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Abs t rac t .  It has been observed that the addition of clauses learned by 
explanation-based generalization may degrade, rather than improve, the 
efficiency of a logic program. There are three reasons for the degrada- 
tion: i) increased unification cost ii) increased inter-clause repetition of 
goal calls iii) increased redundancy. There have been several approaches 
to solve (or reduce) these problems. However, previous techniques that 
solve the redundancy problem do in fact increase the two first prob- 
lems. Hence, the benefit of avoiding redundancy might be outweighed 
by the cost associated with these techniques. A solution to this prob- 
lem is presented: the algorithm EGU II, which is a reformulation of one 
of the previous techniques (Example-Guided Unfolding). The algorithm 
is based upon the application of program transformation rules (defini- 
tion, unfolding and folding) and is shown to preserve the equivalence of 
the domain theory. Experimental results are presented showing that the 
cost of avoiding redundancy is significantly reduced by EGU II, and that 
even when the redundancy problem is not present, the technique can be 
superior to adding clauses redundantly. 

1 Introduction 

The benefits of adding clauses learned by explanation-based generalization (EBG) 
[13, 9] to a logic program come from reordering effects and decreased path costs 
when the clauses are successfully applied (cf. [12]). However, it has been observed 
that  the addition of learned clauses may degrade the efficiency of a program. 
There are three reasons for the degradation. First, the total time spent on uni- 
fying a particular goal with heads of clauses may increase when the number of 
clauses defining a predicate increases (the problem of increased unification cost). 
Second, the same goals are called repeatedly in different clauses to a greater ex- 
tent after learning than before (the problem of increased inter-clause repetition 
of goal calls). Third, for some goal calls, the number of ways to succeed in- 
creases when learned clauses are added redundantly, and hence the number of 
times subsequent goals may be called increases (the redundancy problem). There 
have been a number of approaches to solve (or reduce) the three problems. These 
include techniques for reducing the number of goals called in different clauses 
[11, 20, 15], indexing of learned clauses [17] and techniques that  avoid redundancy 
[1, 3]. However, none of the previous approaches addresses all three problems, 
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and notably, the methods that avoid redundancy do in fact increase the two first 
problems. 

In this work, we present EGU II, a reformulation of one of the algorithms 
that avoid redundancy, EGU (Example-Guided Unfolding) [1]. The new algo- 
rithm shows that redundancy can be avoided without increasing the two first 
problems. Moreover, the algorithm EGU II has been combined with a technique 
for organizing learned clauses efficiently [2], and this combination is the first 
approach to address all three problems. 

In the next section, we give definitions of the three program transformation 
rules (definition, unfolding and folding) upon which the algorithm EGU II is 
based. In section three, we present the algorithm and show that it preserves the 
equivalence of the domain theory. In section four, we present experimental results 
from comparing the algorithm to both EGU and adding clauses redundantly. 
Finally, in section five we give concluding remarks and point out some future 
research directions. 

2 P r e l i m i n a r i e s  

In the following we assume the reader to be familiar with the standard termi- 
nology in logic programming [10]. The following rules for transformation of a 
definite program (below referred to as P) are taken from [19], where formal defi- 
nitions can be found as well as proofs of their equivalence preserving properties. 

R u l e  1. D e f i n i t i o n  
Add to P a clause C of the form p (x l , . . . ,  xn) ~ A1, . . . ,  Am where p is a predi- 
cate symbol not appearing in P,  xa, � 9  Xn are distinct variables and A1 . . . .  , A m  

are literals whose predicate symbols all appear in P. 

R u l e  2. Unfolding 
Let C be a clause in P, A a goal in its body and C1, . . . ,Cn  be all clauses in P 
whose heads are unifiable with A. Let C~(1 < i < n) be the result of resolving 
C with Ci upon A. Then replace C with C~, . . . ,  C~. 

R u l e  3. Folding 
Let C be a clause in P of the form A ~ A 1 , . . . , A i + l , . . . , A i + m , . . . , A n  and C1 
be a clause that previously have been introduced by the rule of definition of the 
form B (-- B1, . . . ,  Bin. If there is a substitution 0 such that Ai+l ,  �9 �9 �9 Ai+m = 

B 1 , .  �9 BmO where 0 substitutes distinct variables for the internal variables of C1 
and moreover those variables do not occur in A,  A 1 , . . . ,  Ai  or Ai+m+l . . . .  , An ,  
then replace C by the clause A ~-- A1, . . . ,  Ai,  BO, Ai+m+l ,  �9 �9  An.  
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3 E x a m p l e - G u i d e d  U n f o l d i n g  R e v i s i t e d  

In this section, we first review how the algorithm EGU works using an exam- 
ple. We point out in what way the problems of increased unification cost and 
increased inter-clause repetition of goal calls become more significant when us- 
ing EGU compared to adding learned clauses redundantly to the program. We 
then present a solution to this problem: the algorithm EGU II. The algorithm 
is illustrated using the same example and is shown to preserve the equivalence 
of the domain theory. 

3.1 The  Algor i thm E G U  

The algorithm EGU is a reformulation of PROLOG-EBG [9] in terms of defini- 
tion/unfolding and folding [1]. In contrast to the previous formulation, a learned 
clause is not supposed to be added redundantly but is derived while the domain 
theory is transformed. 

Example  1 Let the domain theory be the simple english grammar shown in 
Figure 1 and the target concept be : -s  (X, Y). Let the training example be repre- 
sented by the training instance : - s ( [ s u e , l o v e s , a , m a n ] ,  [] ) and the training 
clauses: {(F1) nm([suelX],X), (F2) tv( [ loves~X],X) ,  (F3) d( [a lX] ,X) ,  
(F4) n(l'maaJX] ,X)}. Then there is a SLD-refutation of the training instance, 
given the domain theory and training clauses, for which the sequence of in- 
put clauses is R1, R3, F1, R5, F2, R2, F3, F4. Let the operationality criterion be 
defined by the following predicate symbols {d, n, nm, iv, tv}. Removing clauses 
defining operational predicates from the sequence results in R1, R3, R5, R2. This 
sequence is used by EGU to guide unfolding. It is done in the following way. 2 

The first clause in the sequence (R1) is selected and the first non-operational 
goal in its body is unfolded. Then R1 is replaced with the following clauses: 
(Re) s(X,Z):- d(X,Y),n(Y,Y2),vp(Y2,Z). 
(a?) s(X,Z):- nm(X,Y),vp(Y,Z). 

The resolvent R7 of the selected clause R1 and the next clause in the sequence 
R3 is then selected. The first non-operational goal in R7 is unfolded, giving two 
clauses: 
(R8) s(X,Z):- nm(X,Y),iv(Y,Z). 
(R9) s(X,Z):- nm(X,Z),tv(Y,Z2),np(Z2,Z). 

The resolvent R9 of the selected clause R7 and the next clause in the sequence 
R5 is then selected. The first non-operational goal in R9 is unfolded, giving two 
clauses: 

i The s tandard Edinburgh syntax for logic programs is used [4]. 
This example is somewhat simplified. In EGU the rules of definition and folding 
are used in addition to unfolding to overcome a problem associated with recursive 
domain theories. However, in non-recursive domain theories the application of these 
rules in the algorithm is superfluos. 
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(RI0) s(X,Z) : -  nm(X,Y) ,tv(Y,Y2) ,d(Y2,Y3) ,n(Y3,Z). 
(RII) s(X,Z) :-  nm(X,Y) ,tv(Y,Y2),nm(Y2,Z). 

The resolvcnt R10 of the selected clause R9 and the last clause in the se- 
quence R2 is then finally selected. This clause is placed first in the program. The 
resulting domain theory is shown in Figure 2. 

It can be observed that the problems of increased unification cost and inter- 
clause repetition of goal calls have become more significant in comparison to 
adding the learned clause (RI0) redundantly to the origina ! domain theory. In- 
stead of two clauses defining the target concept, there are four in the transformed 
domain theory. Moreover, the goal nm(X ,Y) may in the worst case be called three 
times in the transformed theory (not including repetition within a clause), and 
only two times when adding the clause redundantly. 

(RI) s(X,Z):- np(X,Y),vp(Y,Z). 
(R2) np(X,Z):- d(X,Y),n(Y,Z). 
(R3) np(X,Y):- nm(X,Y). 
(R4) vp(X,Y):- iv(X,Y). 
(R5) vp(X,Z):- tv(X,Y),np(Y,Z). 

Fig. I. Original domain theory. 

(R10) s(X,Z):- ma(X,Y),tv(Y,Y2),d(Y2,Y3),n(Y3,Z). 
(R6) s(X,Z):- d(X,Y),n(Y,Y2),vp(Y2,Z). 
(R8) s(X,Z):- nm(X,Y),iv(Y,Z). 
(1t11) s(X,Z) :- ma(X,Y) ,tv(Y,V2) ,nm(Y2,Z). 
(R2) np(X,Z):- d(X,Y),n(Y,Z). 
(1t3) np(X,Y):- lm(X,Y). 
(R4) vp(X,Y):- iv(X,Y). 
(115) vp(X,Z):- tv(X,Y),np(Y,Z). 

Fig. 2. Domain theory after applying EGU. 
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3.2 The  Algor i thm E G U  II  

We first informally describe the algorithm EGU II, and illustrate it using the 
grammar example. Then we formally describe the algorithm, and show that the 
algorithm produces a program that is equivalent to the original domain theory. 

In formal  descr ip t ion  of  E G U  II  The problem of increased unification cost 
when using EGU is due to the unfolding of a goal that unifies with the head of 
more than one clause, since the clause in which the goal appears is replaced with 
more than one clause. Moreover, all goals that precede the goal in the original 
clause are repeated in the clauses that replace the original one, thus increasing 
the inter-clause repetition of goal calls. Note that this is a potential problem for 
all techniques that are based on unfolding (e.g. partial evaluation [16] and lazy 
partial evaluation [3]). This problem is solved by EGU ]I in the following way. 

Instead of unfolding the first non-operational goal in a selected clause, which 
is done in EGU, a new predicate is defined, that is equivalent to the conjunction 
consisting of the first non-operational goal and the subsequent goals in the se- 
lected clause (definition). The first goal in the clause defining the new predicate 
is then unfolded, yielding a new set of c|auses. The input sequence is then used to 
select one of these clauses, that is processed in the same way as the first clause. 
This process continues until one clause is finally selected after having iterated 
through the input sequence. 

The body of each previously selected clause (except the last one) is then 
folded using the new definitions. 

The finally selected clause is then resolved with the only clause calling a goal 
that unifies with the head of the selected clause. The selected clause is removed 
and the resolvent is then treated in the same way as the first clause. This process 
is iterated until the final resolvent is selected, which is then placed first in the 
program. 

Finally, goals that unify with one clause only are unfolded (since this is guar- 
anteed to improve efficiency). 

Example  rev is i ted  Let the domain theory, operationality criterion and the 
input sequence (R1, R3, RS, R2) from the previous example be the input to 
EGU II. 

The first clause in the sequence (R1) is selected, and the first non-operational 
goal in its body is np(X,u A new predicate (pl) is defined by the clause: 
(Re) pl(X,Z) :-  np(X,Y),vp(Y,Z).  

Unfolding upon the first goal in R6, gives two new clauses: 
(RT) p l ( X , Z ) : -  d(X,Y2),n(Y2,Y),vp(Y,Z). 
(R8) pi(X,Z):- nm(X,Y),vp(Y,Z). 

Then R8 is selected since it is the resolvent of R6 and the next clause in 
the sequence (R3). The first non-operational goal in R8 is vp(Y,Z) and a new 
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predicate (p2) is defined by the clause: 
(R9) p2(Y,Z):- vp(Y,Z). 

Unfolding upon the first goal in R9, gives two new clauses: 
(RIO) p2(Y,Z):-  s 
(Rll) p2(Y,Z) : -  tv(Y,Y2),np(Y2,Z). 

Then R l l  is selected since it is the resolvent of R9 and the next clause in 
the sequence (R5). The first non-operational goal in R11 is np(Y2, Z) and a new 
predicate (p3) is defined by the clause: 
(RI2) p3(Y2,Z):- np(Y2,Z). 

Unfolding upon the first goal in R12, gives two new clauses: 
(RI3) p3(Y2,Z) :- d(Y2,Y3),n(Y3,Z). 
(R14) p3(Y2,Z):-  nm(Y2,Z). 

Then R13 is the finally selected clause since it is the resolvent of R12 and the 
last clause in the sequence (R2). In the second step of the algorithm, the body 
of R1 is folded using R6, the body of R8 is folded using R9, and the body of 
R l l  is folded using R12. The transformed domain theory is shown in Figure 3. 

(RI') 
(a2) 
(R3) 
(R4) 
(R5) 

(R8') 
(RIO) 
(RII') 
(RI3) 
(R14) 

s(X,Z) :- p l (x ,z) .  
np(X,Z) :- d(X,Y) ,n(Y,Z). 
np(X,Y) :- nm(X,Y). 
vp(X,Y) :- iv(X,Y). 
vp(X,Z) :- tv(X,Y) ,np(Y,Z). 
pI(X,Z) :- d(X,Y2) ,n(Y2,Y) ,vp(Y,Z). 
pI(X,Z) :- nm(X,Y) ,p2(Y,Z). 
P2(Y,Z) :- iv(Y,Z). 
p2(Y,Z) :- tv(Y,Y2) ,p3(Y2,Z). 
p3(Y2,Z) :- d(Y2,Y3) ,n(Y3,Z). 
p3(Y2,Z) :- nm(Y2,Z). 

Fig. 3, Domain theory after the two first steps in EGU II. 

In the third step of the algorithm, the selected clause (R13) is used to resolve 
upon the only goal that unifies with the head of the clause. By resolving upon 
the goal p3(Y2,Z) in Rl l ' ,  the following clause is obtained: 
(RI5) p2(Y,Z) :- tv(Y,Y2) ,d(Y2,Y3) ,n(Y3,Z). 

The clause R13 is now redundant and is removed. The clause R15 is then 
used to resolve upon the goal p2(Y,Z) in R8 ~, resulting in the clause: 
(RI6) pl(X,Z):-rim(X, Y),tv(Y,Y2),d(Y2,Y3),n(Y3,Z). 

The clause R15 is then removed. The clause R16 is then, before being re- 
moved, used to resolve upon the only goal that unifies with the head, and that 
is the goal in RV, resulting in the finally selected clause, which is placed first in 
the program: 
(RI7) s(X,Z):- nm(X,Y),tv(Y,Y2),d(Y2,Y3),n(Y3,Z). 

In the fourth step of the algorithm, all goals that can be reduced by one 
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clause only are unfolded. The final domain theory (after removing dead code 
cf. [6]) is shown in Figure 4. It can be observed that the problem of increased 
unification cost and increased inter-clause repetition of goal calls are not more 
significant in comparison to adding the clause R17 redundantly. 

(siT) 
(RI') 
(a2) 
(a3) 
(R4) 
(aS) 
(aT) 
(R8') 
(R10) 

s(X,Z):-  nm(X,Y),tv(Y,Y2),d(Y2,Y3),n(Y3,Z). 
s(X,Z):-  pl(X,Z). 
np(X,Z):- d(X,Y),n(u 
np(X,u nn(X,u 
vp(X,Y):- iv(X,u 
vp(X,Z):- tv(X,Y),np(Y,Z). 
pl(X,Z):-  d(X,Y2),n(Y2,Y),vp(Y,Z). 
pI(X,Z):-  rua(X,Y),p2(Y,Z). 
P2(Y,Z):- iv(Y,Z). 

(Rl l " )p2(Y,Z) : -  tv(Y,Y2),rm(Y2,Z). 

Fig. 4. Final domain theory after applying EGU II. 

A l g o r i t h m  E G U  I I  
I n p u t :  a definite program P (domain theory), a definite unit goal : - T  (target 
concept), an operationality criterion O and a sequence of clauses C1,. . . ,  Cm 
(proof of training example). 
O u t p u t :  a definite program P 

Let $1 = C1. 
FOR i = 2 TO m DO 

Let Bj be the first non-operational goal in the body of 
Si-1 = H : -B1,  ..., B, ,  that unifies with the heads of the clauses 
El,..., Ep. 
Let B~ be defined by the clause Di = B~ : - B j , . . . ,  B~ where the 
arguments of B~ are all variables in Bj,.. . ,  Bn that appear in 
H, B1 , . . . ,  Bj-1 (definition). 
Replace Di with R I , . . . ,  Rp, where Rk(1 < k ___ p) is the resolvent of 
Di and Ek upon Bj (unfolding). 
Let Si be the resolvent Rk of Di and Ek such that  Ek = Ci. 

F O R i = I T O m - I D O  
Replace Si = H : -B1,  ..., Bn with a clause ~q~ - H : - B 1 , . . . ,  Bj-1, B~ 
using Di+l -- B~ : - B j , . . . ,  B,~ (folding). 

Let C = Sin. 
FOR i = 1 TO m -  1 DO 

Let C ~ be the resolvent of C and the clause in P in which body 
there is a goal that  unifies with the head of C. 
Remove C and let C = C I. 

Place C first in P.  
Unfold all goals that  can be reduced by one clause only. 
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Correc tness  of E G U  II  The algorithm EGU II produces a new domain theory 
that is equivalent to the original domain theory with respect to a target concept 
T, i.e. an instance TO follows from the original domain theory if and only if TO 
follows from the transformed domain theory. To see this, we look at each step 
in the algorithm. 

According to a theorem in [19], any program that is obtained by unfolding 
and folding, from a program P and a set of clauses introduced by the rule of 
definition D, is equivalent to P U D. Thus the program P'  that is obtained 
after the two first steps in EGU II is equivalent to the original domain theory P 
together with the set of new definitions D. Hence, an instance TO follows from P~ 
if and only if it follows from P U D. Moreover, an instance of the target concept 
TO follows from P if and only if it follows from P U D, since the predicates 
defined in D do not appear in P. Thus P'  is equivalent to P with respect to a 
target concept T. 

The third step in the algorithm does also preserve the equivalence of the 
domain theory with respect to a target concept as is shown by the following. Let 
P be a definite program (domain theory), T a unit goal (target concept) and 
C1 a clause in P, in which there is a goal G with a different predicate symbol 
from T and that unifies with the head of another clause C2 in P. If there is no 
other goal in P that unifies with the head of C2, then P with respect to T is 
equivalent to the program obtained by adding the resolvent of C1 and C~ upon 
G to P, and removing C2. This is the case since the resolvent follows logically 
from P and thus can be added, and C2 cannot be used to reduce any other goal 
in P and not any instance of T and thus can be removed. The above conditions 
hold in the third step of the algorithm since each goal that is resolved upon only 
appears in one clause and has a different predicate symbol than T. 

The fourth step in the algorithm preserves equivalence of the domain theory 
since it only involves unfolding (see [19]). 

4 E x p e r i m e n t a l  R e s u l t s  

The significance of the three problems that may degrade the efficiency of a pro- 
gram due to learned clauses are domain dependent. For example, if no predicates 
are declared as operational (e.g. the theorem proving domain in [14]) then the 
problem of increased inter-clause repetition of goal calls does not occur, since 
this problem only involves operational goals. If learned clauses are not invoked 
on other goals than on top level unit goals, then the redundancy problem is 
of no importance. However, if some goals are specified as operational or learned 
clauses are allowed to be invoked from other clauses (e.g. recursively), then these 
problems can be of major importance. Note that the redundancy problem can 
increase repetition of non-operational as well as operational goal calls. 

In this section we present results from experiments with a domain theory 
for theorem proving in the MIU system [8]. The algorithm EGU II is compared 
to EGU [1] and to adding learned clauses redundantly (cf. PROLOG-EBG [9]). 
All three algorithms have been extended by a technique for organizing learned 
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clauses efficiently, called CLOI~G [2]. The effect of disallowing learned clauses 
from being invoked recursively is also investigated. The algorithms have been 
implemented in SICStus PROLOG 2.1, and the experiments have been run on 
a Personal DECstation 5000 with 16 Mb PM. 

Th e  M I U  S y s t e m  A theorem in the MIU system is a string w E rn(u U i). ,  
and there are four rules of inference: i) if w i  is a theorem, then so is w i u  ii) if 
m w  is a theorem, then so is m w w  iii) if ~ l i i i w 2  is a theorem then so is w l u w 2  

iv) if w l u u w 2  is a theorem then so is wlw2.  The problem of finding a sequence 
of rule applications from an axiom to a theorem can be solved by the program 
in the appendix. 

The test examples in this experiment were produced by finding all strings 
that could be proved as theorems with not more than six rule applications given 
m i  as an axiom (282 theorems). A subset of the test examples was Used as a 
training set. In the experiment, the size of the subset varied from 10% to 100% 
of the test set. in Figure 5, it can be seen that the cost of using EGU is higher 
than the benefits of learning (when the size of the training set is less than 80%). 
The reason for this is the increased unification cost and inter-clause repetition 
of goal calls. In this domain it is certainly better to add clauses redundantly 
(organized efficiently) than to use EGU. However, redundancy can be eliminated 
at lower cost as is shown by EGU II. In fact, the resulting program is more 
efficient than the program obtained by adding clauses redundantly. This would 
not have been a surprise had the redundancy problem been significant (as in [1]), 
but this is not the case in this domain since the target concept is never back- 
tracked into. This result can however be explained by the elimination of failure 
branches that is obtained when the domain theory is transformed. To show 
that the increase in efficiency was not caused by elimination of redundancy, we 
also present results from an experiment where learned clauses were not invoked 
recursively (Figure 6). 

S 

70 [] EIK; 

no learn 
~u ~-ne ~ [] Y ~  

3O 

2O 

10 

O .  ; . . . . . . . .  I %  
10 20 30 40 50 60 70 80 90 100 

Percentage training examples in the test set 

Fig. 5. Comparing three ways of transforming the MIU domain theory. 
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cpu time 
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3O 
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2O 
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10 20 30 40 50 60 70 80 90 
Percentage training examples in the test set 

IEtK; 

[] ECU n 

% 

100 

Fig. 6. Using EBG and EGU II when chaining of learned clauses is not allowed. 

5 Concluding Remarks 

There are three potential causes of the decreased efficiency of a logic program 
when adding clauses learned by EBG: i) increased unification cost ii) increased 
inter-clause repetition of goal calls iii) increased redundancy. None of the pre- 
vious approaches for reducing these problems has addressed all three problems, 
and notably, the methods that avoid redundancy increase the two first problems. 

We have presented a solution to this problem: EGU II, which is a reformula- 
tion of one of the previous algorithms that avoid redundancy (Example-Guided 
Unfolding). By the new algorithm it is shown how to avoid redundancy without 
increasing the two first problems. Moreover, the algorithm has been combined 
with a technique for organizing learned clauses efficiently, thus showing that all 
three problems can be addressed at a time. 

Experimental results have been presented showing that the cost of avoiding 
redundancy by EGU may outweigh the benefits compared to adding clauses 
redundantly. However, this cost can be significantly reduced by the algorithm 
EGU II, as was shown by the experiments. The experiments also showed that 
even when the redundancy problem is not significant, it can be more beneficial 
to use EGU II than to add clauses redundantly. 

There are several interesting directions for future research. One direction is to 
investigate under what conditions the algorithm is beneficial. These conditions 
include the distribution of problems, the cost of testing whether learned clauses 
are applicable, and the benefits when they are successfully applied. 

Another question is the problem of generalizing number (e.g. [5, 18, 7]). A 
direction for future research is to investigate how clauses learned by methods for 
generalizing number can be incorporated without introducing redundancy. 
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Appendix 

Z The call solve(Axiom,Theorem,Length,[Axiom], Sequence) will find a 
Sequence of length less or equal to Length from Axiom to Theorem. 
E.g. ?- solve([m,i],[m,i,u,i,u],s(s(O)),[[m,i]],Sequence). 

Sequence = [add_u, double] 

solve(State,State ..... [] ). 
solve(Statel,State2,s(Length),History,[OperatorJSolution]):- 

successo r (Opera to r ,S ta t e l ,S ta t e3 ) ,  
not_member(State3,History), 
solve(State3,State2,Length,[State31History],Solution). 

successor(add_u,L1,L2):-  
append(_ , [ i ] ,L1) ,  
append(Ll , [u] ,L2) .  

successor(double , [mlL1] , [mlL2]) : -  
append(L1,L1,L2). 

successor(iii_to_u,LI,L2):- 
append(L3 , [ i , i , i ]L4] ,L1) ,  
append(L3,[ulL4],L2). 

successor (de le te  uu,L1,L2):-  
append(L3,[u,ulL4],L1),  
append(L3,L4,L2). 

append(D,L,L). 
append([XlL1],L2,[XlL3]):-  

append(LI,L2,L3). 

not_member(_,[]). 
not_member(X,[YIL]):- 

X\==Y, 
not_member(X,L). 

Opera t iona l i ty  c r i t e r i o n :  operat ional(X==(_,_)) .  
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