
Partial Evaluation of C and
A u t o m a t i c Compi ler Generat ion

(Extended Abstract)

Lars Ole Andersen

DIKU, Department of University of Copenhagen,
Universitetsparken 1, DK 2100 Copenhagen ~, Denmark.

E-mail: lars@diku.dk

Abs t rac t . A partial evaluator is a program transformator which as input
take a program and parts of its input, and as output produce a specialized
residual program. When applied to the rest of the input data, the residual
program yields same result as the orignal program. The aim is efficiency:
the residual program often run an order of magnitude faster. We have de-
veloped a self-applicable partial evaluator for a substantial subset of the C
programming language. The possibility of self-apphcation enables generation
of stand-alone compilers from executable specifications, for example inter-
preters.

1 I n t r o d u c t i o n

During the last decade partial evaluation has proven its usefulness in numerous areas
ranging from specialization of scientific computat ion [3], to specialization of general
scanners [9], to automatic compiler generation [4,5]. The aim of partial evaluation
is efficiency. Until recently, the only languages with a clean semantics have been
subject for partial evaluation, but as the techniques are better understood, more
pragmatically languages can be considered, e.g. the C programming language.

Usually, interpreters are easier to write than compilers. For example, it is a
manageable task to program a simulator for a machine architecture but a similar
compiler may require a considerably effort. Compilers are here to stay, however, for
one indisputable reason: efficiency. A compiled version of a program often run an
order of magnitude faster than an equivalent interpreted version. Partial evaluation
can bridge the two worlds, giving both the advantages of prototyping via general
interpreters, and the efficiency of compilers. By specialization of an interpreter to a
program, the net effect is compilation, and if the partial evaluator is self-applicable,
an interpreter can automatically be transformed into a compiler.

Similar holds in general. Programs taking two inputs where the latter varies more
often than the former, usually benefits from specialization with respect to the first
input. For example, a general scanner is a program which takes as input a token
specification and a stream of characters. By specialization with respect to the token
specification, a fast lexer tailored to the particular set of tokens is produced.

We have developed a self-applicable partial evaluator for a substantial subset of
the widespread C programming language. The aim of the paper is to report the work
done, technical details can be found in [2,1].

252

2 P a r t i a l E v a l u a t i o n a n d P r o g r a m s a s D a t a O b j e c t s

A partial evaluator is a program operating on programs as data objects�9 It is therefore
important to distinguish between a program text, its meaning, and a representation.
Let p be the text of a program. By [i o] c (d l , . . . , d ,) =r d we denote the result d
of applying a C program p to the data di. Suppose t is the type of an unspecified
data structure. By ~' we denote the representation of p as a t data structure. The
notation is overloaded to also describe the representation of an arbitrary data in a
particular data structure.

In a typed language, types, value representation and self-application interferes.
Let s i n t be a self-interpreter for C. In languages like Scheme, programs are legal data
objects and can be given directly to a self-interpreter, but in C, a suitable program
representation must be devised. Furthermore, as the self-interpreter is supposed
to work on programs taking different type of input data, the input data must be
encoded into a single uniform data type Gal. In C, this will typical be a s t r u c t with
a huge union inside. Applying the self-interpreter to a program p and input data

- - V M --VM
d/ correspond thus to I[sint]c(~ P~', di) =* d , where Pgra ~s a data structure for
programs. Suppose the self-interpreter is self-applied: run on itself with input data p
and di. As input to the interpreted version of s i n t , p must be represented as a Pgm
data structure, but as input to the running version of s ine , it must subsequently be
encoded into the Val type. That is:

- - P g m ~------'~'2"~--~ TM .--2-Val V~l ~ d
[sint]c(int , v ,

where the program and input data has been double encoded. One of the problems
connected with the double encoding is the memory usage. This can be alleviated by
"tricks" [6].

Recall the operation of a partial evaluator mix as is stated in the Mix Equation.

D e f i n i t i o n l (T h e M i x E q u a t i o n) . Let p be a program, and ds, da input to it.
~ V a l ~TPgm

A partial evaluator mix is a program such that [mix]C(p P ' ' , ds) ==~ and
[p']c(da) ~ d iff [pie(d,, da) ~ d (provided execution of mix terminates).

The input d8 given to mix is called the static input, the rest, dd, the dynamic
input. The mix produced program p' is called a residual program and is a specialized
version of p with respect to ds. The possibility of compilation, stand-alone compiler
generation and even compiler generator generation, is contained in the Futamura
projections, restated below with explicit value and program representations.

P r o p o s i t i o n 2 (T h e F u t a m u r a P r o j e c t i o n s) . Let mix be a partial evaluator and
• an (unspecified) interpreter.

�9 - r ' - - r - P g m 1. Futamura [mlx]c(int , ~-p-~v.,) ~ t a r g ~ e ' " Compilation

�9 .---~--P~m) =;~ compiler Pg~ Compiler 2. Futamura [t ox i c (r ex , TffC
- - - r - - -P &m P g m TM

3. Fulamura [mix]c(mmx , mix) =:~ c o - ' ~ e ' ' Compiler Generator

The first projection shows that compilation can be done by specialization of an
interpreter to a program. The second, involving self-application, demonstrates stand-
alone compiler generation, and the third, the generation of a compiler generator.
Proofs of the projections can be found in e.g. [5].

253

3 Part ia l Eva luat ion of C

The basic principles in partial evaluation is specialization of program points to known
values, reduction of partially known expressions, and evalution of known expressions.
Hence, every s ta tement (expression) must be classified as being either specialization-
t ime or run-time. This can either be done during the specialization (on-line) or
before the specialization (off-line) (by the means of a binding t ime analysis). On-
line techniques have been advocated for imperative languages [7], but when self-
application is desired, experience clearly shows that the off-line method is more
appropriate. Furthermore , using off-line techniques, information about effects may
be given to the specializer enabling better control of these. We solely consider off-
line specialization, but not binding time analysis. In [1] an automatic binding t ime
analysis based on type inference and constraint set solving is given.

The treated subset of C is transformed into an intermediate language Core C,
similar to "three address" code. This provide an explicit control-flow, and further-
more, side-effects are isolated (by the means of assignment and call statements).

The supported data structnres include base type variables (i n t , cha r etc), struc-
tures, multi-dimensional arrays and pointers to arrays. General pointers to and heap
allocated structures is not handled. In[1], specialization of dynamically allocated ar-
rays is described, and handling of heap allocated structures is discussed. A formal
definition of Core C in form of an operational semantics can also be found.

3.1 S p e c i a l i z a t i o n o f S t a t e m e n t s

For explicit separation of the binding times, a two-level Core C language is exploited.
Underlined constructs are dynamic (run-time) and non-underlined constructs are
static (specialization-time). The specialization can then be formalized as a two-level
sematics over the two-level language, cf. [1].

Example 1. Consider the from partial evaluation canonical power program comput-
ing z to the nth. Suppose n is static (3) but x dynamic. A two-level Core C version
is shown below to the left.

in...~t power (int n in..._tt x)
{ in_t.t pow

1: assign pow = 1
2: if (n) 3 6
3: assign pow = pow
4: assign n = n - 1
5: goto 2
6: return pow

}

*X

int power_3(int x)
{ int pow

1: assign pow = 1
2: assign pow = pow * x
3: assign pow = pow * x
4: assign pow = pow * x
5: return pow

At specialization time, the specializer execute the non-underlined statements, and
generate code for the underlined ones. Hereby the residual program shown to the
right is produced. When a dynamic branch, e.g. an i f is met, both the branches are
specialized.

254

For specialization of s ta tements a variant of polyvariant program point special-
ization is used [5]. The presence of descructive side-effects and pointers complicates
the management of the specialization t ime stores considerably. "Dangling" pointers
must be avoided aswell as destruct ion/ introduct ion of sharing.

while (pp != STOP)
switch ((Statement kind))

case ASSIGN: (evaluate and update store) ; pp +-- 1 ;
case ASSIGN: gen_assign((reducedexpressions)); pp += 1;
c a s e COTe: pp = (9oto labe O;
case COTe: insert_pend((goto label)) ; pp - STOP;
case IF: i f ((evaluate expression))

pp -- (if then) e l se pp = (if else);
case IF : gen_ i f ((reduce expression)) ;

inser t_pend((i f then)) ;
inser t_pend((i f else)) ; pp = STOP;

case RETURN:gen_return((reduce expression)) ; pp -- STOP;
case CALL: (perform static call); pp += 1;
case CALL: gen_ cal l ((reduce arguments)) ;

inser t_pend(pp+l) ; pp = STOP;

Fig. 1. Code generation for s ta tements

A data structure pend ing keeps track of pending program points to be special-
ized. Of course, if a program point already have been specialized to a part icular
instance of the static values, it may be shared.

The drive loop is given in Fig. 2.

3.2 F u n c t i o n S p e c i a l i z a t i o n

Functions specialization is the generation of a residual function specialized with
respect to static values, cf. po~er_3() above. In C, function specialization must
obviously be with respect to both static parameters and static global variables.
Function specialization is complicated due to the lack of referential transparency,
which characterize functional languages. It must be assured tha t all effects happens,
and in the right order. Consider the following program.

int global; /*
in t main(void)
{ x = f o e () ;

S;
}

A static global variable *1
in t foe (void)
{ i f (dynamic expression)

g l o b a l = 1;
e lse

g l o b a l = 2;
r e t u rn dynamic expression;

}

255

spec_func (rune, store)
{ insert_pend((Jirst'label, store>); /* Insertfirst label */

vhi l e (pending_not_empty()) /* Specializer all reachable points */
{ /* Restore computation state according to pending */

(pp, store> = pend_out();
I* Specialize it */
(Fig. 1) ;

}
(Store the generated code and record func has been specializea) ;

}

Fig. 2. Drive loop for function specialization

Suppose foo is specialized. Clearly, fimction specialization must be depth-first, that
is, f o o () must be specialized before S is processed. Otherwise the (static) effects
will happen in the wrong order. Imagine a call to foo () appears later in the program
with the same values of the static variables. In a functional language, the call could
immediately be replaced with a (residual) call to the already generated residual
function, but in languages with side-effects it may be necessary to update the values
of the static variables due to static side-effects in the specialized function. In C, the
global and call-by-reference 1 must be updated according to the residual function.

Now consider the global variable in the program above. Even though it is as-
signed statically in f o o () , its value will be unknown after the specialization. In the
partial evaluator reported in [7], explicators are inserted and the binding t ime status
of g l o b a l changed to "unknown". Another solution which allows static t reatment
of g l o b a l , and at the same time solves the problem of updating the store when
residual functions are shared, is as follows.

in t endconf ;
int main(void) int foo()
{ x = foo () ; { i f (reduced expression) {

sllitch(endconf) { endconf=l ;
case 1 : /* global=l */ r e t u rn reduced expression;
case 2: /* global=2 */ } e l se {

} endconf=2;
r e t u rn reduced expression;

}

The key observation is that g l o b a l only can assume finite many static values 2, and
hence S can be specialized with respect to these. The variable endconf is introduced
at specialization-time, and its purpose is, at run-time, to indicate which code block to
execute. Observe that the result of a function specialization is beside the generated
code a set of specialization time store. These stores contain information for updating
the callee after a residual call.

1 Arrays are passed cMl-by-reference in C
2 If the specialization process terminate

256

4 E x p e r i m e n t s

An implementation of the C partial evaluator has been made. The specializer, npee,
make up 472 lines of C code. The additional modules consist of app. 3000 lines of
code. Benchmarks are given below. The time is user seconds on a Sun SparcStation
II including parsing, and code size is number of C lines.

Program run

[sca..erl(to ens, stream)
[scanner, o,..,l(stream)
lint[(primes, 500)
Unte..,,,](500)
[spec] (Int, primes)
[specint] (primes)

Code size
[Size Ratio

72
87 0.9

123
118 1.04
472
238 2.0

Time
Time Ratio

1.6
0.8 2.0

61.6
8.9 6.9
0.6
0.5 1.2

4.1 S p e c i a l i z a t i o n o f a G e n e r a l S c a n n e r

The general scanner from [9] accepts a token specification and a stream of characters,
and output a list of recognized tokens. In the run, a specification of eight different
tokens was given, and the scanner was applied to a file containing 21000 legal tokens.

By specialization of the scanner to the token specification, a lexical analysis
is generated tailored to the particular set of tokens. The specialized program run
approximately twice as fast as the general version. Gained by specialization is that
all the "table lookups" are eliminated. The resulting program possess a structure
similar to a hand-written scanner.

The specialization time was 0.2 seconds. Hence, it even pay-off to specialize and
run the specialized version when compared to the run-time of the general scanner.

4.2 S p e c i a l i z a t i o n o f an I n t e r p r e t e r

We have implemented an interpreter for a "poolish-form" machine code language.
The interpreter simulates a simple stack machine with instructions such as JUHP, ADD,
and STORE. In the test run, input to the interpreter was a program that computes
the first n primes.
The time for generation of the "polish-form"-compiler (by self-application of the
specializer) was 1.8 seconds.

A speedup of 6.9 is obtained by specialization of the interpreter to the primes
program. The result, a primes program in C, possess a machine code like form, and
can be optimized considerably by the traditional code improving transformations in
most C compilers.

The generated compiler is only halve the size of the general specializer. It does
not, however, run faster than the specializer. This is mainly due to the overhead in
the compiler--when larger programs are supplied, the overhead will disappear.

257

5 Re la ted Work

This work continues the research in both program specialization of imperative lan-
guages and self-appplicable partial evMuation. To the best of our knowledge, this is
the first developed and implemented self-applicable partial evaluator for a substan-
tial imperative language.

Gomard and Jones reports a self-applicable partial evaluator for a small untyped
flow-chart language with S-expression as the sole data structure [5]. In [6], a self-
applicable partial evaluator for a subset of strongly typed LML is analyzed.

Meyer [7] describes an on-line partial evaluator for a subset of Pascal. The onLline
technique allow variables to change binding time status during the specialization,
but the off-line method may provide the specializer with valuable information which
cannot be approximated "on-the-fly". A close study is beyond the scope of this
paper. Nirkhe and Pugh [8] have developed an off-line system for a similar language.

6 Conclus ion and Future Work

We have succeeded in developing, successfldly implemented and self-applied a partial
evaluator for a subset of C. The system has been applied in a number of experiments
and give good results.

Several problems are still to be tackled, however. The foremost is treatment of
general data structures such as pointers, lists and trees. Here the use of off-line static
analyses may benefit as they can provide the specializer with valuable information.

References

1. L.O. Andersen. C program specialization. Technical report, DIKU, University of Copen-
hagen, Denmark, 1992.

2. L.O. Andersen. Self-applicable C program specialization. In Proceeding ol PEPM'92:
Partial Evaluation and Semantics-Based Program Manipulation, 1992.

3. A. Berlin and D. Weise. Compiling scientific code using partial evaluation. IEEE Com-
puter, 23(12):25-37, December 199(I.

4. A. Bondorf. Sell-Applicable Partial Evaluation. PhD thesis, DIKU, University of Copen-
hagen, 1990.

5. C.K. Gomard and N.D. Jones. Compiler generation by partial evaluation: a case study.
Structured Programming, 12:123-144, 1991.

6. J. Launchbury. A strongly-typed self-applicable partial evaluator. Functional Program-
ming Languages and Computer Architecture, August 1991. (LNCS, voi. 523), pages 145-
164. ACM, Springer Verlag, 1991.

7. U. Meyer. Techniques for partial evaluation of imperative languages. In Partial Evalu-
ation and Semantics-Based Program Manipulation, New Haven, Connecticut. (Sigplan
Notices, vol. 26, no. 9, September 1991), pages 94-105. ACM, 1991.

8. V. Nirkhe and W. Pugh. Partial evaluation and high-level imperative programming
languages with. applications in hard real-time systems. In Nineteenth ACM Symposium
on Principles of Programming Languages, Albuquerque, New Mexico, January 1992.
ACM, 1992.

9. F.G. Pagan. Partial Con,putation and the Construction of Language Processors.
Prentice-Hall, 1990.

