
The Implementation of ObjectMath -
a High-Level Programming Environment

for Scientific Computing

Lars Viklund, Johan Herber and Peter Fritzson

Programming Environments Laboratory
Depm'unent of Computer and Information Science

Link6ping University
S-581 83 Linktping, Sweden

Abstract. We present the design and implementation of ObjectMath, a language and
environment for high-level equation-based modeling and analysis in scientific
computing. The ObjeetMath language integrates object-oriented modeling with
mathematical language featores that make it possible to express mathematics in a
natural and consistent way. The implemented programming environment includes a
graphical browser for visualizing mad editing inheritance hierarchies, an application
oriented editor for editing ObjeetMath equations and formulae, a computer algebra
system for doing symbolic computations, support for generation of numerical code
from equations, and routines for graphical presentation. This programming
environment has been successfully used in modeling and analyzing two different
problems from the application domain of machine element analysis in an industrial
environment.

1 Introduction

The programming development process in scientific computing has not changed very much
during the past 30 years. Most scientific software is still developed the traditional way [3].
Theory development is usually done manually, using only pen and paper. In order to
perform numerical calculations, the mathematical model must be implemented in some
programming language, in most cases FORTRAN. Often more than half the time and effort
in a project is spent writing and debugging FORTRAN programs. The process is highly
iterative, as feedback from numerical computations and physical experiments can affect
both the underlying mathematical model and the numerical implementation. This iteration
cycle is very time consuming and has a tendency to introduce errors, see Fig. 1.

In order to improve this situation we have designed and implemented an object-oriented
programming environment and modeling language called ObjectMath. This environment
supports high-level equation-based modeling and analysis in scientific computing. It is
currently being used for applications in advanced mechanical analysis, but it is intended to
be applicable to other areas as well. The implemented programming environment includes
a graphical browser for visualizing and editing inheritance hierarchies, an application
oriented editor for editing ObjectMath equations and formulae, a computer algebra system
for doing symbolic computations, support for generation of numerical code from equations
and for combined symbolic/numerical computations, as well as routines for graphic
presentation. This paper describes the ObjectMath environment and its implementation.

313

Machine, Material, Geometrical Knowledge

Systems of equations

/ ~, /~. .4v Namerical Implementation (FORTRAN program)

" ~ ~ _ ~ ~ P t e s e n t a t i o n

Fig. 1. The iterative process of modeling in tradition mechanical analysis

2 The ObjectMath Language

ObjectMath [8] is a hybrid modeling language, combining object-oriented constructs with
a mathematical language. This combination makes ObjectMath a suitable language for
implementing complex mathematical models. Formulae and equations can be written with
a notation that closely resembles conventional mathematics, while the use of object-oriented
modeling makes it possible to structure the model in a natural way.

We have chosen to use an existing computer algebra language, Mathematica [11], as a
base for ObjectMath. The relationship between Mathematica and ObjectMath can be
compared to that between C and C++. The C++ programming langnage is basically the C
language augmented with classes and other object-oriented language constructs. In a similar
fashion, the ObjectMath language can be viewed as an object-oriented version of the
Mathernatica language.

Ordinary Mathernatica packages can be imported into an ObjectMath model. Such
packages exist for a variety of application areas such as trigonometry, vector analysis,
statistics and Laplace transforms. It is also possible to call external functions written in other
languages. The current implementation of the programming environment supports external
C++ functions, but in principle is it possible to use any language.

3 The ObjectMath Programming Environment

In this section we give an overview of the basic features of the ObjectMath programming
environment. The implementation is described in the next section. Currently, the
programming environment supports:

�9 Graphic browsing and editing of inheritance hierarchies
�9 Textual editing of ObjectMath code
�9 Interactive symbolic computation

�9 Automatic code generation from simple ObjectMath equations
�9 Mixing ObjectMath and C++ for combined symbolic/numerical computations

Graphic presentation

314

The graphical browser is used for viewing and editing ObjectMath inheritance
hierarchies. It is integrated with the Gnu Enmcs editor for editing of equations and formulae.
The Matbematica computer algebra system is also integrated within the environment.
ObjectMath code is translated into pure Mathematica code by the ObjectMath Wanslator.
Algebraic simplification of equations can be done interactively in Mathematica. Figure 2
shows the screen during a typical session.

Fig. 2. The ObjectMath programming environment in use

Analyzing a mathematical model expressed in ObjectMath involves performing
numerical computations. The Mathematica system can be used for some of these
calculations. However, Mathematica code is interpreted and cannot be executed as
efficiently as programs written in compiled languages such as C, C++ or FORTRAN. This
might be a serious drawback, particularly when doing mostly numerical computations in
realistic applications. It is also desirable to take advantage of the large number of existing,
highly optimized, special purpose numerical routines.

The ObjectMath environment provides the possibility to generate C++ code and to mix
ObjectMath and C++, thus enabling us to lake advantage of symbolic computation while
still being able to write time-critical functions in a language that can be compiled into
efficient code. Numerical routines can either be called from within the ObjectMath
environment, via an implemented message-passing protocol, or be used independently of
the environment as a computation kernel, for example together with a graphical front end.

A library with general classes is also available. This includes classes for modeling
simple bodies (spheres, cylinders, rings, etc.), coordinate systems and contacts between
bodies. The classes for modeling bodies implement methods which generate three-
dimensional plots of the bodies from the surface descriptions. Graphical support helps the
user to visually verify the formulae and equations which specify geometric properties.

315

4 Implementation of the Programming Environment

The ObjectMath programming environment has been implemented in C++, Scheme, Gnu
Emacs Lisp and Mathematic& It currently runs on Sun workstations under the X window
system. The main parts are:

�9 The graphical browser, which allows editing of class hierarchies.
�9 The Gnu Emacs editor, which is used for editing of ObjectMath equations and formulae.

�9 The ObjectMath translator, which translates ObjectMath programs into Mathematica
code.

�9 The Mathematica system, which runs as a subprocess to Emacs.

Gnu Emacs communicates with the ObjectMath translator and the Mathematica process via
UNIX pipes, while communication with the browser is done through sockets. The passing
of code from the translator to the Mathematica process utilizes a temporary f'de. Figure 3
shows the internal structure of the system.

and execution ~ Mathematica
of numerical :" "1

Translator

I I
Graphical L J GnuEmacs
Browser Fq

Fig. 3. Su'ucture of the implementation

4.1 The ObjectMath Browser

The ObjectMath browser allows the user to view and edit ObjectMath inheritance
hierarchies. Properties such as parameters to classes are also edited in the browser, while the
equations and formulae in the classes are edited as text in Gnu Emacs. When the user selects
a class or instance to be edited, an Emacs text buffer with the body of the declaration is
created and displayed. The browser also has a number of command buttons, for instance one
for translating the current model and sending it to Mathematica.

The browser is implemented in C++ using the ET++ class library [10]. ET++ includes
classes for building user interfaces and general classes such as different kinds of collections.
The object-oriented design of ET++ makes the library very flexible. Advanced classes can
be utilized even if they do not fit exactly into the application being implemented by defining
a new class inheriting from a suitable existing class and redefining a few methods.

4.2 Customizing the Gnu Emacs Editor

Most of the features in the Gnu Emacs editor are written in a Lisp dialect called Gnu Emacs
Lisp [6]. Gnu Emacs can easily be extended by writing new Lisp code and installing it as an

316

extension to the editor. Emac~ Lisp is a full programming language, with additional features
for handling editor specific functions such as text buffers. In the ObjectMath environment,
Gnu Emacs has been extended with a special ObjectMath mode. A separate Emacs buffer is
used for each class or instance declaration. Switching between different object buffers is
done by selecting their icons in the browser window using the mouse.

4.3 Communication between Gnu Emacs and Other Subsystems

The communication between the browser and Emacs goes through a pair of sockets. When
the browser is started, it forks a process in which Emacs is executed. After this, the browser
creates a socket and listens to it. Emaes starts a communications subprocess which creates
its own socket and opens a connection to the browser. Whenever the user issues a command
in the browser that affects data in Emacs one or more messages are passed to Emacs in order
to keep the data structures up to date, save modified files, etc.

4.4 Translating ObjectMath Programs

ObjectMath programs are translated into Mathematica packages by a series of program
transformations. The Mathematica context facility is used to implement objects. A
Mathematica context provides a separate name space, similar to a block in Algol-like
languages. Packages generated from ObjectMath models consists of a number of context
declarations, one for each instance. Retranslation in the ObjectMath translator is
incremental with the granularity of an object. Therefore, new Mathematica code will be
produced very fast if only a single instance is changed.

A first version of the ObjectMath translator was implemented in Gnu Emacs Lisp.
Unfortunately, this implementation turned out to be too inefficient for practical use, forcing
us to re-implement it in Scheme. The Scheme program was compiled with Bartlett's
Scheme--->C compiler [1] and runs about 50 times faster than the original Emacs Lisp
implementation.

4.5 Generating Numerical Code from ObjectMath Equations

The ObjectMath environment supports automatic generation of numerical code for solving
sets of non-linear equations. Generated code is linked to numerical FORTRAN routines
which perform the actual solving. Currently, we use the MINPACK [5] routines HYBRD
and HYBRJ as solvers. One of the input parameters to these is a routine which calculates
the values of the functions. This routine is generated from a C++ code template, using a
translator which generates three-address statements expressed in C++ from ObjectMath
expressions. The ObjectMath-->C++ translator does common subexpression elimination,
using the fact that functions such as sin, cos etc. do not have side effects.

4.6 Mixing ObjectMath and C++ Code

The ObjectMath environment allows C++ functions to be used as ObjectMath methods.
These C++ functions might contain ObjectMath symbolic expressions which must be
evaluated and expanded before compiling the C++ code, see [8] for an example. Translating

317

an Object_Math model with C++ methods requires the following steps:

1. Translate the ObjectMath code into Mathematica code and load it into the Mathematica
system.

2. Generate C++ class declarations and do some syntactic transformations on the user
supplied C++ functions.

3. Generate C++ code for initialization of the external function interface.
4. Call Mathematica to evaluate ObjectMath expressions in the C++ code, once for each

instance inheriting the C++ method. Expand the result from the symbolic evaluation
into the C++ code.

5. Compile and link the C++ code.
6. Start the resulting program as a subprocess (computation server) of Mathematica.

The steps above are performed automatically. Any compilation errors in the C++ code are
reported to the user.

4.7 Graphic Presentation

As mentioned earlier, some classes in the ObjectMath class library includes methods which
generate three-dimensional pictures of bodies described with parametric surface techniques.
Our parametric surface descriptions consist of a function of two arguments and intervals for
the two parameters. A surface is obtained by varying the two parameters of the function. The
generated piclm'e can be combined with other graphical objects, for instance vectors
rel~esenting forces and normals, axes in the coordinate systems, or textual labels. The user
has control over several parameters concerned with the rendering of surfaces, such as
lighting, shading and color. The view reference point may also be adjusted.

5 Related Work

There exist a number of systems and research areas which in some way are related to the
ObjectMath programming environment. Some of these are:

�9 Computer algebra systems such as Maple [2] or Mathematica [11].
�9 Systems for matrix computations, e.g. MATLAB [7].

�9 Symbolic and numerical hybrid systems. An example is the FINGER package [9], a
hybrid system supporting f'mite element analysis.

An exhaustive survey can be found in [3].

6 Conclusions

There is a strong need for efficient high-level programming support in scientific computing.
The goal of our work has been to build an object-oriented programming environment that
satisfies part of this need. A prototype environment supporting symbolic, numerical and
graphic analysis has been implemented. The implemented programming environment has
been successfully used in modeling and analyzing two different problems from the
application domain (machine element analysis) in an industrial environment [4].

318

The s ~ s f u l use of the ObjectMath programming environment shows that a
combination of programming in equations and object-c~ientation is suitable for modeling
machine elements. Complex mathematical equations and functions can be expressed in a
natural way instead of as low-level procedural code. The object-oriented features allow
better struclme of models and permit reuse of equations through inheritance.

References

[1] Joel F. Bartlett. Scheme--~, a portable Scheme-to-C compiler. Research Report 89-
1, DEC Western Research Laboratory, Palo Alto, California, January 1989.

[2] Char, Geddes, Gonnet, Monagan, and Watt. Maple Reference Manual. wATCOM
Publications, 5th edition, 1988.

[3] Peter Fritzson and Dag Fritzson. The need for high-level programming support in
scientific computing applied to mechanical analysis. Technical Report LiTH-IDA-
R-91-04, Department of Computer and Information Science, Link6ping University,
S-581 83, LinkOping, Sweden, March 1991. Accepted for publication in Computers
and Structures - an International Journal.

[4] Peter Fritzson, Lars Viklund, Johan Herber, and Dag Fritzson. Industrial application
of object-oriented mathematical modeling and computer algebra in mechanical
analysis. In Georg Heeg, Boris Magnusson, and Bertrand Meyer, editors,
Technology of Object-Oriented Languages and Systems - TOOLS 7. Prentice Hall,
1992.

[5] ButtonS. Garbow, KennethE. Hillstrom, and JorgeJ. More. Users Guide for
MINPACK-1. Argonne National Laboratory, Argonne, Illinois, USA, March 1980.
Report ANL-80-74.

[6] Bil Lewis, Dan LaLiberte, and the GNU Manual Group. The GNU Emacs Lisp
Reference Manual. Free Software Foundation, Inc., 675 Massachusetts Avenue
Cambridge, MA 02139 USA, 1.02 edition, June 1990.

[7] Cleve Moler. MATLAB users' guide. Report CS81-1, University of New Mexico
Computer Science Department, 1981.

[8] Lars Viklund and Peter Fritzson. An object-oriented language for symbolic
computation - applied to machine element analysis. In Paul Wang, editor,
Proceedings of the International Symposium on Symbolic and Algebraic
Computation, 1992.

[9] Paul S. Wang. FINGER: A symbolic system for automatic generation of numerical
programs in finite element analysis. Journal of Symbolic Computation, 2:305-316,
1986.

[10] Andr6 Weinand, Erich Gamma, and Rudolf Marty. ET++ - an object-oriented
application framework in C++. In OOPSLA'88 Conference Proceedings, 1988.

[11] Stephen Wolfram. Mathematica - A System for Doing Mathematics by Computer.
Addison-Wesley Publishing Company, second edition, 1991.

