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Abs t rac t .  A partial evaluator is a program transformator which as input 
take a program and parts of its input, and as output produce a specialized 
residual program. When applied to the rest of the input data, the residual 
program yields same result as the orignal program. The aim is efficiency: 
the residual program often run an order of magnitude faster. We have de- 
veloped a self-applicable partial evaluator for a substantial subset of the C 
programming language. The possibility of self-apphcation enables generation 
of stand-alone compilers from executable specifications, for example inter- 
preters. 

1 I n t r o d u c t i o n  

During the last decade partial evaluation has proven its usefulness in numerous areas 
ranging from specialization of scientific computat ion [3], to specialization of general 
scanners [9], to automatic  compiler generation [4,5]. The aim of partial evaluation 
is efficiency. Until recently, the only languages with a clean semantics have been 
subject for partial evaluation, but  as the techniques are better  understood, more 
pragmatically languages can be considered, e.g. the C programming language. 

Usually, interpreters are easier to write than compilers. For example, it is a 
manageable task to program a simulator for a machine architecture but a similar 
compiler may require a considerably effort. Compilers are here to stay, however, for 
one indisputable reason: efficiency. A compiled version of a program often run an 
order of magnitude faster than an equivalent interpreted version. Partial  evaluation 
can bridge the two worlds, giving both the advantages of prototyping via general 
interpreters, and the efficiency of compilers. By specialization of an interpreter to a 
program, the net effect is compilation, and if the partial evaluator is self-applicable, 
an interpreter can automatically be transformed into a compiler. 

Similar holds in general. Programs taking two inputs where the latter varies more 
often than the former, usually benefits from specialization with respect to the first 
input. For example, a general scanner is a program which takes as input a token 
specification and a stream of characters. By specialization with respect to the token 
specification, a fast lexer tailored to the particular set of tokens is produced. 

We have developed a self-applicable partial evaluator for a substantial subset of 
the widespread C programming language. The aim of the paper is to report the work 
done, technical details can be found in [2,1]. 
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2 P a r t i a l  E v a l u a t i o n  a n d  P r o g r a m s  a s  D a t a  O b j e c t s  

A partial evaluator is a program operating on programs as data  objects�9 It is therefore 
important  to distinguish between a program text, its meaning, and a representation. 
Let p be the text of a program. By [ i o ] c (d l , . . . , d , )  =r d we denote the result d 
of applying a C program p to the data  di. Suppose t is the type of an unspecified 
data  structure. By ~' we denote the representation of p as a t data  structure. The 
notation is overloaded to also describe the representation of an arbitrary data  in a 
particular data  structure. 

In a typed language, types, value representation and self-application interferes. 
Let s i n t  be a self-interpreter for C. In languages like Scheme, programs are legal data  
objects and can be given directly to a self-interpreter, but in C, a suitable program 
representation must be devised. Furthermore, as the self-interpreter is supposed 
to work on programs taking different type of input data, the input data  must be 
encoded into a single uniform data type Gal. In C, this will typical be a s t r u c t  with 
a huge union  inside. Applying the self-interpreter to a program p and input data  

- - V M  --VM 
d/ correspond thus to I[sint]c(~ P~', di ) =* d , where Pgra ~s a data  structure for 
programs. Suppose the self-interpreter is self-applied: run on itself with input data  p 
and di. As input to the interpreted version of s i n t ,  p must be represented as a Pgm 
data  structure, but as input to the running version of s ine ,  it must subsequently be 
encoded into the Val type. That  is: 

- - P g m  ~------'~'2"~--~ TM .--2-Val V~l ~ d  
[sint]c( int , v  , 

where the program and input data  has been double encoded. One of the problems 
connected with the double encoding is the memory usage. This can be alleviated by 
"tricks" [6]. 

Recall the operation of a partial evaluator mix as is stated in the Mix Equation. 

D e f i n i t i o n l  ( T h e  M i x  E q u a t i o n ) .  Let p be a program, and ds, da input to it. 
~ V a l  ~TPgm 

A partial evaluator mix is a program such that  [mix]C(p P ' ' ,  ds ) ==~ and 
[p']c(da) ~ d iff [pie(d,, da) ~ d (provided execution of mix terminates). 

The input d8 given to mix is called the static input, the rest, dd, the dynamic 
input. The mix produced program p' is called a residual program and is a specialized 
version of p with respect to ds. The possibility of compilation, stand-alone compiler 
generation and even compiler generator generation, is contained in the Futamura 
projections, restated below with explicit value and program representations. 

P r o p o s i t i o n 2  ( T h e  F u t a m u r a  P r o j e c t i o n s ) .  Let mix be a partial evaluator and 
• an (unspecified) interpreter. 

�9 - r ' - - r - P g m  1. Futamura [mlx]c(int , ~-p-~v.,) ~ t a r g ~  e ' "  Compilation 

�9 .---~--P~m ) =;~ compiler Pg~ Compiler 2. Futamura [ t ox i c ( r ex  , TffC 
- - - r - - -P &m P g m  TM 

3. Fulamura [mix]c(mmx , mix ) =:~ c o - ' ~  e ' '  Compiler Generator 

The first projection shows that  compilation can be done by specialization of an 
interpreter to a program. The second, involving self-application, demonstrates stand- 
alone compiler generation, and the third, the generation of a compiler generator. 
Proofs of the projections can be found in e.g. [5]. 
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3 Part ia l  Eva luat ion  of  C 

The basic principles in partial evaluation is specialization of program points to known 
values, reduction of partially known expressions, and evalution of known expressions. 
Hence, every s ta tement  (expression) must be classified as being either specialization- 
t ime or run-time. This can either be done during the specialization (on-line) or 
before the specialization (off-line) (by the means of a binding t ime analysis). On- 
line techniques have been advocated for imperative languages [7], but  when self- 
application is desired, experience clearly shows that  the off-line method is more 
appropriate.  Furthermore , using off-line techniques, information about  effects may 
be given to the specializer enabling better  control of these. We solely consider off- 
line specialization, but  not binding time analysis. In [1] an automatic  binding t ime 
analysis based on type inference and constraint set solving is given. 

The treated subset of C is transformed into an intermediate language Core C, 
similar to "three address" code. This provide an explicit control-flow, and further- 
more, side-effects are isolated (by the means of assignment and call statements).  

The supported data  structnres include base type variables ( i n t ,  cha r  etc), struc- 
tures, multi-dimensional arrays and pointers to arrays. General pointers to and heap 
allocated structures is not handled. In[1], specialization of dynamically allocated ar- 
rays is described, and handling of heap allocated structures is discussed. A formal 
definition of Core C in form of an operational semantics can also be found. 

3.1 S p e c i a l i z a t i o n  o f  S t a t e m e n t s  

For explicit separation of the binding times, a two-level Core C language is exploited. 
Underlined constructs are dynamic (run-time) and non-underlined constructs are 
static (specialization-time). The specialization can then be formalized as a two-level 
sematics over the two-level language, cf. [1]. 

Example 1. Consider the from partial evaluation canonical power program comput- 
ing z to the nth. Suppose n is static (3) but x dynamic. A two-level Core C version 
is shown below to the left. 

in...~t power (int n in..._tt x) 
{ in_t.t pow 

1: assign pow = 1 
2: if (n) 3 6 
3: assign pow = pow 
4: assign n = n - 1 
5: goto 2 
6: return pow 

} 

*X 

int power_3(int x) 
{ int pow 

1: assign pow = 1 
2: assign pow = pow * x 
3: assign pow = pow * x 
4: assign pow = pow * x 
5: return pow 

At specialization time, the specializer execute the non-underlined statements,  and 
generate code for the underlined ones. Hereby the residual program shown to the 
right is produced. When a dynamic branch, e.g. an i f  is met,  both the branches are 
specialized. 
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For specialization of s ta tements  a variant  of polyvariant program point special- 
ization is used [5]. The  presence of descructive side-effects and pointers complicates 
the management  of the specialization t ime stores considerably. "Dangling" pointers 
must  be avoided aswell as destruct ion/ introduct ion of sharing. 

while (pp != STOP) 
switch ( ( Statement kind)) 

case ASSIGN: (evaluate and update store) ; pp +-- 1 ; 
case ASSIGN: gen_assign((reducedexpressions)); pp += 1; 
c a s e  COTe: pp = (9oto labe O; 
case COTe: insert_pend((goto label)) ; pp - STOP; 
case IF: i f  ((evaluate expression)) 

pp -- (if then) e l se  pp = (if else); 
case IF :  gen_ i f  ( ( reduce expression)) ; 

inser t_pend(( i f  then)) ; 
inser t_pend(( i f  else)) ; pp = STOP; 

case RETURN:gen_return((reduce expression)) ; pp -- STOP; 
case CALL: (perform static call); pp += 1; 
case CALL: gen_ cal l  ( ( reduce arguments)) ; 

inser t_pend(pp+l) ;  pp = STOP; 

Fig. 1. Code generation for s ta tements  

A data  structure pend ing  keeps track of pending program points to be special- 
ized. Of  course, if a program point already have been specialized to a part icular  
instance of the static values, it may be shared. 

The  drive loop is given in Fig. 2. 

3.2 F u n c t i o n  S p e c i a l i z a t i o n  

Functions specialization is the generation of a residual function specialized with 
respect to static values, cf. po~er_3()  above. In C, function specialization must  
obviously be with respect to both  static parameters  and static global variables. 
Function specialization is complicated due to the lack of referential transparency, 
which characterize functional languages. It  must  be assured tha t  all effects happens,  
and in the right order. Consider the following program. 

int global; /* 
in t  main(void) 
{ x = f o e ( ) ;  

S; 
} 

A static global variable *1 
in t  foe (void) 
{ i f  ( dynamic expression) 

g l o b a l  = 1; 
e lse  

g l o b a l  = 2; 
r e t u rn  dynamic expression; 

} 
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spec_func (rune, store) 
{ insert_pend((Jirst'label, store>); /* Insertfirst label */ 

vhi l e  (pending_not_empty()) /* Specializer all reachable points */ 
{ /* Restore computation state according to pending */ 

( pp, store> = pend_out(); 
I* Specialize it */ 
(Fig. 1) ; 

} 
(Store the generated code and record func has been specializea) ; 

} 

Fig. 2. Drive loop for function specialization 

Suppose foo  is specialized. Clearly, fimction specialization must be depth-first, that  
is, f o o ( )  must be specialized before S is processed. Otherwise the (static) effects 
will happen in the wrong order. Imagine a call to foo  ()  appears later in the program 
with the same values of the static variables. In a functional language, the call could 
immediately be replaced with a (residual) call to the already generated residual 
function, but in languages with side-effects it may be necessary to update the values 
of the static variables due to static side-effects in the specialized function. In C, the 
global and call-by-reference 1 must be updated according to the residual function. 

Now consider the global variable in the program above. Even though it is as- 
signed statically in f o o ( ) ,  its value will be unknown after the specialization. In the 
partial evaluator reported in [7], explicators are inserted and the binding t ime status 
of g l o b a l  changed to "unknown". Another solution which allows static t reatment  
of g l o b a l ,  and at the same time solves the problem of updating the store when 
residual functions are shared, is as follows. 

in t  endconf ; 
int main(void) int foo() 
{ x = foo ( ) ;  { i f  (reduced expression) { 

sllitch(endconf) { endconf=l ; 
case 1 : /* global=l */ r e t u rn  reduced expression; 
case 2: /* global=2 */ } e l se  { 

} endconf=2; 
r e t u rn  reduced expression; 

} 

The key observation is that  g l o b a l  only can assume finite many static values 2, and 
hence S can be specialized with respect to these. The variable endconf  is introduced 
at specialization-time, and its purpose is, at run-time, to indicate which code block to 
execute. Observe that  the result of a function specialization is beside the generated 
code a set of specialization time store. These stores contain information for updating 
the callee after a residual call. 

1 Arrays are passed cMl-by-reference in C 
2 If the specialization process terminate 
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4 E x p e r i m e n t s  

An implementation of the C partial evaluator has been made. The specializer, npee, 
make up 472 lines of C code. The additional modules consist of app. 3000 lines of 
code. Benchmarks are given below. The time is user seconds on a Sun SparcStation 
II including parsing, and code size is number of C lines. 

Program run 

[sca..erl(to ens, stream) 
[scanner, o,..,l(stream) 
lint[ (primes, 500) 
Unte..,,,](500) 
[spec] ( Int, primes) 
[specint] (primes) 

Code size 
[Size Ratio 

72 
87 0.9 

123 
118 1.04 
472 
238 2.0 

Time 
Time Ratio 

1.6 
0.8 2.0 

61.6 
8.9 6.9 
0.6 
0.5 1.2 

4.1 S p e c i a l i z a t i o n  o f  a G e n e r a l  S c a n n e r  

The general scanner from [9] accepts a token specification and a stream of characters, 
and output  a list of recognized tokens. In the run, a specification of eight different 
tokens was given, and the scanner was applied to a file containing 21000 legal tokens. 

By specialization of the scanner to the token specification, a lexical analysis 
is generated tailored to the particular set of tokens. The specialized program run 
approximately twice as fast as the general version. Gained by specialization is that  
all the "table lookups" are eliminated. The resulting program possess a structure 
similar to a hand-written scanner. 

The specialization time was 0.2 seconds. Hence, it even pay-off to specialize and 
run the specialized version when compared to the run-time of the general scanner. 

4.2 S p e c i a l i z a t i o n  o f  an  I n t e r p r e t e r  

We have implemented an interpreter for a "poolish-form" machine code language. 
The interpreter simulates a simple stack machine with instructions such as JUHP, ADD, 
and STORE. In the test run, input to the interpreter was a program that  computes 
the first n primes. 
The time for generation of the "polish-form"-compiler (by self-application of the 
specializer) was 1.8 seconds. 

A speedup of 6.9 is obtained by specialization of the interpreter to the primes 
program. The result, a primes program in C, possess a machine code like form, and 
can be optimized considerably by the traditional code improving transformations in 
most C compilers. 

The generated compiler is only halve the size of the general specializer. It does 
not, however, run faster than the specializer. This is mainly due to the overhead in 
the compiler--when larger programs are supplied, the overhead will disappear. 
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5 Re la ted  Work 

This work continues the research in both program specialization of imperative lan- 
guages and self-appplicable partial evMuation. To the best of our knowledge, this is 
the first developed and implemented self-applicable partial evaluator for a substan- 
tial imperative language. 

Gomard and Jones reports a self-applicable partial evaluator for a small untyped 
flow-chart language with S-expression as the sole data  structure [5]. In [6], a self- 
applicable partial evaluator for a subset of strongly typed LML is analyzed. 

Meyer [7] describes an on-line partial evaluator for a subset of Pascal. The onLline 
technique allow variables to change binding time status during the specialization, 
but the off-line method may provide the specializer with valuable information which 
cannot be approximated "on-the-fly". A close study is beyond the scope of this 
paper. Nirkhe and Pugh [8] have developed an off-line system for a similar language. 

6 Conclus ion and Future Work 

We have succeeded in developing, successfldly implemented and self-applied a partial 
evaluator for a subset of C. The system has been applied in a number of experiments 
and give good results. 

Several problems are still to be tackled, however. The foremost is treatment of 
general data  structures such as pointers, lists and trees. Here the use of off-line static 
analyses may benefit as they can provide the specializer with valuable information. 
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