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Abstract .  
This paper describes a new algorithm to simultaneously detect and clas- 

sify straight lines according to their orientation in 3-D. The fundamental 
assumption is that the most "interesting" lines in a 3-D scene have orien- 
tations which fall into a few precisely defined categories. The algorithm we 
propose uses this assumption to extract the projection of straight edges from 
the image and to determine the most likely corresponding orientation in the 
3-D scene. The extracted 2-D line segments are therefore "perceptually" 
grouped according to their orientation in 3-D. Instead of extracting all the 
line segments from the image before grouping them by orientation, we use 
the orientation data at the lowest image processing level, and detect seg- 
ments separately for each predefined 3-D orientation. A strong emphasis is 
placed on real-world applications and very fast processing with conventional 
hardware. 

1 I n t r o d u c t i o n  

This paper presents a new algorithm for the detection and organization of line segments 
in images of complex scenes. The algorithm extracts line segments of particular 3-D 
orientations from intensity images. The knowledge of the orientation of edges in the 
3-D scene allows the detection of important relations between the segments, such as 
parallelism or perpendicularity. 

The role of perceptual organization [5] is to highlight non-accidental relations between 
features. In this paper, we extend the results of perceptual organization for 2-D scenes 
to the interpretation of images of 3-D scenes with any perspective distortion. For this, 
we assume a priori  knowledge of prominent orientations in the 3-D scene. Unlike other 
approaches to space inference using vanishing points [1], we use the information about 
3-D orientations at the lowest image-processing level for maximum efficiency. 

The problem of line detection without first computing a free-form edge map was 
addressed by Burns et al. [2]. His algorithm first computes the intensity gradient ori- 
entation for all pixels in the image. Next, the neighboring pixels with similar gradient 
orientation are grouped into "line-support regions" by a process involving coarse ori- 
entation "buckets." Finally, a line segment is fit to the large line-support regions by a 
least-squares procedure. An optimized version of this algorithm was presented in [3]. 

The algorithm described in this paper is designed not only to extract 2-D line segments 
from an intensity image, but also to indicate what are the most probable orientations 
for the corresponding 3-D segments in the scene. Section 2 explains the geometry of 

* This research was supported in part by the DoD Joint Services Electronics Program through 
the Air Force Office of Scientific Research (AFSC) Contract F49620-89-C-0044, and in part 
by the Army Research Office under contract DAAL03-91-G-0050. 



721 

projecting segments of known 3-D orientation. Section 3 describes a very fast algorithm 
to extract the line segments from a single image and to simultaneously estimate their 
3-D orientation. Finally, Sect. 4 provides experimental results obtained with images of 
indoor scenes acquired by a mobile robot. 

2 M o t i v a t i o n  a n d  A s s u m p t i o n s  

We chose to concentrate on objects which have parallel lines with known 3-D orientations 
in a world coordinate system. For example, in indoor scenes, rooms and hallways usually 
have a rectangular structure, and there are three prominent orientations for 3-D line 
segments: one vertical and two horizontal orientations perpendicular to each other. In 
this paper, any 3-D orientation is permitted, as long as it is given to the algorithm. 
Therefore, more complex environments, such as polygonal buildings with angles other 
than 90 degrees, are handled as well if these angles are known. It is important to note that 
human vision also relies on prominent 3-D orientations. Humans feel strongly disoriented 
when placed in a tilted environment. 

Vertical lines constitute an interesting special case for two reasons: they are especially 
common in man-made scenes, and their 3-D orientation can easily be known in the 3-D 
camera coordinate system by measuring the direction of gravity. If a 2-axis inclinometer 
is mounted on the camera and properly calibrated, a 3-D vertical vector can be expressed 
in the 3-D coordinate system aligned with the 2-D image coordinate system. Inexpensive 
commercial inclinometers have a precision better than 0.01 degree. Humans also sense 
the direction of gravity by organs in their inner ears. In our experiments, we estimate the 
third angular degree of freedom of the camera relative to the scene from the odometer 
readings of our mobile robot. Provided that the odometer is constantly corrected by 
vision [4], the odometer does not drift without bounds. 

We can infer the likely 3-D orientation of the line segments from their 2-D projections 
in the image plane. With a pinhole perspective projection model, lines parallel to each 
other in the 3-D scene will converge to a vanishing point in the 2-D projection. In partic- 
ular, if the orientation of the camera relative to the scene is known, a vanishing point can 
be computed for each given 3-D orientation before the image is processed. All the lines 
that have a given orientation in 3-D must pass through the associated vanishing point 
when projected. Conversely, if a line does not pass through a vanishing point, it cannot 
have the 3-D orientation associated with that vanishing point. In practice, if a line does 
pass through a vanishing point when projected, it is likely to have the associated 3-D 
orientation. 

To summarize, the line detection algorithm of Sect. 3 knows in each point of the 
image plane the orientation that a projected line segment would have if it had one of 
the predefined 3-D orientations. Therefore, the basic idea is to detect the 2-D segments 
with one of the possible orientations, and mark them with the associated 3-D orientation 
hypothesis. 

3 D e t e c t i n g  S e g m e n t s  a n d  E s t i m a t i n g  t h e i r  3 - D  O r i e n t a t i o n  

3.1 Coordinate Systems and Transformations 

The coordinate systems are W (the World coordinate system, with a vertical z-axis), 
R (the Robot coordinate system, in which we obtain the inclinometer and odometer 
readings), C (the Camera coordinate system), and P (the coordinate system used for 
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the perspective projection on the retina). The homogeneous coordinate transformation 
matrix from W to R is Twa = TrollTpitchTheadingTtranslations. Troll and Tpitch are known 
with a good precision through the inclinometer. Theading is estimated by the odometer 
a n d  Ttranslations is not used here. Trtc, the coordinate transformation matrix from R to C, 
needs to be completely determined through eye/wheel cMibration. Finally, Tcp is known 
through camera calibration. 

3.2 Overview of the Algorithm 

The processing can be outlined as follows: 

1. Line support region extraction: compute the angle between the intensity gradient 
at each pixel and the expected direction of the projection of each 3-D orientation 
(see Sect. 3.3 for details). Use a loose threshold to allow for noise in the gradient 
orientation. Reject improper pixels and 3-D orientations. 

2. Non-maxima suppression: keep only the local gradient maxima along the estimated 
perpendicular to the line. 

3. Pixel linking: create chains of pixels using a partial neighborhood search in the di- 
rection of the estimated vanishing points. This creates noisy linear chains. 

4. Line fitting: perform a least-squares fit of line segments to the pixel chains. Re- 
cursively break the pixel chains which cannot be closely approximated with a line 
segment into smaller chains. 

5. Global orientation check: compute the match between each line and each 3-D orien- 
tation, like in the line support extraction step but with a much tighter threshold. 

If the a priori heading is very uncertain, the lines will be extracted with loose thresholds, 
the true heading will be estimated, and the algorithm can then be run again with tight 
thresholds for the correct categorization. 

3.3 Extracting Line Support Regions 

For each pixel in the input intensity image and for each category of possible 3-D orienta- 
tions, we compute the angle between the intensity gradient and the expected direction of 
the line in 2-D. The expected line is given by the current pixel and the vanishing point 
associated with the 3-D orientation. It is not necessary to compute the location of the 
vanishing point (which may lie at infinity). 

The homogeneous transformation matrix changing world coordinates into projective 
coordinates is Twp = T c e T R c T w r t .  Let [Px, Py, Pz, 0] T be a non-null vector in the 3-D w 
direction under consideration. If [su, sv, s, 1] w = Twp [x, y, z, 1] T defines the relation 

between a 2-D point [u, v] w and its antecedent by the perspective projection, then 

11 -- + 01 ) 
defines another point of the estimated 2-D line. A 2-D vector d in the image plane pointing 
to the vanishing point from the current point is then collinear to [u ~ -  u, v ' - v ]  w. 

Algebraic manipulations lead to [ du, dv IT = [ax -- azu, ay -- azv ]W where 

lax, ay, 0] T = rwp [px, py, pz, 

Note that ax, ay, and az need to be computed only once for each 3-D orientation. 
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The current pixel is retained for the 3-D direction under consideration if the angle 
between d and the local gradient g is 90 degrees plus or minus an angular threshold 7. 
This can be expressed by 

lid x g[I 
Ildll' IIg[~ > cos-/ 

or equivalently: 
gy - dy gx) > + (gx + r 

with F = (cosT) 2 computed once for all. Using this formulation, the entire line sup- 
port extraction is reduced to 8 additions and 11 multiplications per pixel and per 3-D 
orientation. If an even greater speedup is desired, (gx 2 + g~) may be computed first and 
thresholded. Pixels with a very low gradient magnitude may then be rejected before 
having to compute d. 

4 R e s u l t s  

The algorithm was implemented in C on an IBM RS 6000 Model 530 workstation, and 
tested on hundreds of indoor images obtained by our mobile robot. The predefined 3-D 
orientations are the vertical and the two horizontal orientations perpendicular to each 
other and aligned with the axes of our building. Figures 1 and 2 show the results of 
line extraction for one image in a sequence. The processing time is only 2.2 seconds for 
each 512 by 480 image. Preliminary timing results on a HP 730 desktop workstation 
approach only a second of processing, from the intensity image to the list of categorized 
segments. The fast speed can be explained partly by the absence of multi-cycle floating- 
point instructions from the line orientation equations, when properly expressed. 

The lines are not broken up easily by a noisy gradient orientation, because the ori- 
entation "buckets" are wide and centered on the noiseless gradient orientation for each 
3-D orientation category. The output quality does not degrade abruptly with high im- 
age noise, provided that the thresholds for local gradient orientations are loosened. The 
sensitivity to different thresholds is similar to that of the Burns algorithm: a single set 
of parameters can be used for most images. A few misclassifications occur in some parts 
of the images, but are marked as ambiguities. 

We have compared the real and computed 3-D orientation of 1439 detected segments 
from eight images in three different environments. The presence of people in some scenes, 
as well as noise in the radio transmission of images, did not seem to generate many mis- 
classifications. The most frequent ambiguities occurred with horizontal segments parallel 
to the optical axis: 1.1% of them were classified as possibly vertical in 3-D. 

5 C o n c l u s i o n  

We have presented a new algorithm for detecting line segments in an image of a 3-D 
scene with known prominent orientations. The output of the algorithm is particularly 
well suited for further processing using perceptual organization techniques. In partic- 
ular, angular relationships between segments in the 3-D scene, such as parallelism or 
perpendicularity, are easily verified. Knowledge of the 3-D orientation of segments is a 
considerable advantage over the traditional 2-D perceptual organization approach. The 
orientation thresholds of the 2-D perceptual organization systems cannot handle a sig- 
nificant perspective distortion (such as the third orientation category in Fig. 2). The 
independence from the perspective distortion brings more formal angular thresholds to 
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Fig. 1. (a) The input intensity image, and (b) the 2-D segments 

II1t 

Fig. 2. The line segments associated with each 3-D orientation 

the perceptual organization process. By using the 3-D orientation at the lowest image 
processing level, both the quality and speed of the algorithm were improved. The ultimate 
benefits of this approach were demonstrated on real images in real situations. 
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