
A Verification Strategy for Timing Constrained
Systems

Felice Balarin Alberto L. Sangiovanni-Vincentelli

Department of Electrical Engineering and Computer Science
University of California, Berkeley, CA 94720

Abst rac t . Verification of many properties can be done without regard
to the speed of the components of a finite-state system. However, some
of the properties can be verified only under certain timing constraints.
We propose a new verification strategy for timing constrained finite-state
systems. The strategy can avoid the state space explosion problem for
a class of systems. A model of such systems, called timed L-process,
compatible with the strategy, is also developed.

1 Introduction

Recently, Dill [Di189] and Alur and Dill [AD90] proposed a method for incor-
porating timing restriction into a model of communicating finite-state systems
by introducing the notion of a timed automaton, containing fictitious time-
measuring elements called clocks [AD90] or timers [Dil89]. The verification prob-
lem is shown to be equivalent to the speed-independent verification problem on
an appropriate automaton. The fundamental problem with both approaches is
state space explosion, i.e. state space growing exponentially in the number of
timers (clocks).

Kurshan [Kur91] suggested to carry out the verification process on timed
systems with COSPAN [HK88], a verification system for untimed processes, by
relaxing the time constraints, verifying the relaxed system and if the verification
is unsuccessful check whether the run that violates the property to be verified
is infeasible under the timing constraints. If this is so, Kurshan removes the run
and repeats the process. This strategy is appealing but heuristic in nature. There
was no proof that the process would eventually converge to provably the correct
answer.

In this paper, we introduce the notion of pauses, and construct an equiv-
alent (non-pausing) automaton. In contrast to previous approaches, we build
an equivalent automaton as a composition of the speed-independent (or unre-
stricted) automaton and many small automata. This decomposition of timing
constraints enable us to perform the verification on a smaller, abstracted au-
tomaton which includes only some aspects of timing constraints. This leads to
an iterative verification strategy similar to the heuristic proposed by Kurshan,
where a verification process is started with the unrestricted automaton, which
is then composed with simple automata imposing timing constraints, but only
after the verification has failed, and imposing only those constraints which are
violated in the failure report.

152

The rest of this paper is organized as follows. In section 2, we introduce the
notion of t imed L-process, and then we construct the equivalent (not timed)
L-process in section 3. In section 4 two main steps of the proposed verification
strategy are described: extracting timing violations from the failure report, and
imposing that subset of timing constraints to the model of the system. Final
remarks are provided in section 5.

2 T i m e d L - P r o c e s s e s

An L-process [Kur90] is an automaton over infinite sequences, distinguished from
others by its alphabet and its acceptance conditions.

An alphabet of L-processes is a set of atoms of Boolean algebra L. It is
convenient to think of atoms of L as distinct assignments to several variables
taking values in finite domains. A boolean algebra L can be than thought of
as a power set of a set of atoms, which is obviously closed under intersection
(or p r o d u c t) . , union (or sum) + and complement ,~. A partial order _< can be
thought of as a set inclusion, multiplicative identity 1, as a set of all atoms, and
additive identity 0 as an empty set.

Although ideas presented here are applicable to other automata , we have cho-
sen to develop them in the framework of L-processes, because algebraic structure
on the alphabet enables us to describe easily manipulations we use, like adding
additional variables, or changing the transition structure

Acceptance conditions of L-processes (called cycle sets and recur edges) are
particular because of their negative nature, i.e. a run is accepted unless it is
excepted by cycle sets or recur edges. Hence, if no acceptance conditions are given
a language of the L-process contains all sequences that have a run from some
of the initial states. A product | (or "composition") of L-processes satisfying:
/~(P1 | P2) = s 13/~(P2), has been defined in [Uur90].

It can be verified automatically whether the language of an L-process is
contained in the language describing some properties (e.g. [HK88]). If this is
not the case, there exists at least one loop of states reachable from the initial
states, that is an accepting run of some sequence not in the language of the task.
Usually, one such a loop is included in the failure report produced by automatic

tools.
We extend L-processes by allowing them to remain in designated "pause"

states a limited amount of time. This extension is called a simple timed L-
process. Intuitively, we describe one pause by a pair of states {v~, v/d}, as shown
in Figure 1. When a system enters a state v/~, a pause begins. A symbol Pl,
uniquely associated with that state indicates that a pause is in progress. A pause
finishes when a system exits a state v/d. The time spent in these two states must
satisfy the lower bound li and the upper bound ui. To be able to treat uniformly
both constraints of type x < c and of type x < c we adopt the concept of
bounds introduced in [AIKY92]. The set of bounds is an extension of the set of
integers with expression of the form n - which can be thought of as a number
infinitesimally smaller than the integer n. Addition and comparison are then

153

na tu ra l ly extended.
Formally, a s imple t imed L-process T is a pair (P, d), where P is an L-process

(called unrestricled process of T) and d is a set of pauses. A pause i E d is a
5-tuple (v~, v d, pi, li, ui) sat isfying the following:

- li and ui are bounds sat isfying - c o < li < 0,1 0 < ui <_ co and of course

--li < Ui,
- V/~ and v~ are s ta tes of P and Pi E L is such tha t M p (v ~ , v~) = M p (v ~ , v~) =

Pi, no other t rans i t ions depend on Pi, v/~ has no o ther fanouts and v d has
no o ther fanins,

- V * (a set of all v~) , V d (a set of al l vi a) and the set of initial s ta tes of P are
mu tua l l y disjoint.

. . . . i - - p i - ~ li<----~ i<--u] :
~ pi / ~ - ~ , '

Fig. 1. A pair of states representing one pause

Figure 2a shows three examples of s imple t imed L-processes, Each process
contains one pause, with associated bounds - 2 - , co; - 1 , 2 - and - 1 , 3, respec-
tively.

(I)pl
I pl

~bl

~ a 2 * b 1 a2*~bl T2
.

, 2 '

a3 T3

i t 3 ~ r p3

I <= x3<=3 J

~l
a2*~b l*~t*-f2
*-12 U2

p2*~f2
*'f'2

t'f2

b2*~f2

a) b)

Fig. 2. Examples of simple timed L-processes (a) and corresponding unrestricted A
L-process (b)

A limed sequence(a , t) consists of a sequence a and a t iming funct ion t
assigning a real posi t ive t ime tk to every ak in a. A t iming is na tura l ly extended

1 It is convenient to represent lower bound constraint of type x > n as - x < - n , and
of t y p e x > n a s - x < n - .

154

to some run v of a by: t(vk) = t(ak) = tk. If pause i is active, the elapsed time of
pause i at vk, (r~)k is defined to be the difference between t(vk) and the t ime the
pause i has last started. It is convenient to extend this definition to the whole v
by setting (ri)k = 0., if vk is not an element of pause i.

We say that a t is a proper timing of v if all of the following consistency
conditions hold:

1. t l = 0, tk+l > tk, for all k > 1 (time is non-decreasing),
2. if vk ~ V a and vk # vk-1, then tk = tk-1 (all state changes outside a

pause are instantaneous, the time can advance only inside a pause, or in a
self-loop),

3. ifvk = v d E V d then -(ri)k < l~ (pause-finishing times satisfy lower bounds),
4. (r~)k < u~ (elapsed times satisfy upper bounds).

We do not make an usual requirement that t ime progresses without bounds,
or equivalently we do allow that infinitely many events happen in a bounded
amount of time. Hence, a failure to complete a pause can be acceptable. The
time progress requirement can be easily added by making {v/~} a cycle set. Since
this has no implications to results presented here, we leave it out of the definition,
as the users choice.

We say that a timed sequence (a, t) is in the language of a simple timed
L-process T = (P, d), and write (a, t) E / ; (T) , if and only if there exists v such
that v is an accepting run of a in P, and t is a proper timing of v.

Pauses are tied with states, so in a simple timed L-process only one pause can
be active at one time. To overcome this limitation we define a timed L-process
as a N-tuple of simple timed processes (T1, �9 �9 TN). We say that T,~, 1 < n < N
are the components of T. A language of the timed process T is defined to be
an intersection of languages of T, 's . An untimed language of T is defined by:
Untime(e(T)) = {al3t, (a, t) e E(T)}.

3 Equivalent Non-Pausing Process

In this section we will sketch the construction of the equivalent untimed process
/3 for some timed L-process T. We will define such a process in some extension

of Boolean algebraL. P and T are equivalent in a sense that the projection on
L of the language of P is exactly equal to the untimed language of T. Therefore,
to prove Untime(s C s where A is some L-automaton (hence also/~-
automaton), it is enough to prove: s C s Full details of the construction,
as well as the proof of equivalence are given in [BSV92].

Given a timed L-process T = (T1 , . . . , TN) defined by its components ' unre-
stricted L-processes P1, . . . , PN, and its components ' sets of pauses dl~. . . , dN,
we construct P as a product of the unrestricted L-process U the region L-process
R.

The unrestricted L-process U is a composition of L-processes U I , . . . , UN,
each Un being basically the same as Pn, except that we add some additional
information to its output . This information is needed to coordinate U with R.

155

The first piece of information we add is whether or not a transition in P~ can take
some time, as required by consistency condition 2. We will extend the Boolean
algebra L by a new variable t and use it to label all transition that must take
some time. If we also label by ,~ t all transition that must not take any time, we
will ensure that transition from these two classes will not happen simultaneously.
Specifically, we multiply with ,.~ t all entries in the transition matr ix of Pn, except
the diagonal (i.e. self-loops), and the entries corresponding to transitions inside
a pause. Similarly, we will add a new "flag variable" fi for each pause i in d,~.
We use f i as a signal that pause i is finishing. Consequently, we multiply with
fl all entries of the transition matrix corresponding to the fanouts of v -~ and

It '

multiply by -.~ f i all other entries. The process U2 for the example in Figure 2a
is shown in Figure 2b.

It is easy to see that the projection of the language of U on algebra L contains
exactly those sequences that are accepted by all P , ' s , including those sequences
that can not be properly timed, hence are not in Unt ime(f~ (T)) . It is the purpose
of the process R to eliminate such sequences from the language. Basically, R
keeps record of possible elapsed times in all pauses, and does not allow a finish
of some pause if the elapsed can not satisfy given bounds. Alur and Dill [AD90]
have shown that it is not necessary to remember exact values of the elapsed
time, but only the integer part and the ordering of fractional parts. They have
also shown that if no upper bound is given all values larger than the lower bound
can be considered equivalent.

To keep track of the values of elapsed times we extend the Boolean algebra
with one "multi valued variable" ?/ for each pause i. A variable ~i is a finite
abstraction of ri, more precisely if ui < oo it takes a distinct value for each
integer and open interval between integers in [0, ui]. If ui = oo, all values of
ri larger then the lower bound correspond to single value of ~i. In slight abuse
of notation we use bounds to represent a domain of ~/. More precisely, we use
integers to represent themselves and bounds of the form n - to represent intervals
(n - l , n) , or (n - l , c o) i f u i = oo a n d li = (n _ l) or li = (n _ l) - .

We construct the region process as a product of difference tracking automata
Rri - r j<c and zero tracking automata Rr~=0. We build one automaton Rr,=0 for
each pause i and one automaton Rr~-~_<r for each pair of pauses i and j and
every bound c necessary to uniquely determine the value of ?i (or ?j) given that
ri = 0 (rj = O, respectively), and that t ruth values of vi - rj < c for all c's
are known. For example, variables 72 and 73 take values in {0, 1- , 1 ,2-} and
{0, 1-, 1, 2 - , 2, 3- , 3} respectively, so we need Rr3-~2<c for each c in

{-I-, - i , 0-0, l-, I, 2-, 2, 3-}

The purpose of the R,~-~j<c is to establish whether ri - v j < c is satisfied or
not. Its state space is an abstraction of a (possibly infinite) rectangle containing
all possible pairs of values of vi and rj. All points satisfying ~'i - vj < c are
contained in a "good" state and all others make a "bad" state. A unique initial
state is the one containing point (0, 0). It has no cycle sets nor recur edges, and

156

its transition matr ix reflects possible t rajectories in the rectangle containing
feasible values of ri and vj. The trajectory can be constructed for any sequence
a E s and any timing t of a. The trajectory is constructed incrementally,
adding a segment from ((r i)k , (r j) k) to ((r i)k+l , (r j) k + l) according to ak and tk .
The construction rules are as follows:

R u l e 1 : we begin at point (0, 0) and stay there as long as neither pause i nor
j are active, i.e. ak <_'~Pi* "~Pj ,

R u l e 2(3) : if pause i (j) is active and pause j (i) is not, i.e. if ak <_ Pi* "~ Pj
(a~ <..~ Pi * Pj) , we move forward, along the ri (rj) axis,

R u l e 4 : if both pauses i and j are active, i.e. if ak < Pi * Pj, we move forward,
along a 450 line,

R u l e 5(6) : if pause j (i) is finishing pausing and pause i (j) is not, i.e. if
ak < f j * ,., f i (ak <',, f j * f i) we move to the point ((r i) k ,O) ((0 , (r j)k)
respectively),

R u l e 7 : if both pauses i and j are finishing, i.e. if ak <_ f j * f i , we move to the
point (0, 0).

The length of all forward movements is determined by tkq-1 --re. A transition
between states of RT,-T~_<c exists if a segment of some properly timed trajectory
connects two points in those states. The transition is enabled if the conditions
stated in the rule that generated the segment are met. More precisely, for any
pair v, w E {good, bad} the corresponding transition matr ix entry is of the form:

M (v , w) =)-2~(enabl ing_condi t ion * Z ((~ i = ~) * (~ = ~)))

where the outer sum goes over all eight enabling conditions in the left column of
Table 1, and the inner sum goes over all abstracted values (~, ~) of some pair of
positive real numbers 2 (x, y) E w satisfying the corresponding constraint in the
right column of Table 1.

Table 1. Rules for building a transition matrix of difference tracking L-processes

enabling condition applied rule(s) constraints on (x, y) E w

t* " ' P i * , v pj 1 X = y = 0, (X, y) E V
t * pi.*,.,,'~ pj

t* " Pi * pj
t * p i *Pi

",, t* ~ f i * Sj

~ t * f ,* ". f j
"~ t* f i * f3

~ t . ~ f~. ~ f j

6

1-7

y = O , 3 ~ > O : (z - ~ , y) E v
x = O, 3~ > O : (x , y - ~) E v

3~ > 0: (~ - ~ , y - ~) E v
y = o , 3 z < , , j : - ~ < l , , (~ ,~) e ~,

F)'3(,,. <_ <_ t,,(.,.) ,,
v : q < u i , - q < l i , z < u 3 , - z < 1~

(x, y) E v

2 If w is a good state (x,y) E w stands for x - y < c, and if w is a bad state it stands
for x - y > c .

157

One possible trajectory for pauses 3 and 2 in Figure 2a is shown in Figure 3a.
Each segment of the trajectory is labeled with the number of the rule that
generated it. An L-process R~3-r~<~ is shown in 3b. The only transition which
has a small enough expression to fit in the figure is bad ~ good. The rest of the
transitions are given in Table 2. Each transition expression is formed as a sum
over all rows of products of the expression in the first column and the expression
in the column corresponding to that transition.

Table 2. An example of the transition matrix of a difference tracking L-process

enabling
condition

t * p 3 * ~ P2

$* ~ P3 * P :

/ * p 3 *P2

"~ t* ~ f3 * f :
~t*13*~ A

" t * f 3 * f :
~ t , ~ 1 3 " ~ f :

transition expression
good ~ good good ~ bad bad ---* bad

5 = 0 * ? 2 = 0
0 < ~ < 2 , F : = 0

5 = 0 , ? : > 0
5 > 0 , ? : > 0 ,
(?3 < 3+72 > 1)

0<73 <2 ,72=0
? 3 = 0

73 = 0 , ? : = 0
7 3 < 2 + ? : > 1 +
5 < 3 , ? : > 0

o
5 > 2 , ~ : = o

?~ > 2 , ? : = o

0

5 > 2 , ~ : = 0
0

5 > 2 . 0 < F ~ < 1

o

5 > 2 , F 2 <]

2

6

I
Dr

2 3 ~3

h

2

I
I

~ ,) ~t*f3*fS* ('C3--O)*(x~=O)+

l ~'-~. -t*f3*-f2* (x3--0)*~<x2<l)

0 ~ ,~.
1 2 3 "c3

a) b)

Fig. 3. A trajectory (a) and one difference tracking L-process (b)

Next, we define processes Rr,=o which track whether the elapsed time in A
pause i can be zero or not. For each pause i we define an L-process Rr~=o with
two states v ~ and v~, the first one being a unique initial state, no recur edges

158

nor cycle sets and transition matrix:

MQ, (v ~ v ~ = (t* ,.. P i+ "~ t* .,. f i) * (~i = O) MQ, (v ~ , v~) = t * Pi * (?i > O)

M q , (v ~ , v ~) = "~ f i * (~ i > 0) M q , (v l , v ~ f i * (~ i = O)

Intuitively, R~,=0 is in v ~ if ri = 0 and in v I if ri > 0. A transit ion from v ~
to v I must absolutely take some time. A transition from v~ to v ~ occurs if the
pause i has finished. Note that f i is not accepted in v ~

4 V e r i f i c a t i o n S t r a t e g y

Verifying a task on P can run into difficulties, due to the large size of the state
space that has to be searched. We propose a verification strateg~ to avoid this
problem. We start a verification process with the unrestricted L-process U. If
the verification succeeds, we have verified the task. If the verification fails, there
is at least one sequence which is in the language of the current abstract ion of
/3 but not in the language of the task. We analyze one run of such a sequence.
If that run violates no t iming constraints, we have proved that the task is not
satisfied. However, if the run does violate some t iming constraints, we compose
the current abstraction of P with some simple abstraction of the process R, which
is guaranteed to eliminate that run. We repeat this process until the verification
is terminated, either successfully or unsuccessfully. This strategy can lead to
significant savings in t ime and space, provided that the behavior of the system
is not heavily dependent on the t iming constraints. The" verification strategy is
outlined in Algorithm 1.

A l g o r i t h m 1: verification strategy
p r o c e d u r e verify_task0

initialize Pc = U
while not stop

try to verify a task on Pc
if success then stop, the task is verified
find a timing violating loop G
if such a loop does not exist t hen stop, the task is not verified
Pc =eliminate_loop(G, Pc)

end while
end p r o c e d u r e

4.1 I d e n t i f y i n g T i m i n g V i o l a t i o n

Assume that the error report from the verifier contains a loop and a path to
that loop from the initial state. We can unfold the loop, thus forming an infinite

159

sequence of states. We form a graph with nodes being states in the sequence
and the edges representing constraints on elapsed time between states. There
are four kinds of edges corresponding to four consistency constraints:

b a c k w a r d n o n - p a u s e edges: (induced by consistency condition 1) for all k >
1 we add an edge (k, k - 1) and label it with "> 0",

f o r w a r d n o n - p a u s e edges: (induced by consistency condition 2) if t (v k) =

t (v k + l) must be satisfied by consistency condition 2, we add an edge from
(k, k + 1) and label it with "_< 0",

b a c k w a r d p a u s e edges: (induced by consistency condition 3) if some pause i
starts at node k and is finishing at node k ~, we add an edge (k ~, k) and label
it with " - r i _< li",

f o r w a r d p a u s e edges: (induced by consistency condition 4) if some pause i
starts at node k and is still active at node k ~ and ui < 0% we add an edge
(k, k') and label it with "ri <_ u i " .

The sequence can not be consistently timed only if there exists a loop in the graph
such that every sum of numbers satisfying upper-bound constraints in forward
edges is smaller than any sum of number satisfying lower-bound constraints in
backward edges. We call such a loop an overconstrained loop. If we set a weight
of an edge to be the right hand side of its label, then overconstrained loops are
exactly those with weights smaller than zero. Finding a negative weighted loop
is well studied problem running in a low polynomial time in the size of the graph
(e.g. [Tar83]). However, in our case the graph is infinite. Therefore we have have
modified the existing algorithm to process nodes in natural order (determined
by the sequence) and to stop as soon as a solution to constraints which can be
repeated infinitely often is found. It can be shown that if such a solution exists
it will be found in finite number of steps.

Without loss of generality, we assume that the loop is minimal, in the sense
that removing any edge enables proper timing of nodes. Once a loop has been
identified, we collapse all non-pause edges, by merging their incident nodes.
However, we mark nodes obtained by collapsing forward non-pause edges. Such a
loop is an input to the algorithm which eliminates a timing constraint, described
in the next subsection.

For example, for the timed L-process in Figure 2a, a sequence of states:

v l = wo , v 2 = Wo , v3 = wo , v 4 = w e , v s = w a , . . . (1)
U 0 U @ tt ~ It ~ U ~

is not possible under the timing restrictions, because no timing can satisfy con-
flicting constraints in the following table:

constraint edge ledge label II

t (v s) - t (v 2) < 3 v2 ---, v5 r3 < 3
t (v ~) - t (v 4) >_ 1 v~ ---. v4 - r2 _< - 1

- t(v) < o - - , < o

t (V 3) - - t (V 2) > 2V3 --+ V 2 - - T 1 < - - 2 -

160

The overconstrained loop corresponding to the edges in the table is shown in
Figure 4a with non-pause edges collapsed.

- ~ 1 < - 2 -'(2>--- 1 --~ 1 < - 2

a) b)

x2

2

R .~3-,~2<=2

�9 ,~ii~ii!i!::iii:~

o 1 2 ~3

xl

t ===
I ===

. iiiiii':iiiii~i !iig!!iii!i:;iiiiii!iiii!!ii ii!iii::i~ii
.. ::

:

..~i:~:!:~..:~!~:~::::::::::::::::::::::::::::::::::::::i:i~i~i:i:~i~i~i~i~i~i~i~i~i~i~.~i~i~

0 ! 2

c) d)

Fig. 4. An overconstrained loop and processes to eliminate it

4.2 E l i m i n a t i n g T i m i n g V i o l a t i o n s

Given an overconstrained loop G, we want to build some abstraction of R which
eliminates that run. The procedure is outlined in Algorithm 2. We will follow
the execution of the algorithm for the overconstrained loop in Figure 4a.

Since no nodes are marked we skip the first two steps of the algorithm. We
start with any "peak" node, i.e. a node with one in-coming forward edge and one
outgoing backward edge. In our example, node 3 is the only peak node. Labels
r3 _< 3 and -7-2 _< - 1 indicate that pause 2 finishes while pause 3 is still active or
just finishing. This is possible only if those two conditions can be simultaneously
satisfied, or in other words, if Rr3-r~<_~ is in the good state. If Rr3-r~_<2 is in the
bad state at that time, a finish of pause 2 will not be accepted and the sequence
will be eliminated from the language. Therefore, in step 3 of the Algorithm 2
we compose a current abstraction of P with the process R~3-T2_<2. We do not
need to consider edges (1, 3) and (3, 2) any more, so in step 4 we remove them
from the graph. However, we do need to consider under which conditions will
the process Rr3-r2_<2 be in a good or bad state. It is clear from Figure 4c that
it will be in the good state at node 3, only if 7"3 _< 2 when pause 2 starts at
node 2. Therefore, in step 5 we add an edge (1, 2) and label it with v3 < 2, as

161

shown in Figure 4b. A dual case, when the start of the pause associated with
the backward edge precedes the start of the pause associated with the forward
edge, is considered in step 6.

We repeat steps 3-6 while there are peak nodes. In our example only one
additional iteration is necessary, generating an abstracted pair region process.
R~3_~_<0-, shown in Figure 4d. These two processes are enough to eliminate
the sequence (1), because the process R~3-~<o- will initially be in the bad
state and remain there until pause 1 finishes, so it will accept the finish of pause
1 only if 92 > 2, which in turn will force R ~ - ~ < 2 to move to the bad state,
where it will not accept the finish of pause 2.

This new abstraction is also enough to verify the task: " b3 always appear
before b2 ", which is not satisfied if timing constraints are ignored. Using our
strategy, we have verified the property using the abstraction of R that has only
4 states, in contrast to the full process R that has 960 states.

Algor i thm 2: eliminating a timing violation
p rocedu re eliminate_loop(G, Pc)
/* G - an overconstrained loop, Pc - a current abstraction of P */

step 1: for each (k, m), labeled - r , < b, m marked do Pc = Pc | R~i=o
step 2: for each pair (k, m), (m, n) labeled 7-/< b, - r j < c, m marked do

Pc = Pc | R,-i=o | R~.,-Tj<~
while there exist a pair of edges (k, m), (m, n) labeled r~ < b, - r j <_ c

Pc = Pc | R,-,-~j<b+~
remove from G edges (k, m) and (m, n)
i f k < n then add to G edge (k, n) and label it 7-, < b + c
i fk > n then add to G edge (k,n) and label it - r z < b + c

end while
r e t u r n Pc

end p rocedu re

step 3:
step 4:
step 5:
step 6:

Step 1 is executed only if there is a backward edge coming into a marked
node. For example, had the no.de 2 in Figure 4a been marked, the processes
in Figure 4c and d would not eliminate the sequence (1). The marking of the
node 2 would indicate that pause 2 starts before pause 1 finishes, but no t ime
can elapse between these two events. The process in Figure 4d would still force
73 > 2 when pause 1 finishes, but this would not be enough to force the process in
Figure 4c to the bad state, because pause 2 would be active, making for example
73 = 3 - , 92 = 1 a possible choice to remain in the good state. This could be
easily fixed by composing Pc with R~=0 which would ensure 92 = 0 until some
transition that can take time occurs.

Step 2 is executed only if there is a marked node with in-coming forward edge
and out-going backward, indicating that the pause associated with the forward
edge finishes before the pause associated with the backward edge, but no t ime

162

' r

2

R ,~3...r 1

===~:~.,
, r :.:.:.:.:.:.:.:.:::.. : . .

,~.:.:.: :.:.:.....-.-..,..-. v ...-.....-.-.-.-.......... -.- ,. === : : : : : : :

~.. : : : : : : : : : : : : : : :~ :i::i:i::!:i:i?:::::::::::~:~i:::::::::::::::::::::::::::::::::::::::
~..~; i i i i i ii i i i i i i~ ~:i:i:i:i:i:i:i:i:i:~:i i i i:i~ i:i i:~:~?~:~:i:i:i:i:i:i:i:i:i:i:i:i:i:i:~:~:i!i~ :::~:~:~

::

:: : : : : : :~:::::::::::::::: ::::: : : : : : : : : : : : : : : : : i : : : : : : : :
~iiiiiiiiiiiiiiiiiiiiii iiiii i i i ~:i~!~*i~i~i:i~i~i~i~i~i~i~i~i i:i ! i~ i !~i~i~i:i:.~i~i~i~i~i~i~i~i~i~i~i~ ~ : : ~ : ~ ~ :
: : : : : : : : : : : : : : : : :

:~!~ii:i:i:i:i:i:i:i:i:i:i:i:i:i:i::: :::::::::::::::::::::::::::: :i:i:: : : : : : : ::::: :::::::::::::::::::::::::::: :-::: :: ::
i:i:i:i:i:i:i:i:: :i:i::: :~: ::: !:::i:i:i~:i:i:i:i: :i:::::i:::: :: ::: : : : :
:::::::::::::::::::::::::::::::::::::: : : : ::::::::::::::::::::::::::::::: : i : : : : : : :::::::::::::::::::::::::::::::::: : : : : ::: :::
:~i~i~i~i~i~:::::::::::::::::::::::::::~i~iii~:::!:~iiiiiii

1 2 ~ 3

Fig. 5. Additional process needed when the peak node is marked

can elapse between these two events. Assume, for example, that the node 3 in
Figure 4a is marked. Even if the process shown in Figure 4c is in a bad state,
when pause 3 finishes it will move to the good state, where the finish of pause 2
is acceptable. We fix this in step 2 by composing Pc with Rr~=0 and RT3-T~_<-I
(Figure 5). Now, when pause 3 finishes and the process Figure 4c is in the bad
state it must be that 73 = 0 and ~ = 1- , so the process in Figure 5 must
be in the bad state. Since no t ime can elapse, it will remain there until pause
2 finishes. But RT3=o will force 73 = 0 (as long as no time elapses) and the
process in Figure 5 accepts the finish of pause 2 only if 73 > 0. Therefore, the
sequence (1) is eliminated.

In general case, Algorithm 2 ensures), that the original sequence no longer
has a run in the updated abstraction of P, because at least one of the difference
tracking processes will be in the bad state at the corresponding peak node, hence
it will not accept the finish of the "x-axis pause".

By Algorithm 2, it is possible to eliminate any timing inconsistent sequence,
by composing the current abstraction of the system with some difference tracking
and zero tracking processes. Since there are only finitely many of those, the
iteration will converge in a finite number of steps.

5 C o n c l u s i o n s

To model timing behavior of finite-state systems, we have proposed timed L-
processes. We believe that t imed L-processes offer two major advantages over
previous approaches. First, an equivalent L-process is defined as a composition of
an unrestricted L-process and many smaller processes. We provide a transition
matr ix for each of these processes. In this way, the automatic generation of
the equivalent process is simpler than in [Dil89] where there is one big region
automaton and the computation of the next state function includes non-trivial
matr ix manipulation, and in [AD90] where the equivalent au tomaton is defined
as a single automaton with a very large state space.

More importantly, we propose a verification strategy to deal with the state

163

space explosion problem. Basically, we propose a "trial and error" strategy, start-
ing with the unrestricted process, and using at each step only the minimum
subset of timing constraints necessary to eliminate the reported error. Although
in the worst case the construction of the full region process is necessary, in our
experience that is rarely the case. In fact none of the examples we tried required
it. However, even if the region process is only partially constructed, the verifica-
tion of timing constrained systems remains a complex and time-consuming task,
requiring further research and development of more efficient techniques.

Besides t ime and space saving, the proposed strategy could also have a pos-
itive impact on the design. Indeed, to perform the required task, a design does
not have to meet all t iming constraints, but only those used in the verification.
Relaxing of constraints could be used to optimize the design.

Acknowledgment

The authors would like to thank Prof. R. Brayton, R. Murgai and T. Villa for
many useful discussions. We also acknowledge R. Kurshan for his presentations
at UCBerkeley that sparked our interest in the subject. This work has been
supported by DARPA under contract JFBI90-073.

R e f e r e n c e s
/

[AD90] Rajeev Alur and David L. Dill. Automata for modelling real-time systems.
In M.S. Paterson, editor, ICALP 90 Automata, languages, and programming:
17th international colloquium. Springer-Verlag, 1990. LNCS vol. 443.

[AIKY92] Rajeev Alur, Alon Itai, R. P. Kurshan, and M. Yannakakis. Timing veri-
fication by successive approximation. In Proceeding of the Forth Workshop
on Computer-Aided Verification (CA V '9P), June 1992.

[BSV92] Felice Balarin and Alberto L. Sangiovanni-Vincentelli. Formal verification
of timing constrained finite-state systems. Technical report, University of
California Berkeley, 1992. UCB ERL M92/8.

[Dil89] David L. Dill. Timing assumptions and verifications of finite-state concur-
rent systems. In Joseph Sifakis, editor, Automatic Verification Methods for
Finite-State Systems. Springer-Verlag, 1989. LNCS vol. 407.
Z. Har'E1 and R. P. Kurshan. Software for analysis of coordination. In
Proceedings of the International Conference on System Science, pages 382-
385, 1988.
R.P. Kurshan. Analysis of discrete event coordination. In J.W.
de Bakker, W.P. de Roever, and G. Rozenberg, editors, Stepwise Refinement
of Distributed Systems : Models, Formalisms, Correctness, pages 414-453.
Springer-Verlag, 1990. LNCS vol. 430.
R. P. Kurshan, 1991. private communications.
Robert Endre Tarjan. Data Structures and Network Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1983.

[HK88]

[Kur90]

[Kur91]
[TarS3]

