
Faster Model Checking for the Modal Mu-Calculus

Rance Cleaveland* Marion Klein t Be rnha rd Steffen!

Abs t rac t

In thla paper, we develop an algorithm for model checking that handlu the full modal mu-
calculus including alternating fixpoints. Our algorithm has a better worst-cue complexity than
the best known algorithm for this logic while performing just u well on certain sublogi~ as other
specialized algorithms. Important for the efficiency is an alternative chexacterlsation of formulas
in terms of equational systems, which enables the sharing and reals of intermediate results.

1 I n t r o d u c t i o n

Much work in the field of automated verification has focused on finite-state transition systems (or
automata) as models for system behavior iCES, CPS1, CPS2, Fe, MSGS, RItSV, RdS]. The modal
mu-calcnlus [Ko] is a particularly useful logic for reasoning about such models; not only may a
mtmber of temporal logics for expressing system properties be translated into it [EL], but it may
also be used to encode various behavioral equivalences and preorders [Ste, SI]. Thus, this logic
supports algebraic as well as logic-based approaches to verification.

in this paper, we present an algorithm for determining when states in a finite-state transition
system possess properties expressed in the modal mu-calcnlus. Our model-checking algorithm im-
proves on the best existing methods for model checking in this logic [A, EL] while performing just
as well on certain sublogics as specialized algorithras (cf. [CS1, CS2]). Important for the efficiency
is an alternative characterization of formulas in terms of equational systems, which enables the
sharing and reuse of intermediate results.

The remainder of the paper is orgartized as follows. In the next section we present the syntax
and semantics of the mu-caleulus, and in the section following we give an alternative, equation-based
presentation of this logic. Section 4 presents our model-checking algorithm, while the subsequent
section establishes its correctness and complexity. The paper closes with a detailed discussion of an
example in Section 6 and some conclusions and directions for future work in Section 7.

2 Syntax and Semantics of the Mu-Calculus

This section first provides a brief overview of labeled transition 8ystents, which are used as models
for the mu-calcnlus. Then the syntax and semantics of the logic are developed.

2.1 T r a n s i t i o n S y s t e m s

D e f i n i t i o n 2.1 A labeled transition system T /8 a lr/p/e (,q, Act, --,), where ,q is rt set o/states,
Act is a set o/actions, and ---, C 8 • Act • 8 is the transition relation.

Intuitively, a labeled transition system encodes the operational behavior of a system. The set 8
represents the set "of states the system may enter, and Act contains the set of actions the system
may perform. The relation --, describes the actions available to states and the state transitions that

�9 Department of Computer Science, North Carolina State University, Raleigh, NC 27e95-820S, USA - The author
we~ supported by NSF Grant CCK-9014775.

lLehtstuhl ~ Informatik II, RWTH-Aachen, AhornstraBe 55, W-M00 Aachen, GERMANY - Part of the work
hag been funded by DFG Grant Ste 537/2-1.

411

Formulas are interpreted with respect to a fixed labeled transi t ion sys tem (~q, Acg - ,) , a valuat ion
~; : .A -* T s, and an environment e : Vat-* 2 "s.

[Ale = V(A)
[Xle = e(X)

[[aiSle = { s I v , ' . s -% , ' ~ s' E l ~ l e }
i ~ X . *] e = U { s ' c s I s ' _c I ~] e [X H sq}

Figure 1: The Semantics of Formulas.

may result upon execution of the actions. In the remainder of the paper we use s --% d in lleu of
{ s , a , d) G--~, and if s -% d then we say tha t d is an a-der~*mtive of s. Finally, we refer to a labeled
transi t ion sys tem as finite-state when ,S and Act are finite.

2 .2 S y n t a x a n d S e m a n t i c s o f F o r m u l a s

The syn tax of the moda l mu-calculus is parameterized with respect to a (countable) set Vat of
variables, a set .4 of atomic propositions, and a set Act of actions. For technical reasons we assume
tha t .4 is closed with respect to negation: for every A E .4 there is a B C .4 tha t is semantically
equivalent to the negat ion of A. In what follows, X will range over V~r, A over A, and a over Act.
The syn tax of formulas may be given by the following grammar .

The m a x i m u m fixpoint operator v binds free occurrences of X in �9 in the usual sense. We impose an
additional syntact ic restriction on formulas of the form vX.cI,: each free occurrence of X in �9 mus t
be within the scope of an even number of negations. This requirement ensures the weil-definedness
of the semantics of the logic.

Let ~ [X := F] represent the formula obtained by simultaneously subs t i tu t ing the formula F for
the free occurrences of the variable X in ~. Then we m a y also define the usual dual operators to
the ones we have presented.

) , V ~ , = - , (~ , ^ - ,~ ,) (a)~ = -,[a](-,~) ~,X.~ = -*X.- ,(~[X "= -~X])

In what follows we say tha t ~ ' is a proper subformula of �9 if it is a subformula of ~ tha t is not
itself. Given a formula, its top-leeei subformulas with a certain property are defined to be those

maximal proper subformulas having the property. A formula is said to be a v-formula (p-formula)
if it has the form vX.~ (pX.~) for some X and ~. We refer to a formula as closed if it contains no
free variables and simple if it is fixpoint-free and contains only variables and atomic propositions as
proper subformulas. For example, X] A A2 is simple, while (a)(Xs V X4) is not.

The formal semantics of formulas appears in Figure 1. It is given with respect to a fiuite-state
labeled t ransi t ion sys tem {,S, Act, --,), a valuation ~2 mapping a tomic propositions to subsets of E,
and an environment e mapping variables to subsets of ~q. Note that e[X ~ S] is the environment
tha t results by updat ing the binding of X to S in e.

Intuitively, the semantic function maps a formula to the set of s tates for which the formula is
"true". Accordingly, a s ta te s satisfies A E .4 if s is in the valuation of A, while s satisfies X if s
is an element of the set bound to X in e. The propositional constructs are interpreted in the usua l
fashion: s satisfies - ~ if it does not satisfy cI, and s satisfies ~1 A ~2 if it satisfies {,] as well as ~2.
The construct [a] is a moda/operator ; s satisfies [a]~ if each a-derivative of s satisfies # .

412

The syntactic restriction on the bodies of v-formulas and the semantics of the other logical
connectives ensures that semantically, the bodies give rise to monotonic ftmetions (on the lattice
sets of states) [C]. Accordingly, on the basis of the Knaster-Tarski Fixpolnt Theorem [T] the
semantics of vX.@ is given as the greatest fL~point of the monotonic function corresponding to @.
In addition, for finite-state labeled transition systems the bodies of ~-formulas are continuous, and
Kleene's Fixpolnt Theorem then provides the following iterative characterization of the semantics.
Define ~b~ by ~b0 = ~q and ~bi+l = [~]e[X ~ ~bl] for i_> 1. Then [v X . q l e = ~ o ~bl. Formula pX.~
can be characterized dually as U~=0 Ol, where ~b 0 = 0 and ~i+1 = [~]e[X ~* ~]. The next lemma
establishes that the meaning of a closed formula does not depend on its environment.

L e m m a 2.2 Fie a finlte-state transition system and valeation, and let ~ be a closed formula. Then
for any en~ironmenU e and e ~ we have: [~]e = [~]e'.

The lemma holds because all variables in closed formulas are bound by a fixpolnt operator, and this
excludes any influence of the initial environment on the semantics of the formula. We therefore omit
reference to an environment for dosed formulas and write [~]. Finally, it is also possible to translate
formulas into positive normal form (PNF), i.e. into a negation-free formula in which no variable
is bound more than once. This is a consequence of the following lemma, where]~[represents the
number of occurrences of operators and atomic formulas in ~.

L e m m a 2.3 Let �9 be a closed formula in the modal p.calculus. Then ?# can be translated into a
closed formula ~1 in the logic e=tended with V, (a) and p in 0(1~1) t ime s e th that

t) ~' ~ neaation4~'e, 2) !~ | = ~ '] and 3) I~'1 < I~1.

The translation is done by "driving" negations inside the subformulas in the standard way following
DeMorgaus Laws etc, and renaming variables as appropriate. The resulting formula ~ ' is not larger
than ~ because of our assumptions that all free occurrences of variables in fixpoint formulas mnst
be inside the range of an even number of negations and that the atomic propositions are closed
under negation.

For notational simplicity, in what follows we only consider formulas whose top-level operator
is a fixpoint operator. This is not a serious restriction, as the semantics of other formulas can be
trivially determined in linear time once the semantics of the top-level fixpoint formulas have been
computed.

2.3 A l t e r n a t i o n D e p t h o f F o r m u l a s

The complexity of the algorithm that we present in the following sections will depend on a measure
on formulas called alternation depth. Intuitively, the alternation depth of a formula is the length of
a maximal "chain" of mutually recursive greatest and least fixpoint subformulas (cf. [EL]).

Def in i t ion 2.4 (A l t e r n a t i o n D e p t h of Formulas) Let ~ be in PNF. Then the alternation depth,
ad(~), of �9 /8 defined indaetieely as/oUows.

�9 I f ~ contains closed top-leeel]izpoint-sebfor'malas Y x , . . . , Fn then

~a(~) = .m~(~d(~') , ~d(r~) ~d(r~))

where ~ ' ie obtained f rom ~ by substituting new atomic propositions A I , . . . , A n / o r r l , . . . , Fn.

�9 I f ~ contains no closed top-level fizpoint-subformulaa then ad(~) ie defined as follows.

- ad(A) = a d (X) = O, for any atomic proposition A and variable X .

- ~ (~ 1 ^ *=) = nd(~ l v ~ ,) = m ~ f f i (~ (, x) , n d (, ,)) .

- - adC[a]~) = ad((a)cI ') = ad(~), for any action a.

413

- Let,~ ~ {p,v}, and le t~ be II~e dual o f~ . Then

ad(~X.~) -- maz(1, ad(,l~), 1 + ad(~X, . '~ ,) , . . . , i + ad(~X,,.~,,))

where ~ X ~ . ~ , . . . ,~X,,.'~,, are the top-level ~ - ~ u b f o t m ~ of ~.

Example 2.5 For �9 = vX,.pX=.(X1 V Xz V vY~.pr~.vYa.(Y~ A Y~ A Ya)) we obtain ad(q~) = 3.

3 Equational Systems

In order to facilitate the saving and reuse of intermediate results, our model-checking algorithm
works on equational representations of mu-caiculus formulas. This section presents the syntax and
semantics of the equational systems and introduces the notions of closed subsystems and alternation
depth.

3.1 S y n t a x o f E q u a t i o n a l S y s t e m s

The systems of mutually recursive equations that we use to represent formulas are lists of the
following form1:(X1 ~'1 ~1, . . . ,Xn ~,, ~) where ~>i E {--*,~}. The Xi's are distinct variables,
and the equation Xi --* ~i represents a greatest fia'point, while X~ ,-- ~i represents a least f~zpoinL
Following [AC, CS1] we restrict our attention to mu-calculus formulas ~ that are negation-freeand
simple, which guarantees that every non-atomic right-hand-side formula has a left-hand-side variable
associated with it. This facilitates the saving and reuse oflntermediate results. Any equation set E
may be transformed in linear time into a simple equational system E ~ with at most linear blow-up
in size. Therefore, the model-checking algorithm presented in this paper has the same complexity
for the full logic as for the simple subloglc. In what follows we refer to Xi --, ~i as a maz equation
with maz variable Xi and to X j *- ~ j as a rain equation with rain variable Xj, and we associate
with each left-hand-side variable a parity that is either maz or rain depending on the form of the
equation. An equational system E is elosed if all variables in a rlght.hand side of some equation also
appear as left-hand sides in E. It should be pointed out that the order of equations is important
in an equational system, owing to the presence of mutually recurslve greatest and least fixpoint
formulas.

E x a m p l e 3.1 The following equational system E represents the formula given in Example 2.5. It
can be obtained by means of the translation that will be given in Section 3.2.

(x~ -, x s , x2 ~- x~v x~, x_, ,- x=v x4, x4 -~ x s , xs ,- Xe,X6-, X4^X,, x,-- , xs^x6)

3.2 S e m a n t i c s o f E q u a t i o n a l S y s t e m s

The semantics for equational systems uses a translation from systems of equations to tuples of closed
mu-calculus formulas, one for each equation. An equational system may then be interpreted as n
tuple of subsets of states which arises by pointwise application of the semantic function for formulas
to the component formulas.

This translation consists of the composition of two functions, B and F (for Ubackwards" and ~for.
wards"), which repeatedly eliminate occurrences of free variables. Let E = (X1~#I , Xn~'~n)
be a closed, simple equational system, and let ~ = (~ I , . . . , ~n) consist of the right-hand sides of
E. Also let ~rb. . . , ~rn be the obvious projection functions. Given ~, B produces a new tuple F of
formulas by setting F to ~ and processing each component in ~ as follows, beginning with Irn(r)
and working backwards.

�9 Keplace f i (r) by/~Xi.~ri(s) (i fXi is a min-varlable) or vXi.r~(r) (i fXi is a max.variable).

ITltis form is ~ to the one used by Larscn in [La].

414

A

Xl e X2 v X3 v �9 ~ : : :-- X4 e Xs X 7

Figure 2: The Dependency Graph for Equational System E in Example 3.1.

�9 Substitute ~ri(~-) for each free occurrence of Xi in wl(~) , lri-l(P).

Note that only X 1 , . . . , X i - t can appear free in ~ri(B(~)); in particular, lr t(B(~)) is closed. Now F
eliminates all remaining free variables: Given a tuple ~ of formulas, F produces a new tuple ~ by
processing each formula in ~v in the order of the indices as follows: substitute ~ri(~) for each free
occurrence of Xi in ~ri+l (A) , ~rn(~). The semantics of E can now be given as follows.

Def in i t ion 3.2 (Semant i c s of Equa t iona l Sys tems) Let E be a closed, simple system of n
equations, and let ~ be the tuple of right-hand sides of E. Abo let (A t , . . . , A,,) --- F o B(~) .
Then [E] = ([[A1] [A,,]}.

The coanectlon between equational systems and the mu-calcnlus can be made explicit by prov|d-
ing translations back and forth, t r a n s e, translating equational systems into formulas, is straight-
forward in terms of F and B: transffi(E) = g] (F o B(~)) , where ~ consists of the right-hand sides
of E. Given a mu-calculus formula @ in PNF, the function t r a m builds an equational system by
recursing through ~, adding a new equation at the end of the l ~ t of the already generated equa-
tions for each subformnla of ~. The parity of a new added left-hand-slde variable is determined
by the most recently encountered ftxpoint operator. As an example, consider the formula and the
equational system given in Example 2.5 and 3.1, respectively. Here, the application of t r a n s to
yields E.

Obviously, t r a n s works in linear time as every subformnla of �9 is investigated exactly once.
Moreover, the number of equations in the resulting simple equational system E~ is less than or
equal to the size of the formals @, because every suhformu]a of �9 is transformed into at most one
equation. A detailed account of these translations can be found in [CDS].

Instead of solving the model-checking problem directly for a given formula @ we solve it on
the equational system E# that is gained by the translation given above. The following theorem
establishes the correctness of this approach.

T h e o r e m 3.3 Let ~ be a clo,ed PNF formals and E~ = t r ans (~) . Then, [~] = wl([E#]).

3.3 G r a p h R e p r e s e n t a t i o n Of E q u a t i o n a l S y s t e m s

In this section we introduce a graph representation of equational systems that will be used to
determine the closed subsystents of equational systems and to define the notion of alternation depth.
Let E be an equational system. Then its dependency graph GE is an edge-labeled graph with one
node for each left-hand-side variable in E and edges defined as follows, where i ~ j .

�9 X~ _~t Xj if for some 4 either Xj ~ Xi I qe or Xj .~. ~ IXi is an equation in E for ! E {V, ̂ }.

�9 x~ • x j if x i ~, l x , is in E for I c {(u), Iul}.

�9 X i - ~ X j i f X j ~ X l i s i n E .

Intuitively, there is an edge from Xi to X$ if the meaning of Xi directly influences the meaning of
Xj. In what follows, we write Xi --~ X j if there is an edge in GB from Xi to Xj and Xi -~* Xj
if there is a path from Xi to Xj in GE. As an example, the graph for the equational system in
Example 3.1 appears in Figure 2.

415

Figure 3: The Dependencies between and within the Closed Subsystems.

T h e o r e m 3.4 Let E -- (X1 ' ~ 1 , - . . , X n ~ @ n) be an equational system. Its dependency graph
GE can be cortJtructed in O(]E[) time, and it contains n vertices and no more than 2n edges.

Let C be a sublist of E. Then we refer to the subgraph of GE induced by C as Gc. Also, we write
Xi -~c,h Xj if Xi -~ Xj is an edge in Gc with i ~ k and j > k. These notions are used in Section
3.5.

3.4 C losed S u b s y s t e m s o f E q u a t i o n a l S y s t e m s

In analogy with the notion of closed subformu/as, we develop the notion of closed snbsystems of
equational systems; these turn out to be essential in order for us to achieve the desired complexity
for our model-checking algorithm.

From the definition of the dependency graph GE, if two variables Xi and Xj are such that
Xi ~,* Xj and Xj -~* Xi, it follows that the semantics of Xi affects that of X$, and vice verJa.
When this is the case we say that Xi and Xj are mutually dependent, since any change to the
semantics of one may induce a change in the other. On the other hand, if Xi -~* Xj but Xj-7,* Xi,
then changes to Xi affect Xj, but not vice versa. In this case we say that there is a hierarchical
dependency from Xi to X$, since once the semantics of Xi is computed future changes to Xj cannot
affect it.

In graph-theoretic terms, when Xi -~* Xj and Xj ~* Xi, then Xi and X$ belong to the
same st•ngly connected component of GE. 2 Within a strongly connected component each pair of
variables is mutually dependent, while there can exist at most a hierarchical dependence between
two variables in distinct strongly connected components. This suggests the following strategy for
computing [El:

1. Build the condensation graph, Gc, ofGg. (Kecall that the condensation graph of G is a graph
having the strongly connected components Gi of G as its vertices, with an edge Gi -" Gj
defined if Gi and Gj are distinct and there are nodes K E Gi, Vj E Gi, such that K --* Vj is
an edge in G.) Note that Gc is acyciic.

2. Topologically sort Gc into Gin,..., G1. (Here G,, is a %ource n node in Gc; we have elected
to number it m so that, in general, higher-numbered variables belong to higher-numbered
components.) Notice that if there is an edge from Gi to Gj then i > j .

3. For each Gi, generate a closed snbsystem Ci containing the equations from E whose left-hand
sides are in Gi. These equations are modified by replacing each occurrence of X$ that is not
a left-hand side in Gi by a new atomic proposition A$; this ensures that Ci is dosed. Note
that if Xj is in component Gk then k < i.

ZRecall that o strongly connected component of a graph iJ a maximal subeet "P of vertices having the property that
---*~ I~ and V$ --** I.~ for any Vi,~ E~.

416

4. Beginning with C,~, process each Ci in turn.

As an example, consider E in Example 3.1 with its dependency graph GE shown in Figure 2.
As there are two strongly connected components of GE we get two closed subsystems:

C1 -- < X I - - ~ X s , X 2 t - ' X 1 V X a , X a ' - ' X 2 V A 4 >

C2 = < X (--, X s , X s ~ X s , Xe - , X (A XT , XT ---, X s a Xe >

Note that each Ci is closed and that each left-hand-side variable X~ of E appears as a left-
hand side in exactly one of the Cl. Also notice that the construction ensures that if a new atomic
proposition Ai appears in a right-hand side in Cj, then Xi must appear as a left-hand side in
some Cl with l > j . Consequently, we may define the semantics of Ai as follows. Let Ci be the
closed subsystem containing X~ as a left-hand side, and let k be the index of Xi in Ci. Then
~A~] = ~rh([Ci]), The following theorem shows that this transformation of E into C1. . . Cm is, in a
certain sense, semantics-preserving.

T h e o r e m 3.5 The dosed subsystems C 1 , . . . , C,n of an equational system E can be determined in
O([E[) time. Furthermore, if Xi i~ the k #L left-hand side in CI, then ~ri([E]) = ~ck([Ci]).

In our example we have [E] = (~'1 [C1], ~'2[C~], ~rs[Cl], ~'1[C~,1, ~r2[C~,l, ~'a[C~], ~'4iC=]).

3,5 A l t e r n a t i o n D e p t h of E q u a t i o n a l S y s t e m s

We close this section by defining the notion of alternation depth of an equational system. It will turn
out that this notion is consistent with the one given for formulas (cf. Theorem 3.8), and therefore
we may use the same notation.

Todefine the alternation depth we first introduce the notion of nesting depth of equations that
reflects the length of the chain of mutually depending rain and maz equations within a dosed
subsystem.

Def in i t ion 3.6 (Nes t ing D e p t h of Equa t ions)
Let E = (X1 'z" qt l , . . . , X n ~ ~ n) be an equational system with its closed subsystems C I , . . . , Cm.
Furthermore, assume (7 E {maz, m/n} and ~ to be the dmd parity. Then the nesting depth of the
equation with left-hnnd Jide X i having parity # and belonging to C! i8 given by:

nd(X. C,) = , ~ (1 , , , ~ { na(Xi, C,) l Xj~c,,, 'X, .nd Xj ~,. pari,y ,.},
~,{ I + nd(X~,C,) I Xi~c,, ,*X, and Xi has ~rity ~})

The nesting depth of the closed subsystem Ci is defined as rid(el) = maz{nd(Xi , Ci)[Xi <> 4 , E C,}.

The alternation depth of an equational system is now defined as the maximal nesting depth of
its dosed subsystems.

Def in i t ion 3.7 (A l t e r n a t i o n D e p t h of Equa t iona l Sys tems)
Let E = (X1 ~ '~1 , . . . , X,, <> ~n) be an equational s31stem with closed sltbsystems C l , . . . , Gin. Then
the alternation depth of E is given by ad(E) = maz{nd(C~)[1 < l <_ m}.

Example : As shown already, the equational system E presented in Example 3.1 has two closed
subsystems, and we have: nd(Xa, C1) = nd(X2, Ct) = 1 and rid(X1, C]) = 2) thus nd(Cl) = 2 and
nd(XT, Cs) = nd(Xs, Ca) = 1, nd(Xs, C1) = 2 and nd(X,, Ca) = 3, thus nd(C=) = 3. Therefore
o 4 E) = ~.

We say that an equational system E is alternation-free if ad(E) = 1. The consistency of the notions
of alternation depth for formula~ and equational systems is a consequence of the following theorem.

417

T h e o r e m S.8 Let �9 be a closed PNF formula with ad(~) > 1 and Eq = t rans(~) be the corre-
sponding equational system. Then ad(~) = ad(E#).

The left-hand-side variables of a closed subsystem of an equational system can be partitioned into
nesting levels, which are used to guide the fixpoint computation.

Definit ion 3.9 (Nest ing Levels) Let E = (Xl ~ ~ l , . . . , Xn ~ qtn) be an equational system with
closed subsystems Cx,. . . ,Cm. Then the set of variables belonging to a closed subsystem CI is
partitioned into nesting levels by El,i = { Xj] nd(Xj, Ci) = i } for 1 <_ i < nd(Cl).

Given a nesting level Ei,i we call the nesting level EI j lower if j < i and higher if j > i. Each
nesting level consists of at most two blocks of equations, where a block consists entirely of min or
of max equations.

Theo rem 3.10 Given an equational system E:

1. Alternation-freedom can be established in O(IE[) time.

~. The nesting leeds can be determined in 0([E[2) time.

4 The Model-Checking Algorithm

In this section we present a model-checking algorithm that, given an equational system E and a
transition system T = (S, Acg--,), computes [E]. Due to space limitations, we only sketch an
outline of the algorithm; the interested reader is referred to [CDS] for a ftdler discnssion of the
details.

As with the algorithms in [AC, CS1, CS2], our algorithm is bit-vector-based. Each state in S
has a bit vector whose i th entry indicates whether or not the state belongs to the set associated
with Xi in the current stage of the analysis. These bit-vectors represent the current approximation
($1,. . . , Sn) E (2s) '~ to [E] during model checking as follows: s E 5i if and only if s.X[i] is true, for
l < i < _ n .

Given E, the algorithm works by first determining the closed subsystems G1.. . Cm of E. It then
processes each CI in turn, beginning with Cm and ending with (71; [Ci] is computed and stored in
the relevant bit-vertor components, and then the atomic predicates whose semantics depend on left-
hand sides in CI have their semantics initialized. The algorithm terminates after C1 is completed.
Given that each ~Ci] is computed properly, correctness follows from Theorem 3.5.

At the heart of the algorithm is the computation of [CI] for a closed subsystem (71. This
processing proceeds in two phases. During the first phase, blt-vectors are initialized such that
components corresponding to maz variables are set to true and components corresponding to rain
variables are set to false. In the second phase, the nesting levels of CI are repeatedly analysed,
beginning with the lowest level, El,l, and proceeding up to El,hal(el)- To process a nesting level,
the algorithm essentially invokes a variant of the alternation-free model-checking algorithm given in
[CS2]. Bit-vector annotations are changed until appropriate fixed points are reached; in addition, if
changing a bit-vector component in one variable also causes a change in the semantics of a variable
in a lower nesting level, then the lower nesting levels that are affected must be re-inltialized and
recomputed. The processing of a nesting level is finished when consistency is reached with all lower
levels. Then, the next higher level is begun.

In this computation of ~CI], one may identify two flows of information.

�9 The flow of assumptions: Our algorithm may be seen as Uassttmptlon based": during the
computation of a fixpolnt for equations in a nesting level, the vuriables in higher nesting levels
are treated essentially as propositional constants in that their meaning is fixed. Thus, the
assumption flow proceeds from El,~(c,) down to EI, I.

418

El.~cl) {
S I . . . S ~ I

Assum~ons

Xn i

{ ~ii~iiii!iiii~!iiii!~iiiiii~i~iii~i~iiii!i!~i~i!iiii~ii~ii~!i!ii~iiii~i~iiii~ii~iiiiiiii~i~iii~i~i~i~i~i ~i~

: �9 �9 �9 . . . �9 �9 � 9 �9 �9 � 9 �9 �9 �9 :

iiiii?i!?iiiiii?iii~r
:::
o...,......... ' . , , ,-,....,...........-,... ' . : , ' ,~.,. ' .~-'.:. ' . : .Z,:,:,s ::::::::::::::::::::::::::::::::::::::

Figure 4: The Flows of Information in a Closed Subsystem Cl.

* The p r o p a g a t i o n of i n t e r m e d i a t e resul ts : Fixpoints are computed from lower to higher
nesting levels. Therefore, the computation flow proceeds in the direction opposite to that of
the flow of assumptions, as intermediate results computed in one level may affect the results
for higher levels.

In this view, the need for recomputing values in lower nesting levels when a higher nesting level
changes becomes apparent: the computation of the lower level was based on a wrong assumption.

The two flows of information are illustrated in Figure 4, where the box represents the current
approximation of the semantics of Ci with the blt-vectors corresponding to columns through the
levels.

Three observations are exploited in order to achieve the complexity stated in the next section.

1. The partitioning of the equational system E into closed subsystems C1, .. �9 ,Gin ensures that
once ~Ci] is computed, it cannot be affected by the analysis of subsequent closed subsystems.

2. Within a given closed subsystem Cl the nesting levels are treated exactly as in the (linear-tlme
[CS2]) alternation-free case each time their fixpoint is Computed.

3. Computing consistency of the lowest, and most often recomputed, nesting level El,1 is less
expensive than for the higher levels as El,1 does not give rise to resetting and recomputatlon
of lower levels and also need not account for the new values that resetting and recomputing
lower levels can give rise to.

The full structure of the model-checking algorithm is given in [CDS]; Section 6 contains an example
illustrating our teclmique.

5 Correctness and Complex i ty

The correctness of the ~Igorlthm rests on the observation that our algorithm computes [Ci| com-
ponent-wise according to the semantic definition of formulas by representing the environment in the
bit vectors. Together with Theorem 3.5 this enables us to prove the following theorem (of. [CDS]).

4 t9

V

X t X2 X { X 4
@ 1 @,I �9

c I:"1 "

A

Figure 5: The Dependency Graph.

T h e o r e m 5.1 (Cor rec tness) Let T = ($, Act, ---,) be a labeled]inite-date transition system and
E : (Xt ~ 4 ,z , . . . , X , r 4,,~) be a closed, simple equational system. Then the model-checking algo.
rithm terminates frith a bil-vector annotation that reprezentz [E].

The following theorem states our complexity result, where 17"1 = [s l + [~ t and [El is the
number of equations in E. A complete proof is given in [CDS].

T h e o r e m 5.2 (Complex i ty) Let E = (X1 ~ ' 4 , 1 , . . . , X n * 4 , n) be a simple, closed equational
S~lstem with ad(E) > 1, and T = ($, Ac~ -*) be a finite-state transition Sl/stem. Then the worst-
case lime complezity of the model-checking algorithm i8

IEI ,~ .d(,s)-i
0 (IT I * IE I * I,SI* _~---~/,~t~,j)

6 An Example

In this section we illustrate our algorithm with an example taken from [SW]. Consider the formula
4, = vZ.~Y.[a]((A ^ Z) V Y) having alternation depth 2. The semantics of 4, with respect to
a transition system T is the set of states for which A holds infinitely often on all n-paths. Its
corresponding equational system

E = < X l - - , X s , X s ~ [a] X 3 , X a ~ - X 4 v X s , X 4 ~ A ^ X 1 >

only has the trivial closed subsystem consisting of two nesting levels: El holding the last three
equations, and E2 holding the first equation. The dependency graph is shown in Figure 5.

The transition system T we want to investigate is the triple (,.q, Act,--*), where ,.q = {s, t, u, v},
Act = {u} and the transition relation has six elements: s -% s, s -~ t, t ~ u, u ~ s, n -~ v and
t? --+ V.

The valuation is given by V(A) = {t, u, v}; so states t, u and v satisfy A, but s does not. Besides
the bit-vectors s.X[1..4], t.X[1..4], u.X[1..4] and v.X[1..4] we need some auxiliary data structures
for investigating the levels (cf. [CS2]): the counters s.C[1..4], t.C[1..4], u.C[1..4] and ~.C[1..4], where
z.C[i] maintains a count of the number of components F.X[j] that may change until z.X[i] must
change; and the array of worklists M[1..4], where M[i] holds the states the changes to whose i th
bit-vector components have yet to be propagated. The states also contain fields recording whether
they satisfy the atomic formula A; so s.A : i f , while t .A = u.A = v.A = tt. Note that Xl is a
maz variable initialized with true for all states and Xs, X3 and X4 are rain variables accordingly
initialized with false. In what follows w~ highlight the changes made to the data structure step by
step. Note in particular the change of intermediate results in El because of changing a~sumptions
in Es.

�9 Computing a fixpoint over the lowest level E1 (containing X2 to X4) starts with the following
initialization of the bit vectors, counters and worklists.

] l " t I, , [] , t I , ,

xs f f f f 1t g cs I I I /
X4 f f t t tt U (24 1 0 0 0

420

The imquence of the states in the worklist is determined. First, t, u, v are successively deleted
from M[4] and X4 v X3 is processed. Second, t, u, ~ are successively deleted from M[3] and

X3 ~ X2 is processed. This provides the following intermediate results:

I 1 ' t . " _ I1" t . , I I " t . , I 1 ' z . �9

xs t ~ii~ ~] ~]i] ca I I I I Xs I u u u os I I I I
X4 f f tl it It O, 1 0 0 0 X, ff U tI It 04 1 0 0 0

M[e, e, O, ","}, g] U[g, O, "}, g, e]

Now t and v are successively deleted from M[2] and X2 v Xa is processed. As t.X[3] and
v.X[3] are already true the bit-vectors remain unchanged and the worklbts for El are empty.

�9 On the next nesting level E2 the fixpoint computation detects an inconsistency for n and an
inconsistency for u as s.X[l] -- u.X[1] = t4 but 8.X[2] -- u.X[2] -- f f and X2 ~ Xl. Thus
s.X[1] and u.X[2] are set to false and E I has to be reset and recomputed accordingly.

�9 The recomputation of El taking the new assumptions into account starts with the initialization
shown on the left and computes the fixpoint shown on the right.

x , g ~ f ~ c , 2 I 2 1 and x , # f ~[] c , { []
xs ~ ~ # ~ cs / / / / Xs ~ [~] ~ [~] Cs / / / /
X4 .ff U ~-] l~ C4 ~-] 0 ['~ 0 X,l ~ t t f f U C4 2 0 1 0

M [0 , ~ , 0 , { t , , }] M [0 , U , 0]

�9 Again computing the f ixpoint over B2 an inconsistency is detected as t .X [1] = tt but t .X [2] =
ff and Xz ~ XI. Thus t.X[1] is set to fa/se and El is reset and recomputed, providing the
following results for initialization (left) and fixpoint computation (right):

�9 ~ * " II �9 t . = I[�9 t . �9 I I ' t ~ �9

X3 ff ff ff ff (73 2 1 2 1 and Xa ~ ~ ~ ~] Oz 2 1 I Xs ~' M ~'~' Cs / / / / Xs ~ ' ~ [~] C, / /
x , ~ [~ u c . 2 ~ o x , g ~ M u c , 2 t i o

u[o, o, o, {.,,}] MIO, ~, O, g]

Finally, E2 is shown to be consistent, the algorithm terminates, and we obtain [~] = {e}, as
v.X[1] = tt and the first blt-vector component of all other states is ~fabe. This reflects one's
intuition about the formula, because ~ is the only state for which A is infmitely often satisfied along
all a-paths.

7 Conclusions and Fu tu re Work

In this paper, we have presented an algorithm for model checking that handles the full modal mu-
calculus including alternating fixed points. The algorithm extends the one given in [CS2] for an
alternation-free logic. Central is the new complexity result:

o (17"1 * IEi * (ISl * IEI
\

421

which improves even on our conjecture ([CS2]):

* Instead of being exponential in the full size of the transition system it is only exponential in
the number of its states. This saves a quadratic blow-up in the worst case.

�9 Instead of being exponential in the full size of the formula, it is only exponential in ~ ,
which is important for formulas with high alternation depth.

In [A] Andersen sketches an O(]S] * [TIed{#) -z * [~l =a(#)) algorithm for the full mu-calculns, which
improves on Emerson and Lei's result, O(([T] * [E[)ea(B)+I). Andersen's algorithm differs fxom ours
in that it is tailored to the mu-calcnins structure rather than systems of equations, where properties
can be expressed much more concisely. In the worst case, his formalizations are exponentially larger
than ours, because equational systems allow to compactly represent common subexpressinns. This
generality, however, requires a much more involved algorithm. Nevertheless, we were able to prove a
stronger complexity result, even with respect to the more compact representations. Our algorithm
will be implemented as an extension of the Concurrency Workbench [CPS1, CPS2].

R e f e r e n c e s

IA]

IAC]

[cEs]

[c]

[CDS]

[CPS1]

[CPS2]

[CS1]

[cs2]

[EL]

[Fe]

[K]

[Ko]

Andersen, H. "Model Checking and Boolean Graphs." Proc. oIESOP '92, LNCS 582, 1992.

Arnold, A., and P. CrubiUe. "A Linear Algorithm To Solve Fixed-Point Equations on
Transition Systems." Information Processing Letters, v. 29, 30 September 1988, pp. 57-66.

Clarke, E.M., E.A. Emerson and A.P. Sistla. "Automatic Verification of Finite State Con-
current Systems Using Temporal Logic Specifications." A CM TransacLiorts on Programming
Languages and Systems, v. 8, n. 2, 1986, pp. 244-263.

Cleaveland, K. "Tableau-Based Model Checking in the Propositional Mu-Calculus." Acta
Informatica, v. 27, 1990, pp. 725-74?.

Cleaveland, lt., M. Klein and B. Steffen. "Faster Model Checking for the Modal Mu-
Calculus." In Technical Report RWTH Aachen Nr. 91-29, Fachgruppe der Informatik, 1991.

Cleaveland, It., J. Parrow and B. Steffen. "The Concurrency Workbench." In Proceedings
CAV'89, LNCS 407, 1989.

Cleaveland, K., J. Parrow and B. Steffen. "A Semantics-based Verification Tool for Finite-
State Systems", In Proceedings of the Ninth International Symposium on Protocol Specifi-
cation, Testing, and Verification. North-Holland, 1989.

Cleaveland, K. and B. Steffen. "Computing Behavioural Relations, Logically." In Proceed-
ings ICALP '91, LNCS 510, 1991.

Cleaveland, R. and B. Steffen. "A Linear-Time Model Checking Algorithm for the
Alternation-Free Modal Mu-Calculns." In Proceedings CAV '91, LNCS 575, 1991.

Emerson, E.A. and C.-L. Lei. "Efficient Model Checking in Fragments of the Propositional
Mu-Calculns." In Proceedings of s 1988, pp. 267-278.

Fernandez, J.-C. Alddbaran: Une Syst~me de Vdrificgtion par REdaction de Processes Com-
municants. Ph.D. Thesis, Uulversit,~ de Grenoble, 1988.

Kleene, S. C. "Introduction to Metamathematics", North Holland, 1952.

Kozen, D. "Results on the Propositional p-Calculus." TCS, v. 27, 1983, pp. 333-354.

[La]

[MSGS]

putsv]

[RdS]

[Ste]

[S~]

[sw]

IT]

422

Larsen, K.G. "Proof Systems for Hennessy-Miiner Logic with Kecursion.n In Proceedings
of CAAP, 1988.

Malhotrn, J., Smolka, S.A., Giacalone, A. and Shapiro, R. ~Winston: A Tool for Hierar-
chical Design and Simulation os Concurrent Systems." In Proceedinga of the Workshop on
Specification and Verification of Concurrent S~slents, Univ. of Stirring, Scotland, 1988.

1Uchier, J., Kodrignez, C., Sifakis, J. and Voiron, J.. uVerification in XESAR of the Sliding
Window Protocol." In Proceedings of the Seventh IFIP Symposium on Protocol Speeifica.
lion, Testing, and Verification, 1987, North-Holland.

Roy, V. and IL de Simone. "Auto/Autograph." In Procoedings, CAV'90, LNCS 531, 1990.

Steffen, B.U. "Characteristic Formulae." In Proceedings ICALP, LNCS 372, 1989.

Steffen, B.U., and A. Ing61fsd6ttir. "Characteristic Formulae for CCS with Divergence."
To appear in Information and Computation.

Stirring, C. and D. Walker. "Local Model Checking in the Modal Mu-Calcnius." In Pro-
ceedings of TAPSOFT 'sg, LNCS 351, 1989.

Tarski, A. UA Lattice-Theoretlcal Fixpoint Theorem and its Applications." Pacific Journal
of Mathematics, v. 5, 1955.

