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Abstract

In this papet, we develop an algorithm for medel checking that handles the full modal mu-
calculus including aliernating fixpoints. Our algorithm has a better worst-case complexity than
the best known algorithm for this logic while performing just as well on certain sublogics as other
specialised algorithms. Important for the efficiency is an alternative characterisation of formulas
in terms of equational systems, which enables the sharing and reuse of intermediate results.

1 Introduction

Much work in the field of automated verification has focused on finite-state transition systems (or
automata) as models for system behavior [CES, CPS1, CPS2, Fe, MSGS, RRSV, RdS]. The modal
mu-calculus [Ko] is a particularly useful logic for reasoning about such models; not only may a
number of temporal logics for expressing system properties be translated into it [EL], but it may
also be used to encode various behavioral equivalences and preorders [Ste, SI|. Thus, this logic
supports algebraic as well as logic-based approaches to verification.

In this paper, we present an algorithm for determining when states in a finite-state transition
system possess properties expressed in the modal mu-calculus. Qur model-checking algorithm im-
proves on the best existing methods for model checking in this logic [A, EL] while performing just
as well on certain sublogics as specialized algorithms (cf. {CS1, CS2]). Important for the efficiency
is an alternative characterization of formulas in terms of equational systems, which enables the
sharing and reuse of intermediate results.

The remainder of the paper is organized as follows. In the next section we present the syntax
and semantics of the mu-calculus, and in the section following we give an alternative, equation-based
presentation of this logic. Section 4 presents our model-checking algorithm, while the subsequent
section establishes its correctness and complexity. The paper closes with a detailed discussion of an
example in Section 6 and some conclusions and directions for future work in Section 7.

2 Syntax and Semantics of the Mu-Calculus

This section first provides a brief overview of labeled transition systems, which are used as models
for the mu-calculus, Then the syntax and semantics of the logic are developed.

2.1 'Transition Systems

Definition 2.1 A labeled transition system T is a triple (S, Act, ), where S is a sel of states,
Act is a set of actions, and - C § X Act X S is the transition relation.

Intuitively, a labeled transition system encodes the operational behavior of a system. The set S
represents the set of states the system may enter, and Act contains the set of actions the system
may perform. The relation — describes the actions available to states and the state transitions that
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Formulas are interpreted with respect to a fixed labeled transition system (S, Act, =), a valuation
V: A — 25, and an environment ¢ : Var — 25, '

[Ale = V(4)
[Xle = «(X)
[-3le = S\[&]e

[#1A#2]e = [®i]en[2a]e
fla)e¢le = {s|Vs. 85 s =>4 c[B]e}
vX.3le = J(5'CS|5 C[3)e[Xx— 5}

Figure 1: The Semantics of Formulas.

may result upon execution of the actions. In the remainder of the paper we use s % s’ in lieu of
{(s,2,3') €=, and if s 5 ' then we say that &' is an a-derivative of s. Finally, we refer to a labeled
transition system as finite-stale when S and Acl are finite.

2.2 Syntax and Semantics of Formulas

The syntax of the modal mu-calculus is parameterized with respect to a (countable) set Var of
variables, a set A of atomic propositions, and a set Act of actions. For technical reasons we assume
that A is closed with respect to negation: for every A € A there is a B € A that is semantically
equivalent to the negation of A. In what follows, X will range over Var, A over A, and a over Aet.
The syntax of formulas may be given by the following grammar.

du=A | X |{-%| &A% | [a]d ]| vX®

The maximum fixpoint operator v binds free occurrences of X in & in the usual sense. We impose an
additional syntactic restriction on formulas of the form v X.#®: each free occurrence of X in & must
be within the scope of an even number of negations. This requirement ensures the well-definedness
of the semantics of the logic.

Let X := I'| represent the formula obtained by simultaneously substituting the formula T for
the free occurrences of the variable X in €. Then we may also define the usual dual operators to
the ones we have presented.

® V&3 = (-8, A $;) (a)® = ~[a](~%) #X.¢ = vX.~(2[X := -X])

In what follows we say that ¢’ is a proper subformula of & if it is a subformula of & that is not
¢ itself. Given a formula, its {op-level subformulas with a certain property are defined to be those
maximal proper subformulas having the property. A formula is said to be a v-formula (p-formala)
if it has the form vX.® (uX.#) for some X and &. We refer to a formula as closed if it contains no
free variables and simple if it is fixpoint-free and contains only variables and atomic propositions as
proper subformulas. For example, X; A 4; is simple, while (a}{Xa V X4) is not.

The formal semaatics of formulas appears in Figure 1. It is given with respect to a finite-state
labeled trausition system (S, Act, ~), a valuation V mapping atomic propositions to subsets of S ,
and an environment e mapping variables to subsets of 5. Note that e[X — 5] is the environment
that results by updating the binding of X to S in e.

Intuitively, the semantic function maps a formula to the set of states for which the formula is
“true”. Accordingly, a state s satisfies A € A if s is in the valuation of A, while s satisfies X if »
is an element of the set bound to X in e. The propositional constructs are interpreted in the usual
fashion: s satisfies ~& if it does not satisfy # and s satisfies &, A, if it satisfies $; as well as $3.
The construct [a] is a modal operator; s satisfies [a]® if each a-derivative of s satisfies &.
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The syntactic restriction on the bodies of y-formulas and the semantics of the other logical
connectives ensures that semantically, the bodies give rise to monotonic functions (on the lattice
sets of states) [C]. Accordingly, on the basis of the Knaster-Tarski Fixpoint Theorem [T] the
semantics of ¥.X.$ is given as the greatest fixpoint of the monotonic function corresponding to @.
In addition, for finite-state labeled transition systems the bodies of »-formulas are continuous, and
Kleene’s Fixpoint Theorem then provides the following iterative characterization of the semantics.
Define ¢; by ¢o = S and ;41 = [&]e[X > ¢;] for i > 1. Then [¥X.8]e = =y ¢. Formula pX.&
can be characterized dually as {22, ¢;, where do = § and ¢;4; = [#]e[X — ¢;]. The next lemma
establishes that the meaning of a closed formula does not depend on its environment.

Lemma 2.2 Fiz a finite-stale transition system and valuation, and let & be a closed formula, Then
for any environments ¢ and &' we have: [$]e = [2]¢'.

The lemma holds because all variables in closed formulas are bound by a fixpeint operator, and this
excludes any influence of the initial environment on the semantics of the formula. We therefore omit
reference to an environment for closed formulas and write [$]. Finally, it is also possible to translate
formulas into positive normal form (PNF), i.e. into a negation-free formula in which no variable
is bound more than once. This is a consequence of the following lemma, where |$| represents the
number of occurrences of operators and atomic formulas in &.

Lemma 2.3 Let ® be a closed formula in the modal y-calculus. Then & can be translated into a
closed formula & in the logic eztended with V, (a) and p in O(|8]) time such that

1) #' is negation-free, 2) [#]=[%] and 3) |¥|<|B}.
The translation is done by “driving” negations inside the subformulas in the standard way following
DeMorgans Laws etc, and renaming variables as appropriate. The resulting formula $’ is not larger
than € because of our assumptions that all free occurrences of variables in fixpoint formulas must

be inside the range of an even number of negations and that the atomic propositions are closed

under negation.

For notational simplicity, in what follows we only consider formulas whose top-level operator
is a fixpoint operator. This is not a serious restriction, as the semantics of other formulas can be
trivially determined in linear time once the semantics of the top-level fixpoint formulas have been

. computed.

2.3 Alternation Depth of Formulas

The complexity of the algorithm that we present in the following sections will depend on a measure
on formulas called alternation depth. Intuitively, the alternation depth of a formula is the length of
a maximal “chain” of mutually recursive greatest and least fixpoint subformulas (cf. [EL)).

Definition 2.4 (Alternation Depth of Formulas) Let ® be in PNF. Then the alternation depth,
ad(®), of ® is defined inductively as follows.

o If @ contains closed top-level fizpoint-subformulas I'y,...,I'y then
ad(®) = maz(ad(%'),ad(Iy),...,ad(I's))
where &' is oblained from & by substituting new atomic propositions 4,,..., A, forTy,...,Tn.
o If & conlains no closed top-level fizpoint-subformulas then ad(®) is defined as follows.

— ad(A) = ad(X) = 0, for any atomic proposition A and variable X .
- ad('I'l A i:) = Gd(Ql v §z) == maz(ad(@l),ad(‘!g)).
— ad([a]®) = ad((a)®) = ad(®), for any action a.
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— Leto € {p,v}, and let G be the dual of o. Then
ad(0 X.#) = maz(1,ad(®),1+ ad(7X1.%1),...,1 + ad(TXn.8,))

where #X1.84,...,0Xn. B are the lop-level G-subformulas of &.
Example 2.5 For & = vX;.uX3.(X1 V X3 V 0Y,.4Y;3.4Y3.(Y] A Y3 A Y3)) we obtain ad(§) = 3.

3 Equational Systems

In order to facilitate the saving and reuse of intermediate results, our model-checking algorithm
works on equational representations of mu-calculus formulas. This section presents the syntax and
semantics of the equational systems and introduces the notions of closed subsystems and alternation
depth.

3.1 Syntax of Equational Systems

The systems of mutually recursive equations that we use to represent formulas are lists of the
following form!: (X; @, ¥, ... ,Xp ©n ®n) where o; € {—, —}. The X;’s are distinct variables,
and the equation X; — &; represents a grealest fizpoint, while X; — &; represents a least fizpoint.
Following [AC, CS1] we restrict our attention to mu-calculus formulas #; that are negation-free and
simple, which guarantees that every non-alomic right-hand-side formula has a left-hand-side variable
associated with it. This facilitates the saving and reuse of intermediate results. Any equation set £
may be transformed in linear time into a simple equational system E’ with at most linear blow-up
in size. Therefore, the model-checking algorithm presented in this paper has the same complexity
for the full logic as for the simple sublogic. In what follows we refer to X; — &; as a maz egualion
with maz variable X; and to X; « ®; as a min equation with min variable X;, and we associate
with each left-hand-side variable a parity that is either maz or min depending on the form of the
equation. An equational system £ is closed if all variables in a right-hand side of some equation also
appear as left-hand sides in E. It should be pointed out that the order of equations is important
in an equational system, owing to the presence of mutually recursive greatest and least fixpoint
formulas.

Example 3.1 The following equational system E represents the formula given in Example 2.5. It
can be obtained by means of the translation that will be given in Section 3.2.

(X] =X, Xo - X1VX;3 , X3« XavX, , X4 — X5 s X5 X ,Xe — XA X, N Xy X;/\Xg)

3.2 Semantics of Equational Systems

The semantics for equational systems uses a translation from systems of equations to tuples of closed
mu-calculus formulas, one for each equation. An equational system may then be interpreted as a
tuple of subsets of states which arises by pointwise application of the semantic function for formulas
to the component formulas.

This translation consists of the composition of two functions, B and F (for “backwards” and “for-
wards”), which repeatedly eliminate occurrences of free variables. Let E = (X, o#,.. o Xno®,)
be a closed, simple equational system, and let = {#,,...,#,,) consist of the right-hand sides of
E. Also let 7y,...,x, be the obvious projection functions. Given ¥, B produces a new tuple T of
formulas by setting I' to & and processing each component in T as follows, beginning with x,(T)
and working backwards.

o Replace x;(T) by pX;.x;(T) (if X; is a min-variable) or »X;.x;(T) (if X; is a max-variable).
!This form is similar to the one used by Larsen in [La].
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Figure 2: The Dependency Graph for Equational System E in Example 3.1.

o Substitute x;(T) for each free occurrence of X; in 7 (T),...,%i_1(T).

Note that only Xj,..., X, can appear free in x;( B(%)); in particular, x;(B(2)) is closed. Now F
eliminates all remaining free variables: Given a tuple T of formulas, F produces a new tuple A by
processing each formula in T in the order of the indices as follows: substitute x;(4&) for cach free
occurrence of X; in 7341 (A),...,%,(A). The semantics of £ can now be given as follows.

Definition 3.2 (Semantics of Equational Systems) Let E be a closed, simple system of n
equations, and let & be the tuple of righi-hand sides of E. Also let (A,...,A,) = F o B(3).
Then {E}= ([A4},...,[An]).

The connection between equational systems and the mu-calculus can be made explicit by provid-
ing translations back and forth. trans®, translating equational systems into formulas, is straight-
forward in terms of F and B: trans®(E) = #;(F o B(¥)), where & consists of the right-hand sides
of E. Given a mu-calculus formula & in PNF, the function trans builds an equational system by
recursing through ¢, adding a new equation at the end of the last of the already generated equa-
tions for each subformula of . The parity of a new added left-hand-side variable is determined
by the most recently encountered fixpoint operator. As an example, consider the formula and the
equational system given in Example 2.5 and 3.1, respectively. Here, the application of trans to %
yields E.

QObviously, trans works in linear time as every subformula of @ is investigated exactly once.
Moreover, the number of equations in the resulting simple equational system Ej is less than or
equal to the size of the formula $, because every subformula of € is transformed into at most one
equation. A detailed account of these translations can be found in {CDS].

Instead of solving the model-checking problem directly for a given formula ¢ we solve it on
the equational system Ep that is gained by the translation given above. The following theorem
establishes the correctness of this approach.

Theorem 3.3 Let & be a closed PNF formula and Eg = trans(®). Then, [2] = x(([Es]).

3.3 Graph Representation of Equational Systems

In this section we introduce a graph representation of equational systems that will be used to
determine the closed subsystems of equational systems and to define the notion of alternation depth.
Let E be an equational system. Then its dependency graph Gg is an edge-labeled graph with one
node for each left-hand-side variable in E and edges defined as follows, where i # j.

* X; 4 X; if for some & either X; © X;1® or X; < #1X; is an equation in F for le {V,A}.
» X; 5 X;if X; 1X; is in E for I € {{a), [a]}.
. X,--f»infondeinE.

Intuitively, there is an edge from X; to X; if the meaning of X; directly infl the meaning of
X;. In what follows, we write X; <» X if there is an edge in Gg from X; to X; and X; 5* X;
if there is a path from X; to X; in Gg. As an example, the graph for the equational system in
Example 3.1 appears in Figure 2.
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Figure 3: The Dependencies between and within the Closed Subsystems.

Theorem 3.4 Let E = {X; o &;,...,X, o $,) be an equational system. Iis dependency graph
GE can be constructed in O(|E|) time, and it conlains n verlices and no more than 2n edges.

Let C be a sublist of E. Then we refer to the subgraph of Gg induced by C as G¢. Also, we write
X; 2ron X; if X; > Xj is an edge in G¢ with i > k and j > k. These notions are used in Section
3.5.

3.4 Closed Subsystems of Equational Systems

In analogy with the notion of closed subformulas, we develop the notion of closed subsystems of
equational systems; these turn out to be essential in order for us to achieve the desired complexity
for our model-checking algorithm.

From the definition of the dependency graph Gg, if two variables X; and X; are such that
X: ' X; and X; 5* X, it follows that the semantics of X; affects that of X;, and vice versa.
When this is the case we say that X; and X; are mutually dependent, since any change to the
semantics of one may induce a change in the other. On the other hand, if X; -»* X; but X; #* X,
then changes to X; affect X;, but not vice versa. In this case we say that there is a hierarchical
dependency from X to Xj, since once the semantics of X; is computed future changes to X; cannot
affect it.

In graph-theoretic terms, when X; -* X; and X; 5* X;, then X; and X; belong to the
same sirongly connecled component of Gg.? Within a strongly connected component each pair of
variables is mutually dependent, while there can exist at most a hierarchical dependence between
two variables in distinct strongly connected components. This suggests the following strategy for
computing [E]:

1. Build the condensation graph, G¢, of Gg. (Recall that the condensation graph of G is a graph
having the strongly connected components G; of G as its vertices, with an edge G; — G
defined if G; and G; are distinct and there are nodes V; € G, V; € G;, such that V; — V; is
an edge in G.) Note that G¢ is acyclic.

2. Topologically sort G¢ into Gp,...,Gy. (Here G, is a “source” node in G¢; we have elected
to number it m so that, in general, higher-numbered variables belong to higher-numbered
components.) Notice that if there is an edge from G to G then i > j.

3. For each G, generate a closed subsystem C; containing the equations from E whose left-hand
sides are in G;. These equations are modified by replacing each occurrence of X ; that is not
a left-hand side in G; by a new atomic proposition 4;; this ensures that C; is closed. Note
that if X; is in component G, then k < i.

?Recall that a strongly connected component of a graph is a maximal subsct V of vertices having the property that
Vi oV and V; —»* V; for any V,V; € V.
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4. Beginning with Cy,, process each C; in turn.

As an example, consider E in Example 3.1 with its dependency graph Gg shown in Figure 2.
As there are two strongly connected components of G we get two closed subsystems:

Ci = <X1i0X;, Xpo=XivXa, Xz XaVA >

C: = < X4= X, Xs—Xg, Xe - XyAX7, X509 XsAXg >

Note that each C) is closed and that each left-hand-side variable X; of E appears as a left-
hand side in exactly one of the Cj. Also notice that the construction ensures that if a new atomic
proposition A; appears in a right-hand side in Cj, then X; must appear as a left-hand side in
some C; with I > j. Consequently, we may define the semantics of A; as follows. Let C; be the
closed subsystem containing X; as a left-hand side, and let k be the index of X; in C;. Then
{A:} = = ([Ci]). The following theorem shows that this transformation of E into C;...Cp, is, in a
certain sense, semantics-preserving.

Theorem 3.5 The closed subsystems C,,...,C,, of an equalional system E can be delermined in
O(|E|) time. Furthermore, if X; is the k** lefi-hand side in Cy, then xi([E]) = mu([Ci]).

In our example we have [E] = {x1[C1}, x2[C:], x3[C1], 71 Ca}, %2[Ca), x3[Ca], x4iCa]).

3.5 Alternation Depth of Equational Systems

We close this section by defining the notion of alternation depth of an equational system. It will turn
out that this notion is consistent with the one given for formulas (cf. Theorem 3.8), and therefore
we may use the same notation.

To define the alternation depth we first introduce the notion of nesting depth of equations that
reflects the length of the chain of mutually depending min and maz equations within a closed
subsystem.

Definition 3.6 (Nesting Depth of Equations)

Let E = {X; o ®;,...,Xn©2,) be an equational syslem with its closed subsystems C,,...,Cpn.
Furthermore, assume ¢ € {maz,min} and @ o be the dual parity. Then the nesting depth of the
equation with lefi-hand side X; having parity o and belonging lo C; is given by:

nd(X;,C1) = maz(l, mez{nd(X;,Ci)|X;>c,:*X: and X; has parity o },
maz{1+ nd(X;,C) | X,--'»c,,,-‘x,- and X; has parily 7})

The nesting depth of the closed subsystem C) is defined as nd(C}) = maz{nd(X;, C\)|X; v &; € Ci}.

The alternation depth of an equational system is now defined as the maximal nesting depth of
its closed subsystems.

Definition 3.7 (Alternation Depth of Equational Systems)
Let E= (X, o #1,...,Xn o &#,) be an equational system with closed subsystems Cy,...,Cm. Then
the alternation depth of E is given by  ad(E) = maz{nd(Ci)|1 <1< m}.

Example: As shown already, the equational system E presented in Example 3.1 has two closed
subsystems, and we have: nd(X3,C1) = nd(Xz,C1) = 1 and nd(X,,C) = 2, thus nd(C;) = 2 and
nd(X-,, C:) = ﬂd(Xg, Cz) =1, M(X;,Cz) = 2 and M(X‘,Cz) = 3, thus nd(C,) = 3. Therefore
ad(E) = 3.

We say that an equational system E is alternation-free if ad( E) = 1. The consistency of the notions
of alternation depth for formulas and equational systems is a consequence of the following theorem.
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Theorem 3.8 Let & be a closed PNF formula with ad($) > 1 and Eg =trans{®) be the corre-
sponding equational system. Then ad(%) = ad(Es).

The left-hand-side variables of a closed subsystem of an equational system can be partitioned into
nesting levels, which are used to guide the fixpoint computation.

Definition 3.9 (Nesting Levels) Let E = (X} ©&;,...,X, o $,) be an equational system with
closed subsystems Ci,...,Cin. Then the sel of variables belonging to a closed subsystem C; is
partitioned inlo nesting levels by Ey; = { X; | nd(X;,Ci) = i} for 1 < i < nd(C)).

Given a nesting level E;; we call the nesting level B ; lower if j < i and higher if j > i. Each
nesting level comsists of at most two blocks of equations, where a block consists entirely of min or
of max equations.

Theorem 3.10 Given an equalional system E:
1. Alternation-freedom can be established in O(|E|) time.

2. The nesting levels can be determined in O(|E|*) time.

4 The Model-Checking Algorithm

In this section we present a model-checking algorithm that, given an equational system E and a
transition system T = (S, Act, —), computes [E]. Due to space limitations, we only sketch an
outline of the algorithm; the interested reader is referred to [CDS] for a fuller discussion of the
details.

As with the algorithms in [AC, CS1, C52], our algorithm is bit-vector-based. Each state in &
has a bit vector whose it% entry indicates whether or not the state belongs to the set associated
with X; in the current stage of the analysis. These bit-vectors represent the current approximation
{815+, 5n) €(25)" to [E] during model checking as follows: s€ S; if and only if s.X[t] is true, for
1<i<n '

Given E, the algorithm works by first determining the closed subsystems C...Cy, of E. It then
processes each Cj in turn, beginning with C,, and ending with C;; [Ci] is computed and stored in
the relevant bit-vector components, and then the atomic predicates whose semantics depend on left-
hand sides in C; have their semantics initialized. The algorithm terminates after C, is completed.
Given that each [Ci] is computed properly, correctness follows from Theorem 3.5.

At the heart of the algorithm is the computation of [Ci] for a closed subsystem C;. This
processing proceeds in two phases. During the first phase, bit-vectors are initialized such that
components corresponding to maz variables are set to true and components corresponding to min
variables are set to false. In the second phase, the nesting levels of C; are repeatedly analyzed,
beginning with the lowest level, Ey;, and proceeding up to Eyni(c;)- To process a nesting level,
the algorithm essentially invokes a variant of the alternation-free model-checking algorithm given in
[C82]. Bit-vector annotations are changed until appropriate fixed points are reached; in addition, if
changing a bit-vector component in one variable also causes a change in the semantics of a variable
in a lower nesting level, then the Jower nesting levels that are affected must be re-initialized and
recomputed. The processing of a nesting level is finished when consistency is reached with all lower
levels. Then, the next higher level is begun.

In this computation of [C;], one may identify two flows of information.

e The flow of assumptions: Our algorithm may be seen as “assumption based”: during the
computation of a fixpoint for equations in a nesting level, the variables in higher nesting levels
are treated essentially as propositional constants in that their meaning is fixed. Thus, the
assumption flow proceeds from End(c;) down to Ey;.
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Figure 4: The Flows of Information in a Closed Subsystem Cj.

¢ The propagation of intermediate results: Fixpoints are computed from lower to higher
nesting levels. Therefore, the computation flow proceeds in the direction opposite to that of
the flow of assumptions, as intermediate results computed in one level may affect the results
for higher levels.

In this view, the need for recomputing values in lower nesting levels when a higher nesting level
changes becomes apparent: the computation of the lower level was based on a wrong assumption.
The two flows of information are illustrated in Figure 4, where the box represents the current
approximation of the semantics of C; with the bit-vectors corresponding to columns through the
levels.
Three observations are exploited in order to achieve the complexity stated in the next section.

1. The partitioning of the equational system E into closed subsystems Cj,...,Cnm ensures that
once [C;] is computed, it cannot be affected by the analysis of subsequent closed subsystems.

2. Within a given closed subsystem C the nesting levels are treated exactly as in the (linear-time
[CS2]) alternation-free case each time their fixpoint is computed.

3. Computing consistency of the lowest, and most often recomputed, nesting level Ey; is less
expensive than for the higher levels as Ej; does not give rise to resetting and recomputation
of lower levels and also need not account for the new values that resetting and recomputing
lower levels can give rise to.

The full structure of the model-checking algorithm is given in {CDS}; Section 6 contains an example
illustrating our technique.

5 Correctness and Complexity

The correctness of the algorithm rests on the observation that our algorithm computes [Ci} com-
ponent-wise according to the semantic definition of formulas by representing the environment in the
bit vectors. Together with Theorem 3.5 this enables us to prove the following theorem (cf. [CDS]).
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Figure 5: The Dependency Graph.

Theorem 6.1 (Correctness) Let T = (S, Act, —) be a labeled finile-siate transition sysiem and
E=(Xo%,....,Xno&,) be a closed, simple equational system. Then the model-checking algo-
rithm lerminates with a bil-veclor annotation that represents [E].

The following theorem states our complexity result, where |T| = |S] + | — | and |E} is the
number of equations in E. A complete proof is given in [CDS].

Theorem 5.2 (Complexity) Let E = (X;o®;,...,X,o®,) be a simple, closed equational
system with ad(E) > 1, and T = (S, Act, —) be a finite-slate iransition sysiem. Then the worst-
case time complezily of the model-checking algorithm is

IEI )ad(E)—l
ad(E)

0 (I71+1E|+ (j51+

6 An Example

In this section we illustrate our algorithm with an example taken from [SW]. Consider the formula
¢ = vZ.pY.[a)((A A Z) V Y) having alternation depth 2. The semantics of & with respect to
a transition system 7 is the set of states for which 4 holds infinitely often on all a-paths. Its
corresponding equational system

E = <X -X,, Xg!—[a]X;;, Xg—XaVXy, Xy = ANX, >

only has the trivial closed subsystem consisting of two nesting levels: E; holding the last three
equations, and E; holding the first equation. The dependency graph is shown in Figure 5.

The transition system T we want to investigate is the triple (S, Act, ), where § = {s,¢,u,v},

Act = {a} and the transition relation has six elements: s 5 3,8 3 1, S u, u 5 5, u 5 v and
a
v,

The valuation is given by V(A4) = {t, u, v}; so states t, u and v satisfy 4, but s does not. Besides
the bit-vectors s.X{1..4], £.X[1..4], u.X[1..4] and v.X[1..4] we need some auxiliary data structures
for investigating the levels (cf. [C52]): the counters 5.C[1..4], £.C[1..4], .C[1..4] and v.C][1..4), where
z.C[i] maintains a count of the number of components y.X[j] that may change until z.X [#] must
change; and the array of worklists M{1..4), where M[i] holds the states the changes to whose ith
bit-vector components have yet to be propagated. The states also contain fields recording whether
they satisfy the atomic formula 4; so 5.4 = ff, while t.4 = u.A = v.4 = 1. Note that X; is a
maz variable initialized with true for all states and X3, X3 and X, are min variables accordingly
initialized with false. In what follows we highlight the changes made to the data structure step by
step. Note in particular the change of intermediate results in E; because of changing assumptions
in Ez.

¢ Computing a fixpoint over the lowest level E; (containing X; to X.) starts with the following

initialization of the bit vectors, counters and worklists.

s t = v et w o
xila uwuwa ol )
X: F F FF C: 21 2 1 M[0,8,0, {1, v, v}}
XL\F 0 08 8 G/ /] )
XN |F ©#w w u c 100 0



The influence of the states in the worklist is determined. First, ¢, u,v are successively deleted
from M[4] and X, % X; is processed. Second, ¢, u, v are successively deleted from M| [3] and

X3 C} X is processed. This provides the following intermediate results:
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Now ¢ and v are successively deleted from M[2] and X; 5 Xj is processed

¢ On the next nesting level E; the fixpoint computation detects an inconsistency for s and an
inconsistency for u as 8.X[1] = u.X[1] = # but .X[2] = w.X[2] = ff and X; 5 X,. Thus
3.X[1] and u.X[2] are set to false and E, has to be reset and recomputed accordingly.

o The recomputation of E,; taking the new

ptions into

shown on the left and computes the fixpoint shown on the right.

unt starts with the initialization

| « ¢t = u s t » v
x |Flulple o /! X ifF ufgou c
X:’ﬂ‘lfﬂ‘ G ”;mdxztrrff@ P
X\ F FFF Cs Xl fF i Cs
X |5 ulg]jue C o[to X jf@ﬂ@ Cy
M[O, 0,0, {t,‘"}] M[O, 9,8, 0]

o Again computing the fixpoint over E; an inconsistency is detected as £.X{1] = & but t.X[2] =
ff and X; 5 X;. Thus t.X[1] is set to false and E is reset and recomputed, providing the
following results for initialization (left) and fixpoint computation (right):

s t v [st w v
x| FlFlFu a X |gFE @ a
X ﬂ"ﬁ‘ﬂ' G sid X, 1 FFH[M] o
X ﬂ ﬂ ﬁ f Cs X, f ﬂ' .ﬂ Cs
x|plgse o A VA 5 A
M(9,9,9, {v}] M[9,8,0,0]

Finally, E; is shown to be consistent, the algorithmn terminates, and we obtain [2] = {v}, as
v.X[1] = # and the first bit-vector component of all other states is false. This reflects one’s
intuition about the formula, because v is the only state for which 4 is infinitely often satisfied along

all a-paths.

7 Conclusions and Future Work

In this paper, we have presented an algorithm for model checking that handles the full modal mu-
calculus including alternating fixed points. The algorithm extends the one given in [CS2] for an
alternation-free logic. Central is the new complexity result:

IB| )..a(s)_x

0 (|71 |E| * (|5|*

ad(E)

. As £.X[3] and
v.X[3] are already true the bit-vectors remain unchanged and the worklists for E; are empty.
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which improves even on our conjecture ([C52]):

o Instead of being exponential in the full size of the transition system it is only exponential in
the number of its states. This saves a quadratic blow-up in the worst case.

¢ Instead of being exponential in the full size of the formula, it is only exponential in ﬁﬂ,,
which is important for formulas with high alternation depth.

In [A] Andersen sketches an O(|S| * [T]*4(#)-1 « |3|od(#)) algorithm for the full mu-calculus, which
improves on Emerson and Lei's result, O((|7] | E|)*®E)*+1), Andersen’s algorithm differs from ours
in that it is tailored to the mu-calculus structure rather than systems of equations, where properties
can be expressed much more concisely. In the worst case, his formalizations are exponentially larger
than ours, because equational systems allow to compactly represent common subexpressions. This
generality, however, requires a much more involved algorithm. Nevertheless, we were able to provea
stronger complexity result, even with respect to the more compact representations. Our algorithm
will be implemented as an extension of the Concurrency Workbench {CPS1, CPS2).
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