
Compositional Model Checkin.g for Linear-Time
Temporal Logxc

Roope Kaivola
University of Helsinki, Department of Computer Science

Teollisuuskatu 23, SF-00510 Helsinki, Finland
tel. +358-0-708 4163, fax. +358-0-708 4441

email rkaivolaGcc.helsinki.fi

Abs t r a c t . Temporal logic model checking is a useful method for verifying
properties o/finite.state concurrent systems. However, due to the state ex.
piosion problem modular methods are essential in making the verification task
manageable. One such method is to verify that certain properties ~i are true
of the submodules Mi of the system in all environments, and that the required
property ~ is a logical implication of these. This paper presents an algorithm
deciding whether a nexttime.less linear temporal logic formula ~ is true of a
distributed variable module M in all environments. There are two versions
of the algorithm: one allowing no fairness requirements and one for strongly
fair concurrency. Both versions run in time O(IMI" 2':'14'1). In addition to
presenting the algorithms it is shown that given some reasonable assumptions
the method is complete in the sense that all formulas ~ true of MI II Ms can
be verified by it.

1 Introduction
One of the most important approaches to practical verification of propositional tem-
poral logic properties of finite-state programs is automated model-checking: the ex-
ecution of a program is modelled by a finite graph which can be directly interpreted
as a temporal logic model, and a model-checking algorithm for the appropriate tem-
poral logic can be run on the model. For many propositional temporal logics the
model checking algorithms are of relatively low time-complexity, e.g. linear in size of
the model and singly exponential ill the size of the formula for the standard linear
temporal logic [LP85].

However, despite the low time-complexity of model checking, the size of the
execution graph is still often a prohibitive factor. An essential reason for this state-
explosion problem is the modelling of concurrency by arbitrary interleavings of the
atomic actions of the concurrent processes. In the general case the size of the com-
plete model is exponential in the number of concurrent processes.

One way to avoid this problem is verifying the system directly on the basis of the
individual processes without constructing a global execution graph. Here we follow
the approach advocated by [MP91]. In this method a system M consists of several
concurrent modules M1 [J...Jl i , , . Verifying that r is true of M is done by finding
lemmas ~bl r such that each r holds of Mi in every possible environment and
~bl A . . . A ~, ~ ~b is a theorem.

In this paper we describe an algorithm deciding whether a nexttime-less temporal
logic fornmla r is true of a module M in every possible environment. There are two
versions of the algorithm: the basic case in which the concurrency is modelled by

249

potentially unfair interleavings, and the enhanced case with fair concurrency. Both
versions run in a time O(]M I �9 2c'l*l). In other words, using this algorithm it costs no
more to decide whether ~i is true of Mi in all (fair) environments than it costs in the
standard linear temporal logic model Checking [LP85] to decide whether ~i is true
of Mi without ally environment. The method of communication between processes
is by distributed variables. These are shared variables with the restriction that only
the process owning a variable may change its value.

We do not discuss the issue of how the lemmas ~bi are to be found, and leave it to
the responsibility of the human verifier of a system. However, in Section 5 we prove
that given certain reasonable assumptions the lemmas always exist. This means that
the method is complete in the sense that every formula ~b true of M1 II M2 is, at least
in theory, verifiable by it.

The modularity issues discussed here have been addressed by several researchers.
[BKP84], [enu85] and [Bar86] describe compositional linear temporal logic semantics
for distributed-variable systems similar to ours. However, their point of interest lies
more in the axiomatic semantics and compositional proof rules than in presenting
an explicit algorithm for modular verification. A method for compositional model-
checking using MCTL, an extension of CTL allowing restricted linear temporal
logic formulas and fairness requirements as assumptions, is discussed in [Jos89]. A
modular model checking algorithm for a logic tailored for Petri-nets is presented in
[BEgl]. It is unclear whether either of these methods can be applied to the model
and the linear temporal logic used here. An approach to CTL* model checking in
which the environment of a module is modelled by an additional interface module
is presented in [CLM89]. This differs from our approach in the use of interface
processes and in the underlying communication method. The problem of modular
verification of communicating Moore-machines is addressed by [GL91]. However,
it does not seem possible to transfer their results directly into an asynchronous
distributed-variable model.

The paper proceeds as follows: we first recall some standard definitions and prop-
erties of nexttime-less linear temporal logic and present the concepts of a module and
parallel composition of modules. Then we define the core concept of a satisfiabiliiy
graph and show that in a sense it encodes all the necessary information about the
behaviour of a module in any environment. To illustrate the approach in practice,
a mutual exclusion protocol is verified as all example. In Section 5 the results are
extended to deal with fair concurrency.

2 Linear temporal logic
In this section we recall the definitions of standard nexttime-less linear temporal
logic.

Def in i t ion 2.1 Tile alphabet of proposilioual linear temporal logic LTL* consists of
the set AP of atomic propositions and of the symbols (,), '% V,U. The well-formed
formulas (wffs) of LTL I are as follows:

�9 if ~ E AP, then ~b is a wff,
�9 if ~1 and ~b2 are wits, then (-'~1), (~bl V ~b2) and (q$1U~2) are wits, and
�9 there are no other wffs.

We use the abbreviations T ----6' (P V (-,p)) for some fixed p E AP, (~1 A ~b2) -----d]
(-,((-,~) v (-,~2))), (~1 ~ ~2) --dS ((-'~1)V ~2), (r --dJ (TU~), (n~) --~f

250

('~(0(",~))) , (~lUwq~2) -----d/ ((~1Hr V (raq~l)), and the ordinary precedence rules
to reduce the number of parentheses. []

D e f i n i t i o n 2.2 A truth set v is a set of a tomic propositions, v C A P . A truth
set sequence o. is a finite or infinite sequence of truth sets, o. = (vl ,v2, . . .) . If o.
is a t ruth set sequence, o-n is the n:th element of o., o.(n) is the t ruth set sequence
obtained by leaving the first n elements out of o., and o.flA is the truth set sequence
(vl n A , v 2 n A ) . o

D e f i n i t i o n 2.3 A Kripke-modei K is an ordered 4-tuple K = (S, I , R, V), where S
is the set of states, I C S is the set of initial states, R C_ S x S is the transition
relation, and V : S ~ P (A P) is a valuation expressing the a tomic formulas true in
a state. (P (X) denotes the powerset of X.)

A path p in a Kripke-model K is a finite or infinite sequence p = (s l , s2 , . . .) such
tha t st E I , and each (si, si+l) ~ R. A path p is a fulipath iff either p is infinite or
there is no further state reachable fi'om the last s tate of p, i.e. if Sn is the last s ta te
of p then for all s, (s,~, s) r R. The t ruth set sequence corresponding to a fullpath
p = (sl , s2 , . . .) , denoted V(p), is (V(s l) , V(s2), . . .) . []

Next we augment Kripke-models with fairness constraints expressed in terms of
transition sets [LP85]. The notion of fairness used is the so-called strong fairness,
meaning that if an event is possible infinitely often it has to be realised infinitely
often, too.

D e f i n i t i o n 2.4 A fair Kripke-model K/ is an ordered 5-tuple I f / = (S, I , R, V, F) ,
where (S, I , R, V) is a Kripke-model and F is a finite set of fairness sets F =
{ f l fn} such tha t Uf, eF fi = R.

The paths and fullpaths of K! are those of the Kripke-model (S, I , R, V). A
fairness set fi E F is enabled in a state s E S iff there is an d such that (s, s t) E ft.
A fairness set fi is active in a transition (s, s ') iff (s, d) E f l . A fullpath p is fair iff
every fairness set fl that is enabled in infinitely many states o f p is active in infinitely
many transitions of p, too. El

D e f i n i t i o n 2.5 An LTL'-fornmla ~h is true in a truth set sequence o. = (vl, v2 , . . .)
i .e .o. ~ ~b, according to the following rules:

�9 If ~b E AP, then o. ~ ~b iff ~b E vl.
�9 o. ~ -~r iff ,tot o. ~ ~b.
�9 o ' ~ r 1 6 2 1 6 2
�9 o. ~ r162 iff] : 0 < i < Is'l, such that o. (0 ~ ~b2 and for all 0 < j < i,

o. (J) ~ r
If ~b is true in every truth set sequence or we say that ~b is a theorem and write ~ ~b.
An LTL'-forlnula fb is true in a (fair) Kripke-model K , denoted K ~ ~b, iff V(p) ~
for every (fair) fullpath p of K. rn

The operators have their conventional meanings. The reflexivity of H and the
lack of a next t ime-operator allow us to overlook truth sets in a truth set sequence if
they do not differ from their predecessor.

D e f i n i t i o n 2.6 Let o. = (vt, vg , . . .) be a truth set sequence. Tim reduced form ofo.,
denoted by red(o.) is constructed by removing from o. all vi such tha t vi = vi-1. If
A C A P and red(o.f'lA) = red(o.'nA) we say that o. and o. ~ are stuttering equivalent
modulo A and write o.,.~o. (rood A). []

251

P r o p o s i t i o n 2.7 Let A C A P and a, a ~ be truth set sequences such that a ~ , d
(rood A) and r a fommla containing only atomic propositions in A. Then a ~ ~b iff

P roof : Induction on the structure of ~b [LamB3]. []

C o r o l l a r y 2.8 Let A C_ AP and $ be a formula containing only atomic propositions
in A. Let K and K ~ be (fair) Kripke-models such that for every (fair) fullpath p in
K there is a (fair) fullpath p' in K ~ such that V(p)~V(p ~) (mod A) and vice versa
for all (fair) fullpaths p' in K I. Then K ~ $ iff K ' ~ ~b. []

3 M o d u l e s

In this section we give the formal definitions of modules and the parallel composition
operator. Each module M has a set of its own variables that cannot be modified by
the environment of M. Ill addition to its own variables a module may refer to a set
of externM variables and base decisions about its behaviour on their values. As in
IMP81] a module is modelled by a directed graph, the states of which correspond
to the execution states and the transitions to atomic actions. I/ere this model is
simplified by allowing only boolean variables, by labelling the states of the model
with the values of module's own variables, by dropping the assignment labels and by
allowing only transition conditions consisting of a single proposition or its negation.

Def in i t ion 3.1 Let A C_ AP. By -',A we denote the set {-,a] a E A}, and by L(A)
the set L(A) = A 0 -~A 0 {T}, where T is an element not in A or "-,A. If a E L(A)
and A' C_ A, we write A' ~ a iffeither a = T or a E A' or a = - ,d where a ' E A
and a ' ~ A I. n

Def in i t ion 3.2 A module M is an ordered 6-tuple (Ao, Ae, S, I, R, V), where
�9 AoC AP is the set of atomic propositions owned by module M,
�9 A~ C_ AP \ Ao is the set of external atomic propositions visible to M,
�9 S is the set of states,
�9 I C_ S is the set of initial states,
�9 V : S --+ P(Ao) is the truth valuation of module's own propositions, and
�9 R C_ S • L(Ae) x S is the set of transitions. Each transition is labelled by

a transition label which can be either trivially true T, an external atomic
!

proposition or a negation of such. If (st, 1, s~) E R, we write s l~s2 E R. n

Def in i t ion 3.3 A fair module My is an ordered 7-tuple M 1 = (Ao, A,, S, I, R, V, F),
Where (Ao, A,, S, I, R, V) is a module and F is a finite set of fairness sets F =
{fl f . } such that [-Jl,r fi = 1-s A basic fair module My is a fair module such
that F = {R}. O

Modules may be combined using binary parallel composition [I which can be gen-
eralised to deal with n modules in the standard fashion. Concurrency is represented
by interleaving the atomic actions of the submodules. If a transition in one of the
submodules is labelled by an atomic proposition owned by the other submodule, a
corresponding transition in the combined nmdule can be taken only if the proposition
evaluates to true in the ilfitial state of the transition.

252

Def in i t ion 3.4 Let MI = (Ao,, A,l, Sl, I,, Rl, VI) and M2 = (Ao2,..., II2) be mod-
ules such that Aot f) Ao2 = ~. The parallel composition of them, MI II M~, is the
module (Ao, Ae, S, I, R, V) defined as follows:

�9 A o = A o I U A o 2
�9 A. = (A., OA.2) \ A o
�9 S=SI xS~
, I = I l x I 2
�9 R ={(s l , t)~(sz , t) l s ,~s~ e Rl and l 6 L(A,)}U

{(s,, t)-'-,(s2, t) 13t: s,~' ,2 e n, and 1 6 L(Ao2) and V2(t) ~ l}U
{(s, ti)@(s, t2) I t ~ t 2 e R2 and 1 6 L(A,)}U
{(s, tl)~(s,t~) 1 31: h-~t~ 6 R~ and I e L(Ao,) and V~(s)~ l}

�9 v(s~,~) = v~(~)u v~(s~) []

In tile parallel composition of fair modules the fairness sets of the submodules are
propagated to the resulting module. If a system is modelled by a parallel composition
of basic fair modules, the definition guarantees that the fair fullpaths of the complete
system are exactly those that are strongly fair with respect to each module.

D e f i n i t i o n 3 . 5 Let MI, = (AoI,Ael,SI,I1,RI, VI ,{ f l I , . . . , f ln t}) and MI2 =
(Aoz,... , V2, {f2* f2-2}) be fair modules. Then MI, II MI2, is the fair mod-
ule (Ao,. . . , V, { f l , . . . , fn,+n~}) where (A~ V) = (A**,..., V,) II (So2, . . . , V=)
and for i = 1 , . . . , n l
fl ={(sl , t)"~(s2, t) 6 n I s~ ' s~ e f , , and 1 6 L(A,)}U

{(sx,t)---*(s~,t) 6 R I ~i : stJLs~ e f~i and I 6 L(Ao~) and V~(t) ~ l}
and for i = 1,. "d' n~
fi+,, ={(S, tl)=(s,t~) 6 R ltl2-q~ 6 f~i and I e L(A~)}U

{(s, t~)-z*(s, tz) 6 R [~ I : tt2-~t~ E fzi and 1 6 L(Aot) and V~(s) ~ I} []

The availability of a transition in a module that does not have any nontrivial
transition conditions cannot be influenced by its environment. Therefore, we treat
such a module as corresponding to a complete system, and interpret formulas in the
naturally induced Kripke-model.

Def in i t ion 3.6 Let M = (Ao,A, ,S , I ,R, V) be a module. M is closed iff A, =
and the leripke-model K(M) correspondin9 to the closed module M is defined as
K(M) = (S,I, RK, V), where (s~,s~) 6 RK iff Sl---'*s2 6 R.

Let M I = (Ao,. . . , V,{fl f , }) be a fair module. M 1 is closed iff A~ = $
and tile fair Kripke-model K(MI) corresponding to M I is defined as K(MI) =
(S, I, RK, V, {fKI , fK,}), where RK is as above and for all 1 < i < n: (s,, s~) 6

. T
fKi I f f S * " ' ~ S 2 e fi.

A formula r is true of a closed (fair) module M, M ~ ~, iff K(M) ~ ~. []

4 C o m p o s i t i o n a l m o d e l c h e c k i n g

Tile basic method of compositionM verification applied in this paper is that of
[MP91]: when verifying that ~b holds of MI II M~, find ~bl and ~bz such that ~bi
holds of Mi ill any environment and ~ ~b, A ~2 ~ ~b.

Def in i t ion 4.1 A formula ~b is modularly true of M iff M [[M' ~ ~b for all modules
M' such that M[IM' is closed. If this is the case we write M ~ b . []

253

The correctness of tile verification method is asserted by the following result,
which can be generalised to n processes.

P r o p o s i t i o n 4.2 If M t ~ l and M2~b2, then Ml IIM21~++ A ~ . D

The aim now is to find a method for verifying that M ~ b . This can be done
by constructing a Kripke-model K on the basis of M so that M ~ b iff K ~ ~b and
by applying the standard linear temporal logic model checking algorithm [LP85]
to check whether K ~ ~b holds. A straighforward approach is to construct a single
environment of M so that it exhibits all the possible behaviours that any environment
of M can produce and to combine this environment with M.

Def in i t ion 4.3 Let M = (Ao V) be a module. The chaotic environment of M,
ce(M) is the module (At ,r x P(At), Y'), where W(s) = s. rl

P r o p o s i t i o n 4.4 Let M = (Ao,. . . , V) be a module and ~b a formulasuch that every
atomic proposition occurring in ~b is in Ao U At. Then M ~ r iff MHce(M) ~ ~b.
Proof : If M ~ b , then M II ce(M) ~ r by the definition of ~ . If M ~ b , then
there is an M' and a p a t h P] in K1 = K(M [IM') s,ch that Vl(pl) ~: ~b holds.
I f Pl = ((sl,tx), (s2,~2),...), then p~ = ((sl, Vl(ta)r l A,), (s2, Vl(12)rl A ,) , . . .) is a
path in = K(M II ~e(M)). What is more, V~(p,).~V2(p2) (mod Ao U At). By
2.7, V2(p,) ~ r which implies M I I ~ (M) t~ r o

Please note that the set At can always be extended so that every atomic propo-
sition occurring in ~b is in Ao U At. Therefore, without loss of generality we suppose
that this is the case in the following.

Checking whether M ~ b can be done by checking that M II ee(M) ~ ~b. This
is exactly the method proposed ill IMP91], where a transition system equivalent to
K(M lice(M)) is denoted by SM. As IMIIce(M)I = IMI. 21a,I, tile model checking
will take O(IMI �9 21A.I. 2r time. This is sensible only if IAel < log(IM'l) , where
M' is the actual enviromnent in which M is to work.

In this naive approach we are, in fact, doing a lot of unnecessary work. What we
are actually interested in is the validity of ~b in all the fullpaths of all the systems
consisting of M and an environment M ~. The only influence of the external atomic
propositions not occurring in r is the availability of some transitions in some states
and, consequently, the existence or nonexistence of some fullpaths. However, if a
certain transition is labelled by an external atomic proposition, there is always both
an environment in which the transition is disabled and an environment in which the
transition is enabled. The first possibility is always present, anyway, since an infinite
execution of the environment unfair to M might prevent M from taking a transition
even if it were enabled. Therefore, we do not need to pay any attention to whether
transition conditions not occurring in r are true or false, and we may simply drop
them.

Def in i t ion 4.5 Let M = (Ao, . . . , V) be a module and A C AoUAt. The satisfiabii-
ity graph corresponding to M and A, st(M, A), is the Kripke-model (Ss, Is, Rg, Vg)
where

�9 S g - - S x P (A \ A o)
* I a = I •
�9 R a ={((s, Aa),(s,A..,)) e S a x Sa}O

{((sl,A1),(s2,A,)) e Sg x Sg [31: s12Ls2 e R and I r L(A) or Ax ~ l}

254

�9 Va(s,A~)= V(s) UA1 B

P r o p o s i t i o n 4.6 Let M = (Ao , V) be a module, A C_ Ao O Ae and ~ a formula
containing only atomic propositions from A. Then M~f f iff st(M, A) ~ ok.
Proof : By 4.4, M ~ iff Mllce(M) k r Here it is shown that MIIce(M) ~ 4, iff
sg(M,A) k r

Let us denote M II ce(M) by M, = (At~ At,, So, Ic, R,, V,) and st(M, A) by
K a = (St, la, Ra, Va). The result is obtained by showin{g that given any fullpath p
in K(M,) there is a fullpath pt in K a such that Vc(p)~,Va(p') (mod A) and vice
versa, and by applying 2.8.

Assume that K(M,) has a fullpath p. From the definitions of K 0 and Me it is
known that p is of the form p = ((sl, AI), (st, A~),.. .), where each si E S, Ai E

!

P(A,) , and either sl = si+l or Ai = Ai+l and there is an 1 such that $i--*8i+ 1 E R
and Ai ~ 1. If sl = si+l, it is clear that ((si, Ai Iq A), (Si+l,Ai+l CI A)) E R s.
If si # si+l, then Ai = Ai+l and either l ~ L(A) or i e L(A) and Ai glA ~ I.
In both cases ((si,Ai A A),(si+l,Ai+l f'lA)) e R a follows. As (s l ,Al f'lA) e Ig,

�9 �9 J ~ I p' = ((si, A1 fl A), (s2, A~ f'l A)) is a fullpath m lf~. What is more, V,(p)~,Va(p)
(mod A) since V,((si, Ai)) f'l A = (V(sl) U Ai) 0 A = Va((sl, A, I '1A)) f'l A.

Assume now that K a has a fullpath p. From the definition of If a it is known that
p = ((s~, AI), (s~, A~), . .) where for each ((sl, Ai), (si+l, Ai+l)) either si = si+l or
Ai = Ai+~ and there is an i such that si--osi+~ ~ R and either Ai ~ i or I f~ L(A).

�9 . 1 "

If sl = Si+l, it is clear that (si,Ai)---,(si+a,Ai+~) ~ R~. If Ai = Ai+~ and Ai ~ l,
T �9 �9

(si,Ai)--',(Si+l,Ai+~) ~ R,, again. If Ai = Ai+l and l {[L(A) and I m of the form
�9 . . T

",ll, l~ {[Ai wlncla maphes that Ai ~ I. Consequently, (si,Ai)'--+(si+l,Ai+l) ~.
Re. Finally, if Ai = Ai+l and l f[L(A) and l is not of the form ",l~, R, has

�9 �9 T " r {l})'*(si+l, Ai+l U {i})'*(si+l, Zi+l). Therefore, tim trans~tions (s i ,Ai)- . (s i ,Ai U "r
for each transition of p in K a we can construct a sequence of transitions in Re so
that they contain the same initial and final states. The required path p~ in K(Mr is
constructed by joining these sequences together. By the structure ofp' , Va(p)~,V,(p')
(mod A) as well.

By proposition 4.6 we can check whether M ~ r by taking A as the set containing
only the atomic propositions in q~ and by checking whether st(M, A) ~= ok. Noticing
that Isg(M, A)I =]M �9 21A\Aol and that IA \ Aol is limited by I~1, we acquire an
upper limit IMI. 21r to tile size of the satisfiability graph. Since the satisfiability
graph can be constructed in a time linear to its size, the model checking takes
O(IMI �9 21r �9 2e1r i.e. O(IMI �9 2 e'l§ time. Tile total time requirement of the
method consists of three parts: verifying that Mz ~b~, which takes O(IM~I. 2 c'lcd)
time verifying that M2~r which takes O(IM21 �9 2 "'1r time, and verifying that

r Ar => r which takes O(2"'(1r162162 time [.LPZ85]. A.ssuming Ir ~. 1r
the total time needed is thus O((IMll + IM21 + 2 "'l§ �9 2"1'") . Furthermore, if
Ir ~- Ir tiffs is O((IMxl + IMzl)" 2~

This should be contrasted with the time requirement O(IM~I. IM21.2,'1§ of the
simple approach of just constructing the whole state space of the system and then
running the model checker on it. If MI and M2 are large and the required lemmas ~bl
and r relatively short, the compositional method presented here can therefore yield
substantial savings. As an additional note, the restriction that transitions are la-
belled by single propositions or their negations can be dropped in favour of arbitrary
formulas in the disjunctive normal form without affecting the time requirement.

Process P~: P j _ . ~ _ .
loop forever

/* idle */
ri : : T

R: f o r j : : l t o l - 1
if r~i then

ri := 2.
wait until -~rj 2
goto R

end if

end for ~ r for j := i+ 1 ton ',
wait until -~rj

end for
G: /* critical*/

r i : ~ _ / n

end loop

255

P ' . . .

i
|

|

Figure 1: Mutual exclusion protocol

Although no systematic way of finding suitable lemmas is developed in this pa-
per, the issue is naturally very important for real-world applications. Ideally, when
creating a concurrent system the designer sets some requirements to each module
so that the requireluents to the complete system are met if the requirements to the
individual modules are met. These requirements naturally form a good basis for the
required lemmas. The applications of the method are best illustrated by an example.

E x a m p l e 4.7 Figure 1 contains a textual description of a mutual exclusion protocol
and the corresponding module graphs. Each state in the picture is labelled by the
atomic propositions true in that state. The only propositions shown are ri, which
has the meaning process i requests access to the critical section, and ci meani~ag
process i is in the critical section. For each module Pi, Aoi = {ri ,ei} and Aei =
{73 I 1 < j < n , j ~ i}. An obvious requirement to the system is that two processes
are never together ill the critical section, i.e. that Ai~j o(-~ci V -~ci).

If we analyse a system consisting of n such processes, the number of global states
is O(nn). This means that e.g. for u = 32 the number of global states would be in
the range 216~ wlfich rules out straightforward model checking.

Let us denote by ~b the formula o(-~cj V ~ci) for some fixed i and j . If we can
show that r holds for all i ~ j , the required result follows. As lemma ffl we may
take tile formula "-~ri A VI(C i ::~ r i) A I-'l(-ari ::~ (~ci)Uw(rl/k -art)) and as lemma ~b2
the same formula with i:s and j:s"reversed. It is easy to check that ~ ~b I A ~b2 ::~ ~b.

If we tried to verify that P i ~ r using the naive method of 4.4, the size of the
resulting Kripke-model would have a minimum of 2 a6 states. Even this would very
likely be infeasible.

When verifying that P i ~ r using the satisfiability graph construction, the only
external proposition that we need to keep track of is rj , and consequently the sat-
isfiability graph has a maximum of 128 states. The same applies to verifying that
Pj ~r The advantages of the method are clear in this case. ra

256

5 Fair c o n c u r r e n c y

Despite the advantages of the verification method presented in the previous section,
it still suffers from an important drawback: when two modules are combined in
parallel, the resulting system in not required to be fair with respect to both modules.
One counter-intuitive result of this is that even if M is a closed module, M ~
does not necessarily imply M ~ . In this section we present a remedy to these
problems ill the form of a variant of the satisfiability graph construction which can
takes fairness requirements into consideration.

Def in i t i on 5.1 A formula ~ is modularly true of a fair module MI, i.e. MI~'~, iff
Mz II M} ~ ~ for all fair modules M~ such that M 1 II M~ is closed, n

The following result states that for a closed fair module it does not matter
whether M is considered in or without an environment, i.e. that the fairness re-
quirements remove the problem stated above.

P r o p o s i t i o n 5.2 If MI is a closed fair module, then Ml~'~b ill' M 1 ~ qb. 13

Def in i t i on 5.3 Let M! = (Ao , F) be a fair module. The fair chaotic envi-
ronment of M!, ce(M!) is the fair module (A•,. . . , V', {P(Ae) • iv(a,)}) , where
A ~ , . . . , W are as in 4.3. 13

P r o p o s i t i o n 5.4 Let My = (A o , F) be a fair module and # a formula such
that every atomic proposition occurring in ~ is in Ao UA. . Then My~mqb iff M/II
ce(M!) ~ r
Proof: If M! ~'~, then My lice(M!) # ~ by the definition of ~'. If M!I~'~, then
there is an M~ and a fair path Pl in K1 = K(M! IIM}) such that V~(p,) ~ r holds.
As in 4.4 there is a path P2 in lf9 = K(MI II ee(M!)) such that Vl(px)~,V2(p~)
(rood Ao U At). As pl is fair with respect to every fairness set f E F, p2 is, by its
structure, also fair with respect to all the corresponding fairness sets of K~. However,
p2 is not necessarily fair with respect to the one fairness set of lf2 corresponding
to the single fairness set of ce(M!). This can he rectified by interleaving an infi-
nite number of non-state-changing transitions of ce(M!) into P2 without affecting
VI(PI)~V2(p2) (rood Ao U At). n

In the construction of the satisfiability graph we have now the additional concern
of discerning fair paths from unfair ones. What essentially happens when we move
from the naive approach with the chaotic environment to the satisfiability graph is
grouping together states (s, A ~) where the A t :s differ only with respect to propositions
not in A. This grouping, however, may introduce new dependencies between the
enabled fairness sets, and may therefore have unwanted effects on which paths are
regarded fair. The way to do away with these dependencies in order to reflect the
original structure faithfully is to make as many copies of a state (s, A t) as there are
possible combinations of enabled fairness sets in the module, i.e. 2 copies in the case
of a basic fair module, and 2 IFI copies in the general case. Each copy (s, A i, Ft),
where F ~ C_ F, represents the possibility that in the chaotic environment it is possible
to reach a state (s, A") such that A" f'l A = A t and all the enabled fairness sets are
in F I.

257

Defini t ion 5.5 Let M! = (Ao,. . . ,F) be a fair module, A C AoUAe, Az C_ AeFIA,
A~ C_ Ae, s E S and Fz C_ F. We say that (s,A~) is an Fz-enabled A-extension of
(s, At) iff A~ 13 A = AI and for every f E F the following holds: if there are i and s t
such that s-L*s ' E f and A~ ~ 1, then f E FI. []

Defini t ion 5.6 Let M! = (Ao , . . . , F) be a fair module, where F = { . fz , . . . , fn},
and A C AoUAe. Tile fair satisfiability graph corresponding to My and A, sg(My, A)
is the fair Kripke-model (Sa, Ia, Rg, Vg, Fg) defined as follows:

�9 S a = {(s, At,Fz) E S x P(A\Ao) x P(F) I
3A~ :(s, A~)is an Fz-enabled A-extension of (s, Az)}

�9 Ig = (I x P(A \ Ao) x P(F))fl Sg
I I n + l r . �9 Rg = ~i=I Jg" where for all 1 < i < n

fgi = {((sI,A1,FI),(s2,A2, F2)) E S a x S e]1, E FI and AI = A2 and
3A~ : 31 : A t ~ i and sz)2*ss Efl and

(st, A t) is an Ft-enabled A-extension of (st, Az) and
(su, A~) is an Fu-enabled A-extension of (s2, As)}

fg,~+x = {((s, Al,ri) ,(s, As, F2)) E Sg x S,}
�9 Vg(s,A~,F,)= W(s)UAt
�9 F, = {fgz,''',fgn,fgn+l} n

Propos i t ion 5.7 Let M/ = (Ao,..., F) be a fair module, where F = {fz , fn},
and A C Ao U At. If r is a formula containing only atomic propositions from A,
then Mj ~'~ itr sg(Ml, A) ~ ~.
Proof: In the proof we use following notation: M! [I ce(M/) is denoted by Me =
(Ar Ic,Re, Vr where Fe = { f , t , . . . , f c ,+x} , and sg(MI,A) by It'g =
(Sg,/9, Rg, Vg, Fg), where F 9 = {faz, . . . , fg-+t}- The indexing of the fairness sets
Fr and Fg is supposed to correspond to the indexing of the original fairness set F.
If (sl, Ai) E Sr then en(sl, Ai) = {fj E f] fcj is enabled in (si, Ai)}.

The following facts are direct consequences of the definitions:
1 If ((si,Ai),(si+x,Ai+t)) E fej, then

((si, Ai f'l A, en(si, Ai)), (si+l, A,+113 A, en(si+t, Ai+z))) e ft0"
2 If 1 < j < n, then fgj is enabled in (si,Ai,F~) E S 9 only iff~ E Fi. Con-

sequently, if f#j is enabled in (si, Ai rl A, en(si,Ai)) then f t i is enabled in
(si, A,).

3 If ((si,Ai,Fi),(si+~,Ai+~,Fi+z)) ~ f~, then there exist A~' and A~+~ such
l l I I t that ((si, A i), (si+l, AI+I)) E fcj, Ai f3 A = Ai, A~+ t [3 A = Ai+t, and for all

1 _< k < n + h if f~ fi en(si, A~') then /r is enabled in (sl, Ai, Fi), and if
f~ ~ en(si+z, A~+z) then fe~. is enabled in (si+~, Ai+i,Fi+x).

As in 4.6, the proof proceeds by showin~ that if K(M~) has a fair fullpath p then
Iir has a fair fullpath p' such thar Vr (mod A) and vice versa.

Assume that p = ((s~, At), (s2, A~),...) is a fair fulipath of K(M~). The required
p' can be obtained as p' = ((sz,Az f3A, en(st,A1)),(s~,As nA, en(s~,A~)),...). By
1 above and by the definition of R~, p' is a fullpath. As p is fair, 1 and 2 imply that
p' is fair as well. Vr (mod A) is established as in 4.6.

Assume that p = ((sz,Ax,F~),(s~,Au, F~)) is a fair fullpath of K~. The
? II I required p' can be obtained as p' = ((st, AT), (s~, A2) , (s2, As), (sa,A3),.. .), where

A~ and A~' are as in 3 above. Note that for every transition in p there are two
transitions in p'. By 3 above, p' is a fullpath. As p is fair, 3 implies that f is fair
as well. Finally, the definitions of A~ and A~' used in constructing p' guarantee that

a t i Va(p)~,V~(p) (rood A). n

258

The size of tile satisfiability graph is]M[. 2 WI �9 21A\Aol. In constructing the
satisfiability graph the essential step is deciding whether s1-~s2 Ef i implies
((sl, A], F1), (S~, A2, F2)) E fgl. This can be done by checking whether formula

I ^ A A A -'~
.teF\F~ (sz,a,s~)e? IeF\F2 (s2,a,s~)(U'

is satisfiable, which can be done in linear time. Therefore, the satisfiability graph
can be constructed in a t ime linear to its size. As checking the t ruth of ~b over
sg(Af/ , A) takes O([F[�9]sg(Mj, A)[. 2 c'l~l) t ime, checking modular t ruth of ~b in a
fair module M! requires O(]F[.]MI[. 21rl. 21~1.2e'l~l), i.e. O([MI[. 2 c'lrl �9 2 r247 time.
This is less than tha t of the naive approach as long as IF{ < IAP,\AI. Although the
t ime requirement is exponential ill IF], this is unlikely to cause problems in practice
as IF[is typically very low.

Fairness between concurrent processes in a system is a special case of the more
general fairness notion treated above. In order to inodel it only basic fair modules
are needed. These have the property that all the transitions of a module form a
single fairness set, i.e. that IF I = 1. In this case the t ime requirement reduces to
O([MI[. 2c'l~l), which means that we can answer the question about the t ruth of ~b
over module M in all strongly fair environments in the same t ime as over M in all
environments.

As the last issue we discuss briefly the existence of the l emmas ~bt and ~ba, and
draw at tention to a particular case in which we can be sure of their existence.
Intuit ively the following result shows tha t if every state of a module can be uniquely
characterised by the atomic propositions true in that state, the lemmas always exist.
This should come as no suprise, as the characterisability means tha t the structure
of the modules can be axiomatised.

P r o p o s i t i o n 5.8 Let Mi, M2 be (fair) modules such tha t both V1 and V2 are
injective, i.e. tha t for all s,s' E Sl: Vl(s) = Vl(s') implies s = s ' and alike for V2.

If M~ II M--~ , there exist formulas ~bl and ~b2 such that gl~m~bl, g z ~ b ~ and
~ ^ ~ = ~ r
P r o o f : Thanks to the characterisability of Mi we can construct formulas ch(Mi)
so that they completely describe the behaviour of M~.

aE V(a) aE Ao ~ V (s) (s,l,$a)~.P,.

d,(~) =n A (J*O) =~ t,O))
sES

~h(f,) =(aoV(dO)^O) =~ (aoV(~hO)uJ,(~'))) J,(F) = A ~h(f,)
(sJ,~')E.f~ (s,t,s s)El, /~E~

~h(M) =a V ch(~) ̂ V ~h(~) ̂ ~h(n) ̂ J,(~')
sGS sGl

Jar(M, M') = A A a ̂ a' ::~ ((a ^ a')bl,~((-~a ̂ a') V { a ̂ -,a')))
a e L (A c ,) a S E L (A ~)

(The formula int(M, M') decrees that two propositions owned by different modules
cannot change their truth-vMue at the same time.) Now Ml ~ch(M1)A int(M1, M2)
and alike for M2. It remains to show tha t if -MI II M~'r then ~ ~h(M,) ^
inl(M~, M'z) ^ ch(M2) ~ ~. This can be done by supposing that , on the con-
trary, there were a Kripke-model K and a path p falsifying the implication, and by

259

constructing a path 19' in (MI II M2) II ce(M~ II Mz) falsifying ~b as well, and titus
creating a contradiction. D

It is clear that the lemmas constructed in the proof are of purely theoretical value
due to their length. IIowever, knowing that the method is complete in the sense that
any property can be verified by it naturally adds confidence to it.

6 D i s c u s s i o n

In this paper we have presented algorithms deciding the truth of a nexttime-less
linear temporal logic formula q~ over a distributed-variable module M in all envi-
ronments and in all fair environments. An interesting result obtained is that the
time-complexity of checking whether a property holds of a module in all environ-
ments is essentially no higher than that of checking whether it holds without any
environment. The method of modular verification suggested here seems to be very
promising, tIowever, what is still needed for a fully-fledged system is a methodology
for creating the required lemmas.

R e f e r e n c e s
[Bar86]

[BKP84]

[BE91]

[CLM89]

[GL91]

[Jos89]

[Lam83]

[LP85]

[LPZ85]

[Me81]

[MP911

[Pnu8S]

Bm'ringer, H.: Using Temporal Logic in tile Compositional Specification of Concurrent
Systems, in Galton, A. (ed.): Temporal Logics and Their Applications, Academic Pre~,
1987, pp. 59-90
Barrlnger, H. & Kulper, R. & Pnueli, A.: Now You May Compose Temporal Logic
Specification, in Conference Record of the Sixteenth Annual A CM Symposium on Theory
of Computing, 1984, pp. 51-63
Best, E. & Espal~a, J.: Model Checking of Persistent Pctri Nets, Hildelheimer Infor-
matlkberichte 11/91, Universit~t Hildesheim, Insti tut flir Informatik, 1991, also presented
in Computer Science Logic '91
Clarke, E. M. & Long, D. E. & McMillan, K. L.: Compositional Model Checking, in
Proceedings of the Fourth IEEE Symposium on Logic in Compnter Science, 1989, pp.
353-362
Gl~mberg, O. & Long, D. g.: Model Checking and Modular Verification, in Baeten,
J. C. M. & Groote, J. F. (eds.): Proceedings of CONCUR'91, the P.nd International
Conference on Concurrency Theory, LNCS, vol. 527, Springer-Verlag, 1991, pp. 250-265
Josko, B.: Verifying the Correctness of AADL-modules Using Model Checking, in de
Bakker, J.W. & de Roever, W.-P. & Rozenberg, G. (eds.): Proceedings of the REX
Workshop on Stepwise Refinement of Distributed Systems, Models, Formalisms, Cor-
rectness, LNCS, vol. 430, Springel~Verlag, 1989, pp. 386-400
Lamport, L.: What Good is Temporal Logic?, in Proceedings of the IFIP 9th World
Computer Congress, 1983, pp. 657-668
Lichteustein. O, & Pnueli, A.: Checking That Finite State Concurrent Programs Satisfy
Their Linear Speclfication, in Conference Record of the Twelfth Annual A CM Symposium
on Principles of Programming Languages, 1985, pp. 97-107
Liclitenstein. 0 , & Pnuell, A. & Zuck, L.: The Glory of The Past, in Parikh, R. (ed.):
Logics of Programs, Proceedings, LNCS, vol. 193, Springer-Verlag, 1985, pp. 196-218
Manna, Z. & Pnueli. A.: Verification of Concurrent Programs: The Temporal Framework,
in Boyer, R. S. & Moore, J. S. (eds.): The Correctness Problem in Computer Science,
Acadcmlc Press, 1981, pp. 215-273
Manna, Z. & Pmmli. A.: The Temporal Logic of Reactiee and Concurrent Systems, col.
1, Specification, Springer-Verlag, 1991
Pnueli, A.: In Transition from Global to Modular Temporal Reasoning About Programs,
in Apt, 14. It. (ed.): Logics and AIodels of Concurrent Systems, NATO ASI Series, vol.
F13, Sprlngel~Vcrla$, 1985, pp. 123-146

