choice of Prolog as the prototypal language has been mainly of conve- 
nience since we wanted high flexibility in experimenting different verification strategies. 
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The next step will be moving towards ML as implementation language in order to achieve 
a better integration with the AT~zT software development environment in which Yeast 
is largely used. 
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A p p e n d i x  A: Yeast Grammar 

Following is the grammar of the subset of the Yeast language we consider. 

yeast_prog ::= yeast_prog yeast_cmd 
yeast_cmd ::= spec 
J DEFOBJ object_class 
[ DEFATTR object_class obj_attribute type 
[ ANNOUNCE object_class obj_attribute ASSIGN value 
type ::= CHARSTRING [ INTEGER [ BOOLEAN 
spec ::= ADDSPEC event_pat DO action 
action ::= shell_cmd [ yeast_cmd 
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event_pat ::= event_pat AND event_pat 
event_pat DR event_pat [ simple_event 

simple_event ::= time_event I object_event 
time_event::= AT absolute_time 

absolute_time ::= time_of_day 

I time_of_day day_of_week /~ 3p mon ~/ 
time_of_day day_number /~ 3p 3 ~/ 

I time_of_day month day_number /~ 3p jan 2 ~/ 

time_of_day ::= hour AM I hour minute AM ~ hour PM I hour minute PM 

hour ::= i .. 12 

minute ::= 0 .. 59 

day_of_week ::= sun .. sat 
day_number ::= I .. 31 

month ::= I .. 12 

object_event ::= object_class object_name obj_attribute rel_test 

object_class ::= string 

object_name ::= string 

obj_attribute ::= string 

rel_test ::= rel_op attr_value 

rel_op ::= EQUAL I NE I GT I GEI LT J LE 
attr_value ::= string ~ integer ~ boolean 


