
Improving Example-Guided Unfolding

Henrik Bostrbm

Dept. of Computer and Systems Sciences
Stockholm University

Electrum 230, 164 40 Kista, SWEDEN
henke@dsv.su.se

Abs t rac t . It has been observed that the addition of clauses learned by
explanation-based generalization may degrade, rather than improve, the
efficiency of a logic program. There are three reasons for the degrada-
tion: i) increased unification cost ii) increased inter-clause repetition of
goal calls iii) increased redundancy. There have been several approaches
to solve (or reduce) these problems. However, previous techniques that
solve the redundancy problem do in fact increase the two first prob-
lems. Hence, the benefit of avoiding redundancy might be outweighed
by the cost associated with these techniques. A solution to this prob-
lem is presented: the algorithm EGU II, which is a reformulation of one
of the previous techniques (Example-Guided Unfolding). The algorithm
is based upon the application of program transformation rules (defini-
tion, unfolding and folding) and is shown to preserve the equivalence of
the domain theory. Experimental results are presented showing that the
cost of avoiding redundancy is significantly reduced by EGU II, and that
even when the redundancy problem is not present, the technique can be
superior to adding clauses redundantly.

1 Introduction

The benefits of adding clauses learned by explanation-based generalization (EBG)
[13, 9] to a logic program come from reordering effects and decreased path costs
when the clauses are successfully applied (cf. [12]). However, it has been observed
that the addition of learned clauses may degrade the efficiency of a program.
There are three reasons for the degradation. First, the total time spent on uni-
fying a particular goal with heads of clauses may increase when the number of
clauses defining a predicate increases (the problem of increased unification cost).
Second, the same goals are called repeatedly in different clauses to a greater ex-
tent after learning than before (the problem of increased inter-clause repetition
of goal calls). Third, for some goal calls, the number of ways to succeed in-
creases when learned clauses are added redundantly, and hence the number of
times subsequent goals may be called increases (the redundancy problem). There
have been a number of approaches to solve (or reduce) the three problems. These
include techniques for reducing the number of goals called in different clauses
[11, 20, 15], indexing of learned clauses [17] and techniques that avoid redundancy
[1, 3]. However, none of the previous approaches addresses all three problems,

125

and notably, the methods that avoid redundancy do in fact increase the two first
problems.

In this work, we present EGU II, a reformulation of one of the algorithms
that avoid redundancy, EGU (Example-Guided Unfolding) [1]. The new algo-
rithm shows that redundancy can be avoided without increasing the two first
problems. Moreover, the algorithm EGU II has been combined with a technique
for organizing learned clauses efficiently [2], and this combination is the first
approach to address all three problems.

In the next section, we give definitions of the three program transformation
rules (definition, unfolding and folding) upon which the algorithm EGU II is
based. In section three, we present the algorithm and show that it preserves the
equivalence of the domain theory. In section four, we present experimental results
from comparing the algorithm to both EGU and adding clauses redundantly.
Finally, in section five we give concluding remarks and point out some future
research directions.

2 P r e l i m i n a r i e s

In the following we assume the reader to be familiar with the standard termi-
nology in logic programming [10]. The following rules for transformation of a
definite program (below referred to as P) are taken from [19], where formal defi-
nitions can be found as well as proofs of their equivalence preserving properties.

R u l e 1. D e f i n i t i o n
Add to P a clause C of the form p (x l , . . . , xn) ~ A1, . . . , Am where p is a predi-
cate symbol not appearing in P, xa, � 9 Xn are distinct variables and A1 , A m

are literals whose predicate symbols all appear in P.

R u l e 2. Unfolding
Let C be a clause in P, A a goal in its body and C1, . . . ,Cn be all clauses in P
whose heads are unifiable with A. Let C~(1 < i < n) be the result of resolving
C with Ci upon A. Then replace C with C~, . . . , C~.

R u l e 3. Folding
Let C be a clause in P of the form A ~ A 1 , . . . , A i + l , . . . , A i + m , . . . , A n and C1
be a clause that previously have been introduced by the rule of definition of the
form B (-- B1, . . . , Bin. If there is a substitution 0 such that Ai+l , �9 �9 �9 Ai+m =

B 1 , . �9 BmO where 0 substitutes distinct variables for the internal variables of C1
and moreover those variables do not occur in A, A 1 , . . . , Ai or Ai+m+l , An ,
then replace C by the clause A ~-- A1, . . . , Ai, BO, Ai+m+l , �9 �9 An.

126

3 E x a m p l e - G u i d e d U n f o l d i n g R e v i s i t e d

In this section, we first review how the algorithm EGU works using an exam-
ple. We point out in what way the problems of increased unification cost and
increased inter-clause repetition of goal calls become more significant when us-
ing EGU compared to adding learned clauses redundantly to the program. We
then present a solution to this problem: the algorithm EGU II. The algorithm
is illustrated using the same example and is shown to preserve the equivalence
of the domain theory.

3.1 The Algor i thm E G U

The algorithm EGU is a reformulation of PROLOG-EBG [9] in terms of defini-
tion/unfolding and folding [1]. In contrast to the previous formulation, a learned
clause is not supposed to be added redundantly but is derived while the domain
theory is transformed.

Example 1 Let the domain theory be the simple english grammar shown in
Figure 1 and the target concept be : -s (X, Y). Let the training example be repre-
sented by the training instance : - s ([s u e , l o v e s , a , m a n] , []) and the training
clauses: {(F1) nm([suelX],X), (F2) tv([loves~X],X) , (F3) d([a lX] ,X) ,
(F4) n(l'maaJX] ,X)}. Then there is a SLD-refutation of the training instance,
given the domain theory and training clauses, for which the sequence of in-
put clauses is R1, R3, F1, R5, F2, R2, F3, F4. Let the operationality criterion be
defined by the following predicate symbols {d, n, nm, iv, tv}. Removing clauses
defining operational predicates from the sequence results in R1, R3, R5, R2. This
sequence is used by EGU to guide unfolding. It is done in the following way. 2

The first clause in the sequence (R1) is selected and the first non-operational
goal in its body is unfolded. Then R1 is replaced with the following clauses:
(Re) s(X,Z):- d(X,Y),n(Y,Y2),vp(Y2,Z).
(a?) s(X,Z):- nm(X,Y),vp(Y,Z).

The resolvent R7 of the selected clause R1 and the next clause in the sequence
R3 is then selected. The first non-operational goal in R7 is unfolded, giving two
clauses:
(R8) s(X,Z):- nm(X,Y),iv(Y,Z).
(R9) s(X,Z):- nm(X,Z),tv(Y,Z2),np(Z2,Z).

The resolvent R9 of the selected clause R7 and the next clause in the sequence
R5 is then selected. The first non-operational goal in R9 is unfolded, giving two
clauses:

i The s tandard Edinburgh syntax for logic programs is used [4].
This example is somewhat simplified. In EGU the rules of definition and folding
are used in addition to unfolding to overcome a problem associated with recursive
domain theories. However, in non-recursive domain theories the application of these
rules in the algorithm is superfluos.

127

(RI0) s(X,Z) : - nm(X,Y) ,tv(Y,Y2) ,d(Y2,Y3) ,n(Y3,Z).
(RII) s(X,Z) :- nm(X,Y) ,tv(Y,Y2),nm(Y2,Z).

The resolvcnt R10 of the selected clause R9 and the last clause in the se-
quence R2 is then finally selected. This clause is placed first in the program. The
resulting domain theory is shown in Figure 2.

It can be observed that the problems of increased unification cost and inter-
clause repetition of goal calls have become more significant in comparison to
adding the learned clause (RI0) redundantly to the origina ! domain theory. In-
stead of two clauses defining the target concept, there are four in the transformed
domain theory. Moreover, the goal nm(X ,Y) may in the worst case be called three
times in the transformed theory (not including repetition within a clause), and
only two times when adding the clause redundantly.

(RI) s(X,Z):- np(X,Y),vp(Y,Z).
(R2) np(X,Z):- d(X,Y),n(Y,Z).
(R3) np(X,Y):- nm(X,Y).
(R4) vp(X,Y):- iv(X,Y).
(R5) vp(X,Z):- tv(X,Y),np(Y,Z).

Fig. I. Original domain theory.

(R10) s(X,Z):- ma(X,Y),tv(Y,Y2),d(Y2,Y3),n(Y3,Z).
(R6) s(X,Z):- d(X,Y),n(Y,Y2),vp(Y2,Z).
(R8) s(X,Z):- nm(X,Y),iv(Y,Z).
(1t11) s(X,Z) :- ma(X,Y) ,tv(Y,V2) ,nm(Y2,Z).
(R2) np(X,Z):- d(X,Y),n(Y,Z).
(1t3) np(X,Y):- lm(X,Y).
(R4) vp(X,Y):- iv(X,Y).
(115) vp(X,Z):- tv(X,Y),np(Y,Z).

Fig. 2. Domain theory after applying EGU.

128

3.2 The Algor i thm E G U II

We first informally describe the algorithm EGU II, and illustrate it using the
grammar example. Then we formally describe the algorithm, and show that the
algorithm produces a program that is equivalent to the original domain theory.

In formal descr ip t ion of E G U II The problem of increased unification cost
when using EGU is due to the unfolding of a goal that unifies with the head of
more than one clause, since the clause in which the goal appears is replaced with
more than one clause. Moreover, all goals that precede the goal in the original
clause are repeated in the clauses that replace the original one, thus increasing
the inter-clause repetition of goal calls. Note that this is a potential problem for
all techniques that are based on unfolding (e.g. partial evaluation [16] and lazy
partial evaluation [3]). This problem is solved by EGU]I in the following way.

Instead of unfolding the first non-operational goal in a selected clause, which
is done in EGU, a new predicate is defined, that is equivalent to the conjunction
consisting of the first non-operational goal and the subsequent goals in the se-
lected clause (definition). The first goal in the clause defining the new predicate
is then unfolded, yielding a new set of c|auses. The input sequence is then used to
select one of these clauses, that is processed in the same way as the first clause.
This process continues until one clause is finally selected after having iterated
through the input sequence.

The body of each previously selected clause (except the last one) is then
folded using the new definitions.

The finally selected clause is then resolved with the only clause calling a goal
that unifies with the head of the selected clause. The selected clause is removed
and the resolvent is then treated in the same way as the first clause. This process
is iterated until the final resolvent is selected, which is then placed first in the
program.

Finally, goals that unify with one clause only are unfolded (since this is guar-
anteed to improve efficiency).

Example rev is i ted Let the domain theory, operationality criterion and the
input sequence (R1, R3, RS, R2) from the previous example be the input to
EGU II.

The first clause in the sequence (R1) is selected, and the first non-operational
goal in its body is np(X,u A new predicate (pl) is defined by the clause:
(Re) pl(X,Z) :- np(X,Y),vp(Y,Z).

Unfolding upon the first goal in R6, gives two new clauses:
(RT) p l (X , Z) : - d(X,Y2),n(Y2,Y),vp(Y,Z).
(R8) pi(X,Z):- nm(X,Y),vp(Y,Z).

Then R8 is selected since it is the resolvent of R6 and the next clause in
the sequence (R3). The first non-operational goal in R8 is vp(Y,Z) and a new

129

predicate (p2) is defined by the clause:
(R9) p2(Y,Z):- vp(Y,Z).

Unfolding upon the first goal in R9, gives two new clauses:
(RIO) p2(Y,Z):- s
(Rll) p2(Y,Z) : - tv(Y,Y2),np(Y2,Z).

Then R l l is selected since it is the resolvent of R9 and the next clause in
the sequence (R5). The first non-operational goal in R11 is np(Y2, Z) and a new
predicate (p3) is defined by the clause:
(RI2) p3(Y2,Z):- np(Y2,Z).

Unfolding upon the first goal in R12, gives two new clauses:
(RI3) p3(Y2,Z) :- d(Y2,Y3),n(Y3,Z).
(R14) p3(Y2,Z):- nm(Y2,Z).

Then R13 is the finally selected clause since it is the resolvent of R12 and the
last clause in the sequence (R2). In the second step of the algorithm, the body
of R1 is folded using R6, the body of R8 is folded using R9, and the body of
R l l is folded using R12. The transformed domain theory is shown in Figure 3.

(RI')
(a2)
(R3)
(R4)
(R5)

(R8')
(RIO)
(RII')
(RI3)
(R14)

s(X,Z) :- p l (x ,z) .
np(X,Z) :- d(X,Y) ,n(Y,Z).
np(X,Y) :- nm(X,Y).
vp(X,Y) :- iv(X,Y).
vp(X,Z) :- tv(X,Y) ,np(Y,Z).
pI(X,Z) :- d(X,Y2) ,n(Y2,Y) ,vp(Y,Z).
pI(X,Z) :- nm(X,Y) ,p2(Y,Z).
P2(Y,Z) :- iv(Y,Z).
p2(Y,Z) :- tv(Y,Y2) ,p3(Y2,Z).
p3(Y2,Z) :- d(Y2,Y3) ,n(Y3,Z).
p3(Y2,Z) :- nm(Y2,Z).

Fig. 3, Domain theory after the two first steps in EGU II.

In the third step of the algorithm, the selected clause (R13) is used to resolve
upon the only goal that unifies with the head of the clause. By resolving upon
the goal p3(Y2,Z) in Rl l ' , the following clause is obtained:
(RI5) p2(Y,Z) :- tv(Y,Y2) ,d(Y2,Y3) ,n(Y3,Z).

The clause R13 is now redundant and is removed. The clause R15 is then
used to resolve upon the goal p2(Y,Z) in R8 ~, resulting in the clause:
(RI6) pl(X,Z):-rim(X, Y),tv(Y,Y2),d(Y2,Y3),n(Y3,Z).

The clause R15 is then removed. The clause R16 is then, before being re-
moved, used to resolve upon the only goal that unifies with the head, and that
is the goal in RV, resulting in the finally selected clause, which is placed first in
the program:
(RI7) s(X,Z):- nm(X,Y),tv(Y,Y2),d(Y2,Y3),n(Y3,Z).

In the fourth step of the algorithm, all goals that can be reduced by one

130

clause only are unfolded. The final domain theory (after removing dead code
cf. [6]) is shown in Figure 4. It can be observed that the problem of increased
unification cost and increased inter-clause repetition of goal calls are not more
significant in comparison to adding the clause R17 redundantly.

(siT)
(RI')
(a2)
(a3)
(R4)
(aS)
(aT)
(R8')
(R10)

s(X,Z):- nm(X,Y),tv(Y,Y2),d(Y2,Y3),n(Y3,Z).
s(X,Z):- pl(X,Z).
np(X,Z):- d(X,Y),n(u
np(X,u nn(X,u
vp(X,Y):- iv(X,u
vp(X,Z):- tv(X,Y),np(Y,Z).
pl(X,Z):- d(X,Y2),n(Y2,Y),vp(Y,Z).
pI(X,Z):- rua(X,Y),p2(Y,Z).
P2(Y,Z):- iv(Y,Z).

(Rl l ")p2(Y,Z) : - tv(Y,Y2),rm(Y2,Z).

Fig. 4. Final domain theory after applying EGU II.

A l g o r i t h m E G U I I
I n p u t : a definite program P (domain theory), a definite unit goal : - T (target
concept), an operationality criterion O and a sequence of clauses C1,. . . , Cm
(proof of training example).
O u t p u t : a definite program P

Let $1 = C1.
FOR i = 2 TO m DO

Let Bj be the first non-operational goal in the body of
Si-1 = H : -B1, ..., B, , that unifies with the heads of the clauses
El,..., Ep.
Let B~ be defined by the clause Di = B~ : - B j , . . . , B~ where the
arguments of B~ are all variables in Bj,.. . , Bn that appear in
H, B1 , . . . , Bj-1 (definition).
Replace Di with R I , . . . , Rp, where Rk(1 < k ___ p) is the resolvent of
Di and Ek upon Bj (unfolding).
Let Si be the resolvent Rk of Di and Ek such that Ek = Ci.

F O R i = I T O m - I D O
Replace Si = H : -B1, ..., Bn with a clause ~q~ - H : - B 1 , . . . , Bj-1, B~
using Di+l -- B~ : - B j , . . . , B,~ (folding).

Let C = Sin.
FOR i = 1 TO m - 1 DO

Let C ~ be the resolvent of C and the clause in P in which body
there is a goal that unifies with the head of C.
Remove C and let C = C I.

Place C first in P.
Unfold all goals that can be reduced by one clause only.

131

Correc tness of E G U II The algorithm EGU II produces a new domain theory
that is equivalent to the original domain theory with respect to a target concept
T, i.e. an instance TO follows from the original domain theory if and only if TO
follows from the transformed domain theory. To see this, we look at each step
in the algorithm.

According to a theorem in [19], any program that is obtained by unfolding
and folding, from a program P and a set of clauses introduced by the rule of
definition D, is equivalent to P U D. Thus the program P' that is obtained
after the two first steps in EGU II is equivalent to the original domain theory P
together with the set of new definitions D. Hence, an instance TO follows from P~
if and only if it follows from P U D. Moreover, an instance of the target concept
TO follows from P if and only if it follows from P U D, since the predicates
defined in D do not appear in P. Thus P' is equivalent to P with respect to a
target concept T.

The third step in the algorithm does also preserve the equivalence of the
domain theory with respect to a target concept as is shown by the following. Let
P be a definite program (domain theory), T a unit goal (target concept) and
C1 a clause in P, in which there is a goal G with a different predicate symbol
from T and that unifies with the head of another clause C2 in P. If there is no
other goal in P that unifies with the head of C2, then P with respect to T is
equivalent to the program obtained by adding the resolvent of C1 and C~ upon
G to P, and removing C2. This is the case since the resolvent follows logically
from P and thus can be added, and C2 cannot be used to reduce any other goal
in P and not any instance of T and thus can be removed. The above conditions
hold in the third step of the algorithm since each goal that is resolved upon only
appears in one clause and has a different predicate symbol than T.

The fourth step in the algorithm preserves equivalence of the domain theory
since it only involves unfolding (see [19]).

4 E x p e r i m e n t a l R e s u l t s

The significance of the three problems that may degrade the efficiency of a pro-
gram due to learned clauses are domain dependent. For example, if no predicates
are declared as operational (e.g. the theorem proving domain in [14]) then the
problem of increased inter-clause repetition of goal calls does not occur, since
this problem only involves operational goals. If learned clauses are not invoked
on other goals than on top level unit goals, then the redundancy problem is
of no importance. However, if some goals are specified as operational or learned
clauses are allowed to be invoked from other clauses (e.g. recursively), then these
problems can be of major importance. Note that the redundancy problem can
increase repetition of non-operational as well as operational goal calls.

In this section we present results from experiments with a domain theory
for theorem proving in the MIU system [8]. The algorithm EGU II is compared
to EGU [1] and to adding learned clauses redundantly (cf. PROLOG-EBG [9]).
All three algorithms have been extended by a technique for organizing learned

132

clauses efficiently, called CLOI~G [2]. The effect of disallowing learned clauses
from being invoked recursively is also investigated. The algorithms have been
implemented in SICStus PROLOG 2.1, and the experiments have been run on
a Personal DECstation 5000 with 16 Mb PM.

Th e M I U S y s t e m A theorem in the MIU system is a string w E rn(u U i). ,
and there are four rules of inference: i) if w i is a theorem, then so is w i u ii) if
m w is a theorem, then so is m w w iii) if ~ l i i i w 2 is a theorem then so is w l u w 2

iv) if w l u u w 2 is a theorem then so is wlw2. The problem of finding a sequence
of rule applications from an axiom to a theorem can be solved by the program
in the appendix.

The test examples in this experiment were produced by finding all strings
that could be proved as theorems with not more than six rule applications given
m i as an axiom (282 theorems). A subset of the test examples was Used as a
training set. In the experiment, the size of the subset varied from 10% to 100%
of the test set. in Figure 5, it can be seen that the cost of using EGU is higher
than the benefits of learning (when the size of the training set is less than 80%).
The reason for this is the increased unification cost and inter-clause repetition
of goal calls. In this domain it is certainly better to add clauses redundantly
(organized efficiently) than to use EGU. However, redundancy can be eliminated
at lower cost as is shown by EGU II. In fact, the resulting program is more
efficient than the program obtained by adding clauses redundantly. This would
not have been a surprise had the redundancy problem been significant (as in [1]),
but this is not the case in this domain since the target concept is never back-
tracked into. This result can however be explained by the elimination of failure
branches that is obtained when the domain theory is transformed. To show
that the increase in efficiency was not caused by elimination of redundancy, we
also present results from an experiment where learned clauses were not invoked
recursively (Figure 6).

S

70 [] EIK;

no learn
~u ~-ne ~ [] Y ~

3O

2O

10

O . ; I %
10 20 30 40 50 60 70 80 90 100

Percentage training examples in the test set

Fig. 5. Comparing three ways of transforming the MIU domain theory.

133

cpu time

$
5O
45
4O

35

3O
25
2O
15
10

5

0

10 20 30 40 50 60 70 80 90
Percentage training examples in the test set

IEtK;

[] ECU n

%

100

Fig. 6. Using EBG and EGU II when chaining of learned clauses is not allowed.

5 Concluding Remarks

There are three potential causes of the decreased efficiency of a logic program
when adding clauses learned by EBG: i) increased unification cost ii) increased
inter-clause repetition of goal calls iii) increased redundancy. None of the pre-
vious approaches for reducing these problems has addressed all three problems,
and notably, the methods that avoid redundancy increase the two first problems.

We have presented a solution to this problem: EGU II, which is a reformula-
tion of one of the previous algorithms that avoid redundancy (Example-Guided
Unfolding). By the new algorithm it is shown how to avoid redundancy without
increasing the two first problems. Moreover, the algorithm has been combined
with a technique for organizing learned clauses efficiently, thus showing that all
three problems can be addressed at a time.

Experimental results have been presented showing that the cost of avoiding
redundancy by EGU may outweigh the benefits compared to adding clauses
redundantly. However, this cost can be significantly reduced by the algorithm
EGU II, as was shown by the experiments. The experiments also showed that
even when the redundancy problem is not significant, it can be more beneficial
to use EGU II than to add clauses redundantly.

There are several interesting directions for future research. One direction is to
investigate under what conditions the algorithm is beneficial. These conditions
include the distribution of problems, the cost of testing whether learned clauses
are applicable, and the benefits when they are successfully applied.

Another question is the problem of generalizing number (e.g. [5, 18, 7]). A
direction for future research is to investigate how clauses learned by methods for
generalizing number can be incorporated without introducing redundancy.

134

Appendix

Z The call solve(Axiom,Theorem,Length,[Axiom], Sequence) will find a
Sequence of length less or equal to Length from Axiom to Theorem.
E.g. ?- solve([m,i],[m,i,u,i,u],s(s(O)),[[m,i]],Sequence).

Sequence = [add_u, double]

solve(State,State []).
solve(Statel,State2,s(Length),History,[OperatorJSolution]):-

successo r (Opera to r ,S ta t e l ,S ta t e3) ,
not_member(State3,History),
solve(State3,State2,Length,[State31History],Solution).

successor(add_u,L1,L2):-
append(_ , [i] ,L1) ,
append(Ll , [u] ,L2) .

successor(double , [mlL1] , [mlL2]) : -
append(L1,L1,L2).

successor(iii_to_u,LI,L2):-
append(L3 , [i , i , i]L4] ,L1) ,
append(L3,[ulL4],L2).

successor (de le te uu,L1,L2):-
append(L3,[u,ulL4],L1),
append(L3,L4,L2).

append(D,L,L).
append([XlL1],L2,[XlL3]):-

append(LI,L2,L3).

not_member(_,[]).
not_member(X,[YIL]):-

X\==Y,
not_member(X,L).

Opera t iona l i ty c r i t e r i o n : operat ional(X==(_,_)) .

References

1. BostrSm H., "Eliminating Redundancy in Explanation-Based Learning", Machine
Learning: Proceedings of the 9th International Con]erence, Morgan Kaufmann, CA
(1992) 37-42

2. BostrSm H., Efficient Organization of Clauses Learned by Explanation-Based Gen-
eralization, SYSLAB Report, Dept. of Computer and Systems Sciences, Stockholm
University (1993)

135

3. Clark P. and Holte R., "Lazy Partial Evaluation: an Integration of Explanation-
Based Generalization and Partial Evaluation", Machine Learning: Proceedings of
the 9th International Conference, Morgan Kaufmann, CA (1992) 82-91

4. Clocksin W. F. and Mellish C. S., Programming in Prolog, Springer Verlag, Berlin
Heidelberg (1981)

5. Cohen W. W., "Generalizing Number and Learning from Multiple Examples in
Explanation-Based Learning", Proceedings of the Fifth International Conference
on Machine Learning, Morgan Kaufmann, CA (1988) 256-269

6. Debray S. K., Global Optimization of Logic Programs, Ph.D. thesis, Stony Brook
(1986)

7. Feldman R. and Subramanian D., "Example-Guided Optimization of Recursive Do-
main theories", Proceedings of Conference on Artificial Intelligence Applications,
Miami Beach, Florida, IEEE (1991) 240-244

8. Hofstadter D. R., Godel, Escher, Bach: an Eternal Golden Braid, Penguin Books,
New York (1980)

9. Kedar-Cabelli S. and McCarty L. T., "Explanation-based generalization as resolu-
tion theorem proving", Proceedings of the Fourth International Machine Learning
Workshop, Morgan Kaufmann, CA (1987) 383-389

10. Lloyd J. W., Foundations of Logic Programming, Springer-Verlag (1987)
11. Minton S., Learning Effective Search Control Knowledge: An Explanation-Based

Approach, Ph.D. thesis, Department of Computer Science, Carnegie-Mellon Uni-
versity, Pittsburgh, PA (1988)

12. Minton S., "Issues in the Design of Operator Composition Systems", Proceedings
of the Seventh International Conference on Machine Learning, Morgan Kaufmann,
CA (1990) 304-312

13. Mitchell, T. M., Keller R. M. and Kedar-Cabelli S. T., "Explanation-Based Gen-
eralization: A Unifying View", Machine Learning 1, (1986) 47-80

14. Mooney R., "The Effect of Rule Use an the Utility of Explanation-Based Learn-
ing", Proceedings of the Eleventh International Joint Conference on Artificial In-
telligence, Morgan Kaufmann, CA (1989) 725-730

15. Sablon G., De Raedt L. and Bruynooghe M., "Generalizing Multiple Examples in
Explanation Based Learning", Proceedings of the International Workshop AH 2,
Reinhardsbrunn, GDR (1989) 177-183

16. Sahlin D., An Automatic Partial Evaluator for Full Prolog, Ph.D. thesis, Dept. of
Tele-communication and Computer Systems, The Royal Institute of Technology,
Stockholm (1991)

17. Samuelsson C. and Rayner M., "Quantitative Evaluation of Explanation-Based
Learning as an Optimization Tool for a Large Scale Natural Language System",
Proceedings of the 12th International Joint Conference on Artificial Intelligence,
Morgan Kaufmann, CA (1992) 609-615

18. Shavlik J. W., "Acquiring Recursive Concepts with Explanation-Based Learning",
Proceedings of the Eleventh International Joint Conference on Artificial Intelli-
gence, Morgan Kaufmann, CA (1989) 688-693

19. Tamaki H. and Sato T., "Unfold/Fold Transformations of Logic Programs", Pro-
ceedings of the Second International Logic Programming Conference, Uppsala Uni-
versity, Uppsala, Sweden (1984) 127-138

20. Wogulis J. and Langley P., "Improving Efficiency by Learning Intermediate Con-
cepts", Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, Morgan Kaufmann, CA (1989) 657-662

