
Another Solution of Scoping Problems
in Symbol Tables

Werner A.f$mann
Ge rman National Research Center for Compute r Science

Research Center for Innovative Compute r Sys tems and Technology
Rudower Chaussee 5, D - 1199 Berlin

assmann@firs t .gmd.de

Abstract

The central task of symbol table administration is identification of all identifiers used
in the source program under consideration of visibility rule, s varying between the dif-
ferent programming languages. Usually this problem is handled by a hash search of
the identifier and an additional decision about the visibility of this idcnrifler in the cur-
rent program region Cscoping problem"). The most used solution for the scoping
problem is scope-dependent switching of hash links in such a way that only such iden-
riflers indeed visible in this rcgion arc reachable by the hashing process.
The new approach handles the scoping problem by visibility sets defined for every
program region, and additionally by overload resolution tables for multiple used iden-
tifier names. The result is constant decision time for the scoping problem (at latest) af-
ter the first access to an identifier in a program region. The algorithm is very simple so
that the access timc is not only (nearly) constant but also very smalL The approach
permits an efficient solution of all the scoping problems of contemporary program-
ming languages such as MODULA-2, C, or Fonrang0.

1. Introduction
The symbol table is one of the most important tools in compiler construction. All identifi-
cation problems of the identifiers used in a program must be solved by the symbol table.
Additionally, the symbol table usually administrates all the information about the program
objects such as type, allocation, and other properties (this aspect will not be considered in
the following).
In classical programming languages such as ALGOL-60 only simple problems arise in
symbol tables: after searching (with success) in the list of identifiers only a decision is
necessary, if the object is truly visible in the current block because of the scoping rule that
all objects of outer blocks arc readable in thc inner blocks but not vice versa, and the dec-
laration rule that objects can be ovcrdeclared in inner blocks. In other programming lan-
guages the rules sometimes are much more simpler.
The classical solution to symbol table administration in this class of programming lan-
guages is a hash table with separate overflow table (all identifiers with the same hash code
are linked togctber) and some switching strategy for these link chains to make visible ex-
actly the right objects in dependence of the block slructure, usually by a stack.
In modem programming languages much more complicated scoping and visibility rules
are defined. In MODULA-2 (will be used in the following for the demonstration of the
different features and the algorithms) firsdy a few data structures are defined with special
scoping rules: enumerations and records. All elements of an enumeration (the enumera-
tion literals) are visible in the same scopes as the enumeration type itself. Because of the
export/import concepts it is necessary to gather all enumeration literals of one enumera-
tion type in an extra scope. As a result of this method we need a possibility to make visi-

67

ble all elements of these scopes in another scope (extension of a scope). The components
of a record declaration are visible either by qualification or inside of a WITH-statement.
An extra scope for the record components is necessary, too.

Another very important extension is the module concept with the export/import features.
Module objects can be exported in the environment (by registering into the export list),
and are directly visible there (unqualified export) or by qualification with the module
name. On the other hand modules can import objects from their environment - also with
direct visibility or by qualification.

The scoping respective visibility rules therefore arc much more difficult as in the pasL A
lot of scopes with different properties must be administrated, and the visibility of scopes
must be extended to (or restricted from) other scopes in a very free way.
Some solutions of this problem have already been given. Typically the hash chains are up-
dated but there exists a solution founded on relational data bases, too. The approach de-
scribed in this paper starts on another consideration. Provided that we have a matrix with
one row for each identifier and one column for each scope, and the matrix elements de-
notes the visibility (may be: not visible, visible for read operations, visibility for write op-
erations, or visibility for both), then the decision about the visibility of an identifier in a
given scope is very easy to decide by inspection of the related matrix element (despite of
overloading). This is a situation known from parser tables: the original form of these ta-
bles is very big and it is necessary to use table compaction methods. It seems to be no rea-
son not to try such a technique for symbol table administration, especially for the solution
of the scoping problem.

The result of this approach is a matrix similar to the just described one but with rows for
scopes and not for every identifier (representing classes of identifiers), and an additional
table with one entry for every overloaded identifier to solve the overloading problem.

2. A Simple Example
The program in Figure I demonstrates the scope handling for procedures, enumerations,
and records (written in MODULA-2). In this little program various scopes appear: the en-
vironment of the module (scope I), the scopes for the program objects of the module m
and the procedure p (scopes 2 and 5), the scopes of the enumeration literals and the record
fields (scope 3 and 4), and last but not least the scope inside the with clause (scope 6). All
scopes are simply numbered starting by I.

MODULE ro; (* scope l: module environment *)
VAR a: CARDINAL; (* scope 2: objects of module ro *)

e: (el,e2); (* scope 3: enumeration literals *)
r: RECORD fl, f2: CARDINAL END;(* scope 4: record coroponcnts *)

�9 PROCEDURE p;

VAR b: CARDINAL; (* scope 5: objects of procedure p *)
BEGIN (* body p *)

b := I; c := el; r.fl := I;
WITH r DOf2 :ffi 2 END; (* scope 6: with statement *)

END 13;

BEGIN (* body ro *)
a := O:

END m.

Fig. 1: Sample program with enumerations, records, and procedures

For each entry of the symbol table the following information is necessary: the definition
scope (the number of the scope in which the identifier has been declared), an adjacent
scope ta scope associated with this identifier such as the scope 4 of the record components

68

with the identifier r), and a list of scopes in which this identifier is visible (normally dif-
ferentiated in read and write visibility). The identifier table for this example is given in
Figure 2.
In this example three types of scopes are represented: the scope 2 is impermeable to ob-
jects in both directions (no export, no import), scope 3 is permeable in both directions,
and scope 5 is permeable for imports only (import means in this context read visibility,
export write visibility).

Entry Def. Scope Adj. Scope Read Visibility Write Visibility
m 1 {1} {1}
a 2 {2, 3, 5, 6} {2, 3}
e 2 3 {2, 3, 5, 6} {2, 3}
el 3 {2, 3, 5, 6} {2, 3}
e2 3 {2, 3, 5, 6} {2, 3}
r 2 4 {2, 3, 5, 6} {2}
fl 4 14, 6} {4}
12 4 {4, 6} {41
p 2 {2, 3, 5, 6} {2, 3}
b 5 {5, 6} {5, 6}

Fig. 2: Extended symbol table to the program of Fig. 1

Immediately it is evident that we can reduce the symbol table to the columns entry, defini-
tion scope, and adjacent scope, and to store the visibility rules in an extra table (s. Figure
3) with one entry for every scope. If the entry is found in the symbol table, the definition
scope will be read, and by looking in the extra table with this entry the decision about
read/write visibility can be made: the identifier is visible, if the current scope number is a
member of the set of read/write visible scopes. This test is very effective, if the visibility
sets are represented in form of bitsets.

Objects of Scope are read visible in scopes are write visible in scopes
1 {1} {l}
2 {2, 3, 5, 6} {2, 3}
3 {2, 3, 5, 6} {2, 3}
4 {4, 6} {4}
5 {5.6} {5,6}

Fig. 3: Visibility table of the program in Fig. 1

Some more simplifications are possible but should be part of real implementations.

3. O v e r l o a d i n g R e s o l u t i o n

The most programming languages allow overloading of identifiers: an object with the
same name has different meanings in different scopes (the other case of 'true' overloading
will not be handled here!). Figure 4 shows a sample program with such situation.
Another interesting situation is included in this little program - the import of single ob-
jects through module bounds. There is a simple solution for this import problem: declara-
tion of a second instance of the imported object as a module object and to use the
overloading resolution schema already available. This technique simplifies the algorithm
substantially.
Overload resolution is done by the following method:
- All symbol table entries with the same name are linked together.
- The first entry of this chain is associated with a list of pairs (scope, symbol table entry),

usable for the decision which symbol table entry is valid in the current scope. The updat-
ing of this list can be delayed until an access to an entry not used in an inner scope until

69

now takes place indeed.
MODULE m; (* scope 1: module environment

VAR a, b: CARDINAL; (* scope 2: objects of module m
PROCEDURE p;

VAR a: CARDINAL; (* scope 3" objects of procedure p
MODULE n;

IMPORT a; (* scope 4: objects of module n
BEGIN (* body n *)

a := 0 ; (* a: imported from p
END n;
BEGIN (* body p *)

a := 1; (* a: declared in p
b := 1; (* b: declared in m

END p;
BEGIN (* body m *)

a := 2; (* a: declared in m
END m.

Fig. 4: Sample program with overloaded objects

The resulting data structures arc shown in the Figures 5 and 6.
Entry
Number

1
2
3
4
5
6
7

Entry
Name

m
a
b

Definition Adjacent
Scope Scope

1
2
2

p 2
[a] 3 7
n 3
<a> 4

Fig. 5: Symbol table to the example of Fig. 4
[a] means: doubly declared entry, <a>: alias declaration

*)
*)

*)

*)

*)

*)
*)

*)

Next Overload
Overloaded Table Entry

5 1

Overload Read visible Write visible
Table Entry symbol table entries symbol table entries
1 (from a) {1: not; 2: 2; 3: 5; 4: 7} {1: not; 2: 2; 3: 5; 4: 7}

Fig. 6: Overload resolution table to the program of Fig. 4

4. D e s c r i p t i o n o f t h e A b s t r a c t D a t a T y p e

The algorithm based on the ideas described above will be formulated in the following us-
ing a MODULA-2 - like style. First some data structures must be defined (Fig. 7). In a
real implementation dynamic instead of static data structures can be used without essen-
tial changes. An appropriate initialization of all variables is presupposed.

The following variables describe the actual analysis state. The Icxical analysis writes the
name of the current identifier in the variable Currentldentifier, CurrentScope is the num-
ber of the scope currently processed, and CurrentEntry is the entry in the identifier table
(or 0 if not found).

In Fig. 8 the algorithms for scope handling are given. The procedure OpenScope prcparcs
a new scope and handles the permeability to the surrounding scope. The other two proce-
dures switchc to another scope (typically to a 'adjacent' scope) rcsp. extend the visibility
of a scope to another (in addition to the visibility rule defined in OpenScope.

70

VAR HashTablc:
Idcntific~l'able:

ARRAY [0"MaxHash-1] OF CARDINAL;
ARRAY [1..MaxldcntEntry] OF RECORD

NextHash: CARDINAL;
NcxtOverloadcd: CARDINAL;
OverloadEntry: CARDINAL;
DefinitionScope: CARDINAL;
AdjacentScope: CARDINAL;
NamcOfEntry: STRING;
AttributList: ARRAY [...] OF ... ;

END;
ScopeTable: ARRAY [1..MaxScopeNumber] OF RECORD

FathcrScope: CARDINAL;
Visible, Scopes: ARRAY [rcadvisible..writevisible] OF

SET OF [1..MaxScopeNumbcr];
END;

OverloadTablc: ARRAY [1..MaxOverloadEntry] OF
ARRAY [readvisible..writevisible] OF

ARRAY [l..MaxScopeNumber] OF CARDINAL;
OvcrloadedScopes: ARRAY [l..MaxOverloadEntry] OF

SET OF [l..MaxScopcNumber];
Currcntldcntificr: STRING;
CurrcotEntry, FirstEntry: CARDINAL;
CurrentScopc, LastUscdScope: CARDINAL;

Fig. 7: Global vaiablcs and data structures

PROCEDURE OpcnScopc(EnvRcadVisible,EnvWritcVisiblc:BOOLEAN);
BEGIN

INC (LastUsedScopc);
WITH ScopcTable[LastUsedScopc] DO

FatherScope := CurrcntScope;
IF EnvRcadVisible THEN VisibleScopes[rcadvisible] :=

ScopeTable[CurrcntScopc].visibleScopcs [rcadvisiblc] END;
INCL (VisibleScopcs[rcadvisible], LastUscdScope);
... (* the same for EnvWritcVisible *)

END;
CurrcntScopc := LastUsedScope;

END OpenScopc;
PROCEDURE SwitchScopc (NewScopeNumbcr: CARDINAL);

BEGIN CurrcntScopc := NcwScopcNumbcr; END SwitchScopc;

PROCEDURE ExtendCurrcntScopc (ToScopcNumbcr: CARDINAL;
(EnRcadVisiblc, EnvWritcVisiblc: BOOLEAN);

BEGIN
IF EnvRcadVisiblc THEN

INCL (ScopeTable[ToScopcNumbcr].VisibleScopes[rcadvisiblc], CurrcntScopc);
INCLSET (ScopeTablc[CurrcntScopc].VisibleScopes[readvisiblc],

ScopeTable[ToScopeNumbcr] .VisiblcScopes[rcadvisiblc]);
END;
... (* the same for EnvWritcVisiblc *)

END ExtcndCurrcntScope;
Fig. 8: Scope handling procedures

It can immediately be seen that all scope operations are very trivial. Especially the very
often used switch operation (access to re~ord components[) is reduced to a simple number
assignment.
The following search operation seems to be a little more expensive. But disregarding the

71

hash search cycle the most other program parts are straight-forward with the only excep-
tion mentioned above (overload resolution).

PROCEDURE Searchldentifier (Visibility: CARDINAL); (* readvisible I writevisible *)
VAR HashCode: CARDINAL;

PotentialEntry: CARDINAL;
CurrentOverloadEntry: CARDINAL;

BEGIN (* examination of hash chain*)
HashCode := ComputeHashCode (Currenfldentifier);
CurrentEntry := HashTable [HashCode];
LOOP

IF CurrentEntry = 0 THEN RETURN END;(* nothing found with this name*)
IF Currentldentifier = IdentifierTable [CarrentEatry].NameOIEntry THEN

EXIT, (* an entry with this name was found*)
ELSE

CurrentEntry := Identifiefrable [CurrentEntry].NextHash;
END;.(* if *)

END; (* loop *)
FirstEntry := CurrentEntry; (* store for later use in a global vat. *)
WITH Identifier'Pable [Curren~ntry] DO (* decide visibility of this entry *)

IF OverloadEntry ffi 0 THEN
IF NOT
(DefinitionScope IN ScopeTable [CurrentScopel.VisibleScopes [Visibility])

THEN CurrentEntry := 0 END; (* found entry not visible: no success*)
RETURN; (* found entry visible: success! *)

ELSE (* decision by overload resolution *)
PotentialEntry := OverloadTable [OvedoadEntry,Visibility, CurrentScope];
IF PotentialEntry = MAXCARD THEN

CurrentEntry := 0; RETURN; (* sorry: unvisibility is proved *)
ELSIF PotentialEntry > 0 THEN

CurrentEntry := PotentialEntry; RETURN;(* visibility was proved *)
END;

END (* if *)
CurrentOverloadEntry := OverloadEntry;

END; (* with *)
LOOP (* visibility was not decided yet *)

IF OvefloadedSeopes[OvefloadEntry] AND
ScopcTable[CurrentScope].VisiblcScopes[Visibility]
= OverloadcdScopes[OvcfloadEntry] AND

ScopcTable[Identifiegl'able[CurrcntEntry].DcfinitionSeopc].
VisibleS copes[visibility] THEN

OverloadTable[CurrentOverioadEntry, Visibility, CurrentScopc]:=CurrentEntry;
RETURN; (* visible, overload table is updated *)

END;
CurrentEntry := Identifiet'Table [CurrentEntry]. NextOverloaded;
IF CurrentF~try = 0 THEN RETURN END;(* sorry: truly nothing found! *)

END; (* loop *)
END Scarchldentifier;,

Fig. 9: Search algorithm

The procedure Enterldentifier has to update the hash chain, and - if used - the overload
chain too. The global variable FirstEntry initialized in the search procedure with the first
entry of the overload chain can be used for this task. Additionally the overload table (if
there is an overload entry - possibly newly created) must be updated by the following
statements:

72

OverloadTable [ldentifierTable [FirstEntry].OverloadEntry, ivisible, CurrcntScope]
:= CurrcntEntry; (* ivisible = rcadvisiblc, writcvisible *)

INCL(OvefloadedScopcs[IdcntifierTable[FirstEntry].OvefloadEntry],CurrcntScopc);
The situation can slightly vary, if an alias identifier should be entered. Further variations
of the algorithm can be useful in an actual implementation to support other tasks of the
compiler. More optimizations can be applied to the data structures to reduce the memory
demands. For instance, inside a WITH-statement there is no need for a list of write visibil-
ities because nobody will ask for it.

5. Application to MODULA-2
The most constructs of MODULA-2 can be handled very easily. The visibility problem of
procedures is solved by entering the procedure scope in the read visibility list of the envi-
ronment. Enumeration lists and record component lists have own scopes extended to the
environment complete (for enumerations) resp. only in WITH-statements or temporary in
qualified identifiers. Dependent from the application an aliasing of record fields in the
wrI'H-scopes can be necessary. Export lists also have their own scope visible in the envi-
ronment dependen on qualified or unqualified export, but in both cases they are addition-
ally visible in the module scope. Imports (in local modules) are handled by entering an
alias identifier.
A little more attention must be given to the import from separate compiled modules. All
imported objects are collected in an extra scope, and this scope is completely visible in
the scope of the importing module. In a sense this also is a type of aliasing but between
different compilation units.

6. Conclusion
The use of visibility sets for every program region together with the concept of overload-
ing resolution by direct access reduces the time complexity to a constant (and very small)
value with only one exception: the time needed for updating the resolution tables. This sit-
uation is very seldom and then the needed time is linear to the number of identifiers with
the same name (also usually a very small value) and naturally restricted by the number of
scopes. The time complexity of the additionally necessary hash search has not yet been
changed by the algorithm.

References

L P. Fritzson: Incremental Symbol Processing.
Research Report LiTH-IDA-R-88-09, Linktping University, Swe~ien, 1988

2. L.B. Geissmann: Separate Compilation in Modula-2 and the Structure of the Modula-2
Compiler on the Personal Computer Litith. ETH Ziirich, Diss. ETH No. 7286, 1983

3. S.L. Graham, W.N. Joy, O. Roubine: Hashed Symbol Tables for Languages with Ex-
plicit Scope Control. SIGPLAN Notices 14 (Aug. 1979), 50-57

4. R.T. House: Alternative Scope Rules for Block-Structured Languages.
The Computer Journal 29 (1986) 3, 253-260

5. U. Kastens, W.M. Waite: An Abstract Data Type for Name Analysis.
Research Report CU-CS-460-90, University of Colorado at Boulder, March, 1990

6. Masato Takeichi: Name Identification for Languages with Explicit Scope Control.
Journal of Information Processing 5 (1982) 1, 45-49

7. W.M. Waite, G. Goos: Compiler Construction. Springer Verlag, New York, 1984

