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Abs t rac t  

In thla paper, we develop an algorithm for model checking that handlu the full modal mu- 
calculus including alternating fixpoints. Our algorithm has a better worst-cue complexity than 
the best known algorithm for this logic while performing just u well on certain sublogi~ as other 
specialized algorithms. Important for the efficiency is an alternative chexacterlsation of formulas 
in terms of equational systems, which enables the sharing and reals of intermediate results. 

1 I n t r o d u c t i o n  

Much work in the field of automated verification has focused on finite-state transition systems (or 
automata) as models for system behavior iCES, CPS1, CPS2, Fe, MSGS, RItSV, RdS]. The modal 
mu-calcnlus [Ko] is a particularly useful logic for reasoning about such models; not only may a 
mtmber of temporal  logics for expressing system properties be translated into it [EL], but  it may 
also be used to encode various behavioral equivalences and preorders [Ste, SI]. Thus, this logic 
supports algebraic as well as logic-based approaches to verification. 

in this paper, we present an algorithm for determining when states in a finite-state transition 
system possess properties expressed in the modal mu-calcnlus. Our model-checking algorithm im- 
proves on the best existing methods for model checking in this logic [A, EL] while performing just 
as well on certain sublogics as specialized algorithras (cf. [CS1, CS2]). Important  for the efficiency 
is an alternative characterization of formulas in terms of equational systems, which enables the 
sharing and reuse of intermediate results. 

The remainder of the paper is orgartized as follows. In the next section we present the syntax 
and semantics of the mu-caleulus, and in the section following we give an alternative, equation-based 
presentation of  this logic. Section 4 presents our model-checking algorithm, while the subsequent 
section establishes its correctness and complexity. The paper closes with a detailed discussion of  an 
example in Section 6 and some conclusions and directions for future work in Section 7. 

2 Syntax and Semantics of the Mu-Calculus 

This section first provides a brief overview of labeled transition 8ystents, which are used as models 
for the mu-calcnlus. Then the syntax and semantics of the logic are developed. 

2.1 T r a n s i t i o n  S y s t e m s  

D e f i n i t i o n  2.1 A labeled transition system T /8 a lr/p/e (,q, Act, --,), where ,q is rt set o/states,  
Act is a set o/actions, and ---, C 8 • Act • 8 is the transition relation. 

Intuitively, a labeled transition system encodes the operational behavior of a system. The set 8 
represents the set "of states the system may enter, and Act contains the set of actions the system 
may perform. The relation --, describes the actions available to states and the state transitions that  
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Formulas are interpreted with respect to a fixed labeled transi t ion sys tem (~q, Acg - , ) ,  a valuat ion 
~; : .A -* T s, and  an environment e : Vat-* 2 "s. 

[Ale = V(A) 
[Xle = e(X) 

[[aiSle = { s I v , ' .  s -% , '  ~ s' E l ~ l e  } 
i ~ X . * ] e  = U { s '  c s I s '  _c I ~ ] e [ X  H sq}  

Figure 1: The Semantics of  Formulas.  

may  result upon execution of the actions. In the remainder  of  the  paper  we use s --% d in lleu of 
{ s , a , d )  G--~, and if s -% d then we say tha t  d is an  a-der~*mtive of s. Finally, we refer to a labeled 
transi t ion sys tem as finite-state when ,S and Act are finite. 

2 .2  S y n t a x  a n d  S e m a n t i c s  o f  F o r m u l a s  

The syn tax  of the moda l  mu-calculus is parameterized with respect to a (countable) set Vat of 
variables, a set .4 of atomic propositions, and  a set Act of actions. For technical reasons we assume 
tha t  .4 is closed with respect to negation: for every A E .4 there is a B C .4 tha t  is semantically 
equivalent to the negat ion of A. In  what follows, X will range over V~r, A over A,  and  a over Act. 
The syn tax  of formulas may  be given by the following grammar .  

The  m a x i m u m  fixpoint operator v binds free occurrences of X in �9 in the usual  sense. We impose an 
additional syntact ic  restriction on formulas of the form vX.cI,: each free occurrence of X in �9 mus t  
be within the scope of an  even number  of  negations.  This  requirement ensures the weil-definedness 
of  the semantics  of  the logic. 

Let ~ [X  := F] represent the formula obtained by simultaneously subs t i tu t ing  the formula F for 
the free occurrences of  the  variable X in ~. Then  we m a y  also define the usual  dual  operators to 
the ones we have presented. 

) ,  V ~ ,  = - , ( ~ ,  ^ - ,~ , )  (a )~  = -,[a](-,~) ~,X.~ = -*X.- ,(~[X "= -~X]) 

In what follows we say tha t  ~ '  is a proper subformula of �9 if it is a subformula  of  ~ tha t  is not  
itself. Given a formula,  its top-leeei subformulas with a certain property are defined to be those 

maximal  proper subformulas  having the  property. A formula is said to be a v-formula (p-formula) 
if it has  the  form vX.~ (pX.~) for some X and ~.  We refer to a formula as closed if it contains no 
free variables and  simple if  it is fixpoint-free and contains only variables and atomic propositions as 
proper subformulas.  For example,  X] A A2 is simple, while (a)(Xs V X4) is not.  

The formal semantics of  formulas appears in Figure 1. It is given with respect to a fiuite-state 
labeled t ransi t ion sys tem {,S, Act, --,), a valuation ~2 mapping  a tomic propositions to subsets  of  E, 
and  an environment  e mapping  variables to subsets  of  ~q. Note that  e[X ~ S] is the environment  
tha t  results by updat ing  the binding of X to S in e. 

Intuitively, the  semantic  function maps  a formula to the  set of  s tates  for which the  formula is 
"true".  Accordingly, a s ta te  s satisfies A E .4 if s is in the valuation of A, while s satisfies X if s 
is an  element of  the set bound to X in e. The propositional constructs  are interpreted in the usua l  
fashion: s satisfies - ~  if it does not  satisfy cI, and s satisfies ~1 A ~2 if it satisfies {,] as well as ~2. 
The construct  [a] is a moda/operator ;  s satisfies [a]~ if each a-derivative of s satisfies # .  
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The syntactic restriction on the bodies of v-formulas and the semantics of the other logical 
connectives ensures that  semantically, the bodies give rise to monotonic ftmetions (on the lattice 
sets of states) [C]. Accordingly, on the basis of the Knaster-Tarski Fixpolnt Theorem [T] the 
semantics of vX.@ is given as the greatest fL~point of the monotonic function corresponding to @. 
In addition, for finite-state labeled transition systems the bodies of ~-formulas are continuous, and 
Kleene's Fixpolnt Theorem then provides the following iterative characterization of the semantics. 
Define ~b~ by ~b0 = ~q and ~bi+l = [~]e[X ~ ~bl] for i_> 1. Then [ v X . q l e  = ~ o  ~bl. Formula pX.~  
can be characterized dually as U~=0 Ol, where ~b 0 = 0 and ~i+1 = [~]e[X ~* ~]. The next lemma 
establishes that  the meaning of a closed formula does not depend on its environment. 

L e m m a  2.2 Fie a finlte-state transition system and valeation, and let ~ be a closed formula. Then 
for  any en~ironmenU e and e ~ we have: [~]e = [~]e'.  

The lemma holds because all variables in closed formulas are bound by a fixpolnt operator, and this 
excludes any influence of the initial environment on the semantics of the formula. We therefore omit 
reference to an environment for dosed formulas and write [~]. Finally, it is also possible to translate 
formulas into positive normal form (PNF), i.e. into a negation-free formula in which no variable 
is bound more than once. This is a consequence of the following lemma, where ]~[ represents the 
number of occurrences of operators and atomic formulas in ~. 

L e m m a  2.3 Let �9 be a closed formula in the modal p.calculus. Then ?# can be translated into a 
closed formula ~1 in the logic e=tended with V, (a) and p in 0(1~1) t ime s e th  that 

t) ~'  ~ neaation4~'e, 2) !~ |  = ~ ' ]  and 3) I~'1 < I~1. 

The translation is done by "driving" negations inside the subformulas in the standard way following 
DeMorgaus Laws etc, and renaming variables as appropriate. The resulting formula ~ '  is not larger 
than ~ because of our assumptions that  all free occurrences of variables in fixpoint formulas mnst 
be inside the range of an even number of negations and that  the atomic propositions are closed 
under negation. 

For notational simplicity, in what follows we only consider formulas whose top-level operator 
is a fixpoint operator. This is not a serious restriction, as the semantics of other formulas can be 
trivially determined in linear time once the semantics of the top-level fixpoint formulas have been 
computed. 

2.3 A l t e r n a t i o n  D e p t h  o f  F o r m u l a s  

The complexity of the algorithm that  we present in the following sections will depend on a measure 
on formulas called alternation depth. Intuitively, the alternation depth of a formula is the length of 
a maximal "chain" of mutually recursive greatest and least fixpoint subformulas (cf. [EL]). 

Def in i t ion  2.4 ( A l t e r n a t i o n  D e p t h  of  Formulas )  Let ~ be in PNF.  Then the alternation depth, 
ad(~),  of �9 /8 defined indaetieely as/oUows. 

�9 I f  ~ contains closed top-leeel ]izpoint-sebfor'malas Y x , . . . ,  Fn then 

~a(~) = .m~(~d(~') ,  ~d(r~) . . . . .  ~d(r~)) 

where ~ '  ie obtained f rom ~ by substituting new atomic propositions A I , . . . , A n / o r  r l , . . . , Fn. 

�9 I f  ~ contains no closed top-level fizpoint-subformulaa then ad(~)  ie defined as follows. 

- ad(A) = a d ( X )  = O, for any atomic proposition A and variable X .  

- ~ ( ~ 1  ^ *=) = nd(~ l  v ~ , )  = m ~ f f i ( ~ ( , x ) , n d ( , , ) ) .  

- -  adC[a]~) = ad((a)cI ' )  = ad(~),  for any action a. 
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- Let,~ ~ {p,v}, and le t~  be II~e dual o f~ .  Then 

ad(~X.~) -- maz(1, ad(,l~), 1 + ad(~X, . '~ , ) , . . . ,  i + ad(~X,,.~,,)) 

where ~ X ~ . ~ , . . .  ,~X,,.'~,, are the top-level ~ - ~ u b f o t m ~  of ~.  

Example  2.5 For �9 = vX,.pX=.(X1 V Xz V vY~.pr~.vYa.(Y~ A Y~ A Ya)) we obtain ad(q~) = 3. 

3 Equational Systems 

In order to facilitate the saving and reuse of intermediate results, our model-checking algorithm 
works on equational representations of mu-caiculus formulas. This section presents the syntax and 
semantics of the equational systems and introduces the notions of closed subsystems and alternation 
depth. 

3.1 S y n t a x  o f  E q u a t i o n a l  S y s t e m s  

The systems of mutually recursive equations that we use to represent formulas are lists of the 
following form1:(X1 ~'1 ~1, . . .  ,Xn ~,, ~ )  where ~>i E {--*,~}. The Xi's are distinct variables, 
and the equation Xi --* ~i represents a greatest fia'point, while X~ ,-- ~i represents a least f~zpoinL 
Following [AC, CS1] we restrict our attention to mu-calculus formulas ~ that  are negation-freeand 
simple, which guarantees that every non-atomic right-hand-side formula has a left-hand-side variable 
associated with it. This facilitates the saving and reuse oflntermediate results. Any equation set E 
may be transformed in linear time into a simple equational system E ~ with at most linear blow-up 
in size. Therefore, the model-checking algorithm presented in this paper has the same complexity 
for the full logic as for the simple subloglc. In what follows we refer to Xi --, ~i as a maz equation 
with maz variable Xi and to X j  *- ~ j  as a rain equation with rain variable Xj, and we associate 
with each left-hand-side variable a parity that is either maz or rain depending on the form of the 
equation. An equational system E is elosed if  all variables in a rlght.hand side of some equation also 
appear as left-hand sides in E. It should be pointed out that the order of equations is important 
in an equational system, owing to the presence of mutually recurslve greatest and least fixpoint 
formulas. 

E x a m p l e  3.1 The following equational system E represents the formula given in Example 2.5. It 
can be obtained by means of the translation that will be given in Section 3.2. 

(x~ -, x s ,  x2 ~- x~v x~, x_, ,- x=v x4, x4 -~ x s ,  xs ,- Xe,X6-,  X4^X,, x,-- ,  xs^x6) 

3.2 S e m a n t i c s  o f  E q u a t i o n a l  S y s t e m s  

The semantics for equational systems uses a translation from systems of equations to tuples of closed 
mu-calculus formulas, one for each equation. An equational system may then be interpreted as n 
tuple of subsets of states which arises by pointwise application of the semantic function for formulas 
to the component formulas. 

This translation consists of the composition of two functions, B and F (for Ubackwards" and ~for. 
wards"), which repeatedly eliminate occurrences of free variables. Let E = (X1~#I  . . . .  , Xn~'~n) 
be a closed, simple equational system, and let ~ = ( ~ I , . . . ,  ~n) consist of the right-hand sides of 
E. Also let ~rb. . . ,  ~rn be the obvious projection functions. Given ~,  B produces a new tuple F of 
formulas by setting F to ~ and processing each component in ~ as follows, beginning with Irn(r ) 
and working backwards. 

�9 Keplace f i ( r )  by/~Xi.~ri(s ) ( i fXi  is a min-varlable) or vXi.r~(r) ( i fXi  is a max.variable). 

ITltis form is ~ to the one used by Larscn in [La]. 
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A 

Xl e X2 v X3 v �9 ~ : :  :-- X4 e Xs X 7 

Figure 2: The Dependency Graph for Equational System E in Example 3.1. 

�9 Substitute ~ri(~-) for each free occurrence of Xi in wl(~) . . . .  , lri-l(P).  

Note that only X 1 , . . . , X i - t  can appear free in ~ri(B(~)); in particular, lr t(B(~)) is closed. Now F 
eliminates all remaining free variables: Given a tuple ~ of formulas, F produces a new tuple ~ by 
processing each formula in ~v in the order of the indices as follows: substitute ~ri(~) for each free 
occurrence of Xi in ~ri+l (A) . . . .  , ~rn(~). The semantics of E can now be given as follows. 

Def in i t ion  3.2 (Semant i c s  of  Equa t iona l  Sys tems)  Let E be a closed, simple system of n 
equations, and let ~ be the tuple of right-hand sides of E.  Abo let ( A t , . . . ,  A,,) --- F o B(~) .  
Then [ E ] =  ([[A1] . . . . .  [A,,]}. 

The coanectlon between equational systems and the mu-calcnlus can be made explicit by prov|d- 
ing translations back and forth, t r a n s  e, translating equational systems into formulas, is straight- 
forward in terms of F and B: transffi(E) = g ] (F  o B(~)) ,  where ~ consists of the right-hand sides 
of E. Given a mu-calculus formula @ in PNF, the function t r a m  builds an equational system by 
recursing through ~, adding a new equation at the end of the l ~ t  of the already generated equa- 
tions for each subformnla of ~. The parity of a new added left-hand-slde variable is determined 
by the most recently encountered ftxpoint operator. As an example, consider the formula and the 
equational system given in Example 2.5 and 3.1, respectively. Here, the application of t r a n s  to 
yields E. 

Obviously, t r a n s  works in linear time as every subformnla of �9 is investigated exactly once. 
Moreover, the number of equations in the resulting simple equational system E~ is less than or 
equal to the size of the formals @, because every suhformu]a of �9 is transformed into at most one 
equation. A detailed account of these translations can be found in [CDS]. 

Instead of solving the model-checking problem directly for a given formula @ we solve it on 
the equational system E# that  is gained by the translation given above. The following theorem 
establishes the correctness of this approach. 

T h e o r e m  3.3 Let ~ be a clo,ed PNF formals and E~ = t r ans (~ ) .  Then, [~]  = wl([E#]). 

3.3 G r a p h  R e p r e s e n t a t i o n  Of E q u a t i o n a l  S y s t e m s  

In this section we introduce a graph representation of equational systems that  will be used to 
determine the closed subsystents of equational systems and to define the notion of alternation depth. 
Let E be an equational system. Then its dependency graph GE is an edge-labeled graph with one 
node for each left-hand-side variable in E and edges defined as follows, where i ~ j .  

�9 X~ _~t Xj  if for some 4 either Xj  ~ Xi I qe or Xj  .~. ~ IXi  is an equation in E for ! E {V, ̂ }. 

�9 x~  • x j  if  x i ~, l x ,  is in E for I c {(u),  Iul}. 

�9 X i - ~ X j i f X j ~ X l i s i n E .  

Intuitively, there is an edge from Xi to X$ if the meaning of Xi directly influences the meaning of 
Xj.  In what follows, we write Xi --~ X j  if there is an edge in GB from Xi to Xj  and Xi -~* Xj  
if there is a path from Xi to Xj  in GE. As an example, the graph for the equational system in 
Example 3.1 appears in Figure 2. 
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Figure 3: The Dependencies between and within the Closed Subsystems. 

T h e o r e m  3.4 Let E -- (X1 ' ~ 1 , - . . , X n ~ @ n )  be an equational system. Its dependency graph 
GE can be cortJtructed in O(]E[) time, and it contains n vertices and no more than 2n edges. 

Let C be a sublist of E. Then we refer to the subgraph of GE induced by C as Gc. Also, we write 
Xi -~c,h Xj if Xi -~ Xj is an edge in Gc with i ~ k and j > k. These notions are used in Section 
3.5. 

3.4 C losed  S u b s y s t e m s  o f  E q u a t i o n a l  S y s t e m s  

In analogy with the notion of closed subformu/as, we develop the notion of closed snbsystems of 
equational systems; these turn out to be essential in order for us to achieve the desired complexity 
for our model-checking algorithm. 

From the definition of the dependency graph GE, if two variables Xi and Xj are such that 
Xi ~,* Xj and Xj -~* Xi, it follows that the semantics of Xi affects that of X$, and vice verJa. 
When this is the case we say that Xi and Xj are mutually dependent, since any change to the 
semantics of one may induce a change in the other. On the other hand, if Xi -~* Xj but Xj-7,* Xi, 
then changes to Xi affect Xj, but not vice versa. In this case we say that there is a hierarchical 
dependency from Xi to X$, since once the semantics of Xi is computed future changes to Xj cannot 
affect it. 

In graph-theoretic terms, when Xi -~* Xj and Xj ~* Xi, then Xi and X$ belong to the 
same st•ngly connected component of GE. 2 Within a strongly connected component each pair of 
variables is mutually dependent, while there can exist at most a hierarchical dependence between 
two variables in distinct strongly connected components. This suggests the following strategy for 
computing [El: 

1. Build the condensation graph, Gc, ofGg. (Kecall that the condensation graph of G is a graph 
having the strongly connected components Gi of G as its vertices, with an edge Gi -" Gj 
defined if Gi and Gj are distinct and there are nodes K E Gi, Vj E Gi, such that K --* Vj is 
an edge in G.) Note that Gc is acyciic. 

2. Topologically sort Gc into Gin,..., G1. (Here G,, is a %ource n node in Gc; we have elected 
to number it m so that, in general, higher-numbered variables belong to higher-numbered 
components.) Notice that if there is an edge from Gi to Gj then i > j .  

3. For each Gi, generate a closed snbsystem Ci containing the equations from E whose left-hand 
sides are in Gi. These equations are modified by replacing each occurrence of X$ that is not 
a left-hand side in Gi by a new atomic proposition A$; this ensures that Ci is dosed. Note 
that if Xj is in component Gk then k < i. 

ZRecall that o strongly connected component of a graph iJ a maximal subeet "P of vertices having the property that 
---*~ I~ and V$ --** I.~ for any Vi,~ E~. 
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4. Beginning with C,~, process each Ci in turn. 

As an example, consider E in Example 3.1 with its dependency graph GE shown in Figure 2. 
As there are two strongly connected components of GE we get two closed subsystems: 

C1 -- < X I - - ~ X s ,  X 2 t - ' X 1 V X a ,  X a ' - ' X 2 V A 4  > 

C2 = < X (  --, X s  , X s  ~ X s  , Xe  - ,  X (  A XT , XT ---, X s  a Xe  > 

Note that  each Ci is closed and that each left-hand-side variable X~ of E appears as a left- 
hand side in exactly one of the Cl. Also notice that the construction ensures that  if a new atomic 
proposition Ai appears in a right-hand side in Cj, then Xi  must appear as a left-hand side in 
some Cl with l > j .  Consequently, we may define the semantics of Ai as follows. Let Ci be the 
closed subsystem containing X~ as a left-hand side, and let k be the index of Xi in Ci. Then 
~A~] = ~rh([Ci]), The following theorem shows that this transformation of E into C1. . .  Cm is, in a 
certain sense, semantics-preserving. 

T h e o r e m  3.5 The dosed subsystems C 1 , . . . ,  C,n of an equational system E can be determined in 
O([E[) time. Furthermore, if  Xi  i~ the k #L left-hand side in CI, then ~ri([E]) = ~ck([Ci] ). 

In our example we have [E] = (~'1 [C1], ~'2[C~], ~rs[Cl], ~'1[C~,1, ~r2[C~,l, ~'a[C~], ~'4iC=]). 

3,5 A l t e r n a t i o n  D e p t h  of  E q u a t i o n a l  S y s t e m s  

We close this section by defining the notion of alternation depth of an equational system. It  will turn 
out that  this notion is consistent with the one given for formulas (cf. Theorem 3.8), and therefore 
we may use the same notation. 

Todefine the alternation depth we first introduce the notion of nesting depth of equations that  
reflects the length of the chain of mutually depending rain and maz  equations within a dosed 
subsystem. 

Def in i t ion  3.6 (Nes t ing  D e p t h  of  Equa t ions )  
Let E = ( X1 'z" qt l , . . . , X n  ~ ~ n) be an equational system with its closed subsystems C I , . . . , Cm. 
Furthermore, assume (7 E {maz, m/n} and ~ to be the dmd parity. Then the nesting depth of the 
equation with left-hnnd Jide X i  having parity # and belonging to C! i8 given by: 

nd(X. C,) = , ~ ( 1 ,  , , ~ {  na(Xi, C,) l Xj~c,,, 'X, .nd Xj ~,. pari,y ,.}, 
~,{ I + nd(X~,C,) I Xi~c,, ,*X, and Xi has ~rity ~}) 

The nesting depth of the closed subsystem Ci is defined as rid(el) = maz{nd(Xi ,  Ci)[Xi <> 4 ,  E C,}. 

The alternation depth of an equational system is now defined as the maximal nesting depth of 
its dosed subsystems. 

Def in i t ion  3.7 ( A l t e r n a t i o n  D e p t h  of  Equa t iona l  Sys tems)  
Let E = ( X1 ~ '~1 , . . . ,  X,,  <> ~n) be an equational s31stem with closed sltbsystems C l , . . . ,  Gin. Then 
the alternation depth of E is given by ad(E)  = maz{nd(C~)[1 < l <_ m}. 

Example :  As shown already, the equational system E presented in Example 3.1 has two closed 
subsystems, and we have: nd(Xa, C1) = nd(X2, Ct) = 1 and rid(X1, C]) = 2) thus nd(Cl) = 2 and 
nd(XT, Cs) = nd(Xs, Ca) = 1, nd(Xs, C1) = 2 and nd(X,,  Ca) = 3, thus nd(C=) = 3. Therefore 
o 4 E )  = ~. 

We say that  an equational system E is alternation-free if ad(E) = 1. The consistency of the notions 
of alternation depth for formula~ and equational systems is a consequence of the following theorem. 
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T h e o r e m  S.8 Let �9 be a closed PNF formula with ad(~) > 1 and Eq = t rans(~)  be the corre- 
sponding equational system. Then ad( ~ ) = ad( E# ). 

The left-hand-side variables of a closed subsystem of an equational system can be partitioned into 
nesting levels, which are used to guide the fixpoint computation. 

Definit ion 3.9 (Nest ing Levels) Let E = (Xl ~ ~ l , . . . ,  Xn ~ qtn) be an equational system with 
closed subsystems Cx,. . . ,Cm. Then the set of variables belonging to a closed subsystem CI is 
partitioned into nesting levels by El,i = { Xj ] nd(Xj, Ci) = i } for 1 <_ i < nd(Cl). 

Given a nesting level Ei,i we call the nesting level EI j  lower if j < i and higher if j > i. Each 
nesting level consists of at most two blocks of equations, where a block consists entirely of min or 
of max equations. 

Theo rem 3.10 Given an equational system E: 

1. Alternation-freedom can be established in O(IE[) time. 

~. The nesting leeds can be determined in 0([E[ 2) time. 

4 The Model-Checking Algorithm 

In this section we present a model-checking algorithm that, given an equational system E and a 
transition system T = (S, Acg--,), computes [E]. Due to space limitations, we only sketch an 
outline of the algorithm; the interested reader is referred to [CDS] for a ftdler discnssion of the 
details. 

As with the algorithms in [AC, CS1, CS2], our algorithm is bit-vector-based. Each state in S 
has a bit vector whose i th entry indicates whether or not the state belongs to the set associated 
with Xi in the current stage of the analysis. These bit-vectors represent the current approximation 
($1,. . . ,  Sn) E (2s) '~ to [E] during model checking as follows: s E 5i if and only if s.X[i] is true, for 
l < i < _ n .  

Given E,  the algorithm works by first determining the closed subsystems G1.. .  Cm of E. It then 
processes each CI in turn, beginning with Cm and ending with (71; [Ci] is computed and stored in 
the relevant bit-vertor components, and then the atomic predicates whose semantics depend on left- 
hand sides in CI have their semantics initialized. The algorithm terminates after C1 is completed. 
Given that each ~Ci] is computed properly, correctness follows from Theorem 3.5. 

At the heart of the algorithm is the computation of [CI] for a closed subsystem (71. This 
processing proceeds in two phases. During the first phase, blt-vectors are initialized such that 
components corresponding to maz variables are set to true and components corresponding to rain 
variables are set to false. In the second phase, the nesting levels of CI are repeatedly analysed, 
beginning with the lowest level, El,l, and proceeding up to El,hal(el)- To process a nesting level, 
the algorithm essentially invokes a variant of the alternation-free model-checking algorithm given in 
[CS2]. Bit-vector annotations are changed until appropriate fixed points are reached; in addition, if  
changing a bit-vector component in one variable also causes a change in the semantics of a variable 
in a lower nesting level, then the lower nesting levels that are affected must be re-inltialized and 
recomputed. The processing of a nesting level is finished when consistency is reached with all lower 
levels. Then, the next higher level is begun. 

In this computation of ~CI], one may identify two flows of information. 

�9 The  flow of  assumptions:  Our algorithm may be seen as Uassttmptlon based": during the 
computation of a fixpolnt for equations in a nesting level, the vuriables in higher nesting levels 
are treated essentially as propositional constants in that their meaning is fixed. Thus, the 
assumption flow proceeds from El,~(c, ) down to EI, I. 
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Figure 4: The Flows of Information in a Closed Subsystem Cl. 

* The  p r o p a g a t i o n  of  i n t e r m e d i a t e  resul ts :  Fixpoints are computed from lower to higher 
nesting levels. Therefore, the computation flow proceeds in the direction opposite to that  of 
the flow of assumptions, as intermediate results computed in one level may affect the results 
for higher levels. 

In this view, the need for recomputing values in lower nesting levels when a higher nesting level 
changes becomes apparent: the computation of the lower level was based on a wrong assumption. 

The two flows of information are illustrated in Figure 4, where the box represents the current 
approximation of the semantics of Ci with the blt-vectors corresponding to columns through the 
levels. 

Three observations are exploited in order to achieve the complexity stated in the next section. 

1. The partitioning of the equational system E into closed subsystems C1, ..  �9 ,Gin ensures that 
once ~Ci] is computed, it cannot be affected by the analysis of subsequent closed subsystems. 

2. Within a given closed subsystem Cl the nesting levels are treated exactly as in the (linear-tlme 
[CS2]) alternation-free case each time their fixpoint is Computed. 

3. Computing consistency of the lowest, and most often recomputed, nesting level El,1 is less 
expensive than for the higher levels as El,1 does not give rise to resetting and recomputatlon 
of lower levels and also need not account for the new values that resetting and recomputing 
lower levels can give rise to. 

The full structure of the model-checking algorithm is given in [CDS]; Section 6 contains an example 
illustrating our teclmique. 

5 Correctness  and Complex i ty  

The correctness of the ~Igorlthm rests on the observation that our algorithm computes [Ci|  com- 
ponent-wise according to the semantic definition of formulas by representing the environment in the 
bit vectors. Together with Theorem 3.5 this enables us to prove the following theorem (of. [CDS]). 
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Figure 5: The Dependency Graph. 

T h e o r e m  5.1 (Cor rec tness )  Let T = ($, Act, ---,) be a labeled ]inite-date transition system and 
E : (Xt ~ 4 ,z , . . . ,  X ,  r 4,,~) be a closed, simple equational system. Then the model-checking algo. 
rithm terminates frith a bil-vector annotation that reprezentz [E].  

The following theorem states our complexity result, where 17"1 = [ s l  + [ ~ t and [El is the 
number of equations in E. A complete proof is given in [CDS]. 

T h e o r e m  5.2 (Complex i ty )  Let E = (X1 ~ ' 4 , 1 , . . . , X n * 4 , n )  be a simple, closed equational 
S~lstem with ad(E)  > 1, and T = ($, Ac~ -*) be a finite-state transition Sl/stem. Then the worst- 
case lime complezity of  the model-checking algorithm i8 

IEI ,~ .d(,s)-i 
0 ( IT I * IE I *  I,SI* _~---~/,~t~,j ) 

6 An Example  

In this section we illustrate our algorithm with an example taken from [SW]. Consider the formula 
4, = vZ.~Y.[a]((A ^ Z)  V Y )  having alternation depth 2. The semantics of 4, with respect to 
a transition system T is the set of states for which A holds infinitely often on all n-paths. Its 
corresponding equational system 

E = < X l - - , X s ,  X s ~ [ a ] X 3 ,  X a ~ - X 4 v X s ,  X 4 ~ A ^ X 1  > 

only has the trivial closed subsystem consisting of two nesting levels: El  holding the last three 
equations, and E2 holding the first equation. The dependency graph is shown in Figure 5. 

The transition system T we want to investigate is the triple (,.q, Act,--*), where ,.q = {s, t, u, v}, 
Act = {u} and the transition relation has six elements: s -% s, s -~ t, t ~ u, u ~ s, n -~ v and 
t? --+ V. 

The valuation is given by V(A) = {t, u, v}; so states t, u and v satisfy A, but s does not. Besides 
the bit-vectors s.X[1..4], t.X[1..4], u.X[1..4] and v.X[1..4] we need some auxiliary data structures 
for investigating the levels (cf. [CS2]): the counters s.C[1..4], t.C[1..4], u.C[1..4] and ~.C[1..4], where 
z.C[i] maintains a count of the number of components F.X[j] that may change until z.X[i] must 
change; and the array of worklists M[1..4], where M[i] holds the states the changes to whose i th 
bit-vector components have yet to be propagated. The states also contain fields recording whether 
they satisfy the atomic formula A; so s.A : i f ,  while t .A = u.A = v.A = tt. Note that Xl  is a 
maz variable initialized with true for all states and Xs, X3 and X4 are rain variables accordingly 
initialized with false. In what follows w~ highlight the changes made to the data structure step by 
step. Note in particular the change of intermediate results in El because of changing a~sumptions 
in Es. 

�9 Computing a fixpoint over the lowest level E1 (containing X2 to X4) starts with the following 
initialization of the bit vectors, counters and worklists. 

] l "  t I, , [ ] ,  t I , ,  

xs f f  f f  1t g cs I I I / 
X4 f f  t t  tt U (24 1 0 0 0 
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The imquence of the states in the worklist is determined. First, t, u, v are successively deleted 
from M[4] and X4 v X3 is processed. Second, t, u, ~ are successively deleted from M[3] and 

X3 ~ X2 is processed. This provides the following intermediate results: 

I 1 '  t . " _ I1" t .  , I I "  t . ,  I 1 '  z . �9 

xs t ~ii~ ~ ]  ~]i] ca I I I I Xs I u u u os I I I I 
X4 f f  tl it It O, 1 0 0 0 X, ff U tI It 04 1 0 0 0 

M[e, e, O, ","}, g] U[g, O, "}, g, e] 

Now t and v are successively deleted from M[2] and X2 v Xa is processed. As t.X[3] and 
v.X[3] are already true the bit-vectors remain unchanged and the worklbts for El  are empty. 

�9 On the next nesting level E2 the fixpoint computation detects an inconsistency for n and an 
inconsistency for u as s.X[l] -- u.X[1] = t4 but 8.X[2] -- u.X[2] -- f f  and X2 ~ Xl.  Thus 
s.X[1] and u.X[2] are set to false and E I has to be reset and recomputed accordingly. 

�9 The recomputation of El taking the new assumptions into account starts with the initialization 
shown on the left and computes the fixpoint shown on the right. 

x ,  g ~ f ~ c ,  2 I 2 1 and x ,  # f ~[] c ,  { [ ]  
xs ~ ~ # ~ cs / / / / Xs ~ [~] ~ [~] Cs / / / / 
X4 .ff U ~-] l~ C4 ~-] 0 ['~ 0 X,l ~ t t f f  U C4 2 0 1 0 

M [ 0 , ~ , 0 , { t , , } ]  M [ 0 , U , 0 ]  

�9 Again computing the f ixpoint over B2 an inconsistency is detected as t .X [1 ]  = tt but  t .X [2 ]  = 
ff and Xz ~ XI. Thus t.X[1] is set to fa/se and El is reset and recomputed, providing the 
following results for initialization (left) and fixpoint computation (right): 

�9 ~ * "  II �9 t . =  I[ �9 t .  �9 I I ' t  ~ �9 

X3 ff ff ff ff (73 2 1 2 1 and Xa ~ ~ ~ ~ ]  Oz 2 1 I Xs ~' M ~'~'  Cs / / / /  Xs ~ ' ~ [ ~ ]  C, / /  
x ,  ~ [ ~ u  c .  2 ~ o  x ,  g ~ M  u c ,  2 t  i o 

u[o, o, o, {.,,}] MIO, ~, O, g] 

Finally, E2 is shown to be consistent, the algorithm terminates, and we obtain [~]  = {e}, as 
v.X[1] = tt and the first blt-vector component of all other states is ~fabe. This reflects one's 
intuition about the formula, because ~ is the only state for which A is infmitely often satisfied along 
all a-paths. 

7 Conclusions and Fu tu re  Work 

In this paper, we have presented an algorithm for model checking that  handles the full modal mu- 
calculus including alternating fixed points. The algorithm extends the one given in [CS2] for an 
alternation-free logic. Central is the new complexity result: 

o (17"1 * IEi * (ISl * IEI 
\ 
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which improves even on our conjecture ([CS2]): 

* Instead of being exponential in the full size of the transition system it is only exponential in 
the number of its states. This saves a quadratic blow-up in the worst case. 

�9 Instead of being exponential in the full size of the formula, it is only exponential in ~ ,  
which is important for formulas with high alternation depth. 

In [A] Andersen sketches an O(]S] * [TIed{#) -z * [~l =a(#)) algorithm for the full mu-calculns, which 
improves on Emerson and Lei's result, O(([T] * [E[)ea(B)+I). Andersen's algorithm differs fxom ours 
in that it is tailored to the mu-calcnins structure rather than systems of equations, where properties 
can be expressed much more concisely. In the worst case, his formalizations are exponentially larger 
than ours, because equational systems allow to compactly represent common subexpressinns. This 
generality, however, requires a much more involved algorithm. Nevertheless, we were able to prove a 
stronger complexity result, even with respect to the more compact representations. Our algorithm 
will be implemented as an extension of the Concurrency Workbench [CPS1, CPS2]. 
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