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A b s t r a c t .  This paper presents a method for incrementally segmenting 
images over time using both intensity and motion information. This is done 
by formulating a model of physically significant image resgions using local 
constraints on intensity and motion and then finding the optimal segmenta- 
tion over time using an incremental stochastic minimization technique. The 
result is a robust and dynamic segmentation of the scene over a sequence 
of images. The approach has a number of benefits. First, discontinuities 
are extracted and tracked simultaneously. Second, a segmentation is always 
available and it improves over time. Finally, by combining motion and in- 
tensity, the structural properties of discontinuities can be recovered; that is, 
discontinuities can be classified as surface markings or actual surface bound- 
aries. 

1 I n t r o d u c t i o n  

Our goal is to efficiently and dynamically build useful and perspicuous descriptions of 
the visible world over a sequence of images. In the case of a moving observer or a dy- 
namic environment this description must be computed from a constantly changing retinal 
image. Recent work in Markov random field models [7], recovering discontinuities [2], seg- 
mentation [6], motion estimation [1], motion segmentation [3, 5, S, 10], and incremental 
algorithms [1, 9] makes it possible to begin building such a structural description of the 
scene over time by compensating for and exploiting motion information. 

As an initial step towards the goal, this paper proposes a method for incrementally 
segmenting images over time using both intensity and motion information. The result is 
a robust and dynamic segmentation of the scene over a sequence of images. The approach 
has a number of benefits. First, discontinuities are extracted and tracked simultaneously. 
Second, a segmentation is always available and it improves over time. Finally, by com- 
bining motion and intensity, the structural properties of discontinuities can be recovered; 
that is, discontinuities can be classified as surface markings or actual surface boundaries. 

By jointly modeling intensity and motion we extract those regions which correspond 
to perceptually and physically significant properties of a scene. The approach we take 
is to formulate a simple model of image regions using local constraints on intensity 
and motion. These regions correspond to the location of possible surface patches in the 
image plane. The formulation of the constraints accounts for surface patch boundaries as 
discontinuities in intensity and motion. The segmentation problem is then modeled as a 
Markov random field with line processes. 

* This work was supported in part by a grants from the National Aeronautics and Space Ad- 
ministration (NGT-50749 and NASA RTOP 506-47), by ONR Grant N00014-91-J-1577, and 
by a grant from the Whitaker Foundation. 
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Scene segmentation is performed dynamically over a sequence of images by exploiting 
the technique of incremental stochastic minimization (ISM) [1] developed for motion 
estimation. The result is a robust segmentation of the scene into physically meaningful 
image regions, an estimate of the intensity and motion of each patch, and a classification 
of the structural properties of the patch discontinuities. 

Previous approaches to scene segmentation have typically focused on either static im- 
age segmentation or motion segmentation. Static approaches which attempt to recover 
surface segmentations from the 2D properties of a single image are usually not sufficient 
for a structural description of the scene. These techniques include the recovery of per- 
ceptually significant image properties; for example segmentation based on intensity [2, 4] 
or texture [6], location of intensity discontinuities, and perceptual grouping of regions 
or edges. Structural information about image features can be gained by analyzing their 
behavior over time. Attempts to deal with image features in a dynamic environment have 
focused on the tracking of features over time [11]. 

Motion segmentation, on the other hand, attempts to segment the scene into struc- 
turally significant regions using image motion. Early approaches focused on the seg- 
mentation and analysis of the computed flow field. Other approaches have attempted 
to incorporate discontinuities into the flow field computation [1, 10], thus computing 
flow and segmenting simultaneously. There has been recent emphasis on segmenting and 
tracking image regions using motion, but without computing the flow field [3, 5]. 

In attempt to improve motion segmentation a number of researchers have attempted 
to combine intensity and motion information. Thompson [12] describes a region merging 
technique which uses similarity constraints on brightness and motion for segmentation. 
Heitz and Bouthemy [8] combine gradient based and edge based motion estimation and 
realize improved motion estimates and the localization of motion discontinuities. 

The following section formalizes the notion of a surface patch in the image plane in 
terms of constraints on image motion and intensity. Section 3 describes the incremental 
minimization scheme used to estimate patch regions. Section 4 presents experimental 
results with real image sequences. Finally, before concluding, section 5 discusses issues 
regarding the approach. 

2 J o i n t  M o d e l i n g  o f  D i s c o n t i n u o u s  I n t e n s i t y  a n d  M o t i o n  

To model our assumptions about the intensity structure and motion in the scene we adopt 
a Markov random field (MRF)  approach [7]. We formalize the prior model in terms of 
constraints, defined as energy functions over local neighborhoods in a grid. For an image 
of size n x n pixels we define a grid of sites: 

S =  {sl ,s2 , . . . , sn2 IVw 0 <_ is,,,js,, <_ n -  1}, 

where (i, ,  js)  denotes the pixel coordinates of site s. 
For the first order constraints employed here we define a neighborhood system ~ = 

{Gs, s E S} in terms of the nearest neighbor relations (North, South, East, West) in the 
grid. We define a clique to be a set of sites, C C_ S, such that if s, t E C and s r t, then 
t E G,. Let C be a set of cliques. 

We also define a "dual" lattice, l(s, t), of connections between sites s and their neigh- 
boring sites t E ~,. This line process [7] defines the boundaries of the image patches. 
If l(s, t) = 1 then the sites s and t are said to belong to the same image patch. In the 
case where l(s, t) = O, the neighboring sites are disconnected and hence a discontinuity 
exists. 
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Associated with each site s is a random vector X(t) = [u, i, l] which represents the 
horizontal and vertical image motion u = (u, v), the intensity i, and the discontinuity 
estimates l at time t. A discrete state space As(t) defines the possible values that  the 
random vector can take on at time t. 

To model surface patches we formulate three energy terms, Era, Ez, and EL: which 
express our prior beliefs about the motion field, the intensity structure, and the organi- 
zation of discontinuities respectively. The energy terms are combined into an objective 
function which is to be minimized: 

E(u ,u - , i , i - , l , l - )=  E~(u ,u - , l )+  Ez(i , i - , l )+ E~(1, l-). (1) 

The terms u - ,  i - ,  and l -  are predicted values given the history of the sequence, and are 
used to express temporal continuity. 

We convert the energy function, E, into a probability measure H by exploiting the 
equivalence between Gibbs distributions [7, i0] and MRF's: 

n(x ( t ) )  = Z-le-F'(x(')) /r( ') ,  z = ~ ,  e-~(x(o)/r<'), (2) 
x(,)~a(,) 

where Z is the normalizing constant, and where T(t) is a temperature constant at time 
t. Minimizing the objective function is equivalent to finding the maximum of /7 .  

The constraints are summarized in figure 1 and described briefly below: 

The I n t e n s i t y  Model :  We adopt a weak membrane model of intensity [2]. The data 
consistency term Dz keeps the estimate close to the data while the term Sz enforces 
spatial smoothness. The current formulation differs from previous approaches in that  we 
add a temporal continuity Tz term to express the expected change in the image over 
time. 

The B o u n d a r y  Model :  We want to constrain the use of discontinuities based on our 
expectations of how they occur in images. Hence, we will penalize discontinuities which do 
not conform to expectations. The boundary model is expressed as the sum of a temporal 
coherence term and a penalty term defined as the sum of clique potentials Vc over a set 
of cliques C. 

One component of the penalty term expresses our expectation about the local config- 
uration of discontinuities about a site. Figure 2 shows the possible local configurations 
up to rotation. We also express expectations about the local organization of boundaries; 
for example we express notions like "good continuation" and "closure" which correspond 
to assumptions about surface boundaries (figure 3). The values for these clique potentials 
were determined experimentally and are similar to those of previous approaches [4, 10]. 

The M o t i o n  Model :  As with the intensity model, we express our prior assumptions 
about the motion in terms of three constraints. The data consistency constraint D~a 
states that the image measurements corresponding to an environmental surface patch 
change slowly over time. The spatial coherence constraint S ~  is derived from the ob- 
servation that surfaces have spatial extent and hence neighboring points on a surface 
will have similar motion. Finally, the temporal coherence constraint T ~  is based on the 
observation that the velocity of an image patch changes gradually over time. 
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I n t e n s i t y  M o d e l  

Ez(I , i , i - , l , s )=WDzDz(I , i , s )+wTzTz( i , i - , s )+wszSz( i , l , s )  (3) 

Dz(I, i, s) = (I(s) - i(s)) a (4) 

r~(i, i - ,  s) = (i(s) - i - ( s ) )  ~ (5) 

s~( i ,  z, s) = ~ t ( s , . ) ( i ( s )  - i ( . ) )  ~ (6) 
nEG, 

Boundary Model 

E~(~, r ,  s) = ~ ~ (Z(s, .)  - r ( s , . ) ) ~  + ~ ~ Vo(Z) 
nEGs CEC 

M o t i o n  M o d e l  

(7) 

E.~(I.,1,~+l,u,u-,l,s) = 
wD~D.~(I ,~,I .+a,u,s)+wT~T.~(U,U-,S)+ws~S~(u,I ,s)  (S) 

D~(I~,In+l,u,s) = E ~D(In(it , j t)--In+l(it+u, j t+v) )  (9) 
rEG. 

(u, 1, s) = ~ t(s, 011u(s) - u(011 ( lo)  
t6G, 

T ~ ( u ,  u - ,  s) = Ilu(s) - ( u - ( s )  + Au- ( s ) ) l l  (11) 
A u 7  (s) = u 7  (s) -- u;'_~ (s) (12) 

M i s c e l l a n e o u s  

~ = { t l ( i t , j t ) = ' ( i ~ + A i ,  j ~ + A j ) ,  - -c<_Ai,  A j < c }  

9~ = {t  [ (it, j , )  = (i,  + ~ ,  j~ + ~ ) ,  --1 _< ~ , ~  _< 1} 
--1 

~v(X) = 1 + (z/AD)2 

(13) 

(14) 

(15) 

Fig.  i. Robust constraints on image motion. 
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Fig .  2. Examples of local surface patch discontinuities; (sites: (o), discontinuities: (I, - ) ) .  
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F ig .  3. Examples of local organization of discontinuities based on continuity with neighboring 
patches. 
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3 T h e  C o m p u t a t i o n a l  P r o b l e m  

The objective function defined in the previous section will typically have many local 
minima. Simulated annealing (in this case a Gibbs Sampler [7]) can be used to find the 
minimum X(t) by sampling from the state space A according to the d i s t r ibu t ion / /wi th  
logarithmicly decreasing temperatures. 

As mentioned earlier, each site contains a random vector X(t) = [u, i,/] which rep- 
resents the motion, intensity, and discontinuity estimates at time t. The discontinuity 
component of this state space is taken to be binary, so that l E {0, 1}. 

The intensity component i can take on any intensity value in the range [0,255]. For 
efficiency, we can restrict i to take on only integer values in that range. We make the 
further approximation that the value of i at site s is taken from the union of intervals of 
intensity values about i(s), the neighbors i(t) of s, and the current data value I,(s). Small 
intervals result in a smaller state space without any apparent degradation in performance. 

The motion component u = (u, v) is defined over a continuous range of displacements 
u and v. Continuous annealing techniques [1] allow accurate sub-pixel motion estimates 
by making the state space for the flow component adapt to the local properties of the 
function being minimized. 

3.1 I n c r e m e n t a l  M i n i m i z a t i o n  

Unfortunately, stochastic algorithms remain expensive, particularly without parallel hard- 
ware, making them ill-suited to dynamic problems. Ideally a motion algorithm should 
involve fast simple computations between a pair of frames, and exploit the fact that  
tremendous amounts of data are available over time. 

In the context of optical flow, Black and Anandan [1] describe an incremental stochas- 
tic minimization (ISM) algorithm (figure 4) that has the benefits of simulated annealing 

Image n- 1 _ [ E(u,v) 

Image n ~1 IntemityModel 

Motion Model 
Predicted 
Intensity 
Boundary 

Flow 

i 
Fig. 4. Incremental Stochastic Minimization. 

Surface Increnaental 
- Stochastic 
-[ Minimization 

........ 1 .... I =  

t . . . . . . . . . . . . . . . . . . . . . . .  d 

without many of the shortcomings. As opposed to minimizing the objective function for 
a pair of frames, the ISM approach is designed to minimize an objective function which 
is changing slowly over time. The assumption of a slowly changing objective function is 
made possible by exploiting current motion estimates to compensate for the effects of 
the motion on the objective function. With each new image, current estimates are propa- 
gated by warping the grid of sites using the current optic flow estimate. The estimates are 
then refined using traditional stochastic minimization techniques. Additionally, during 
the warping process motion discontinuities are classified as occluding or disoccluding. 
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4 E x p e r i m e n t a l  R e s u l t s  

The system is implemented in *Lisp on a 8K node Connection Machine (CM-2). A number 
of experiments have been performed using real image sequences. For these experiments, 
the parameters of the model were determined empirically. The intensity model parameters 
were: w l ~ z  = WTz  = 1/402 and w s z  = 1/202. For the boundary model, the weights were: 
wT~ = 0.5 and wp L = 1.0. Finally, for the motion model, we have: W D ~  = 0.5, WW.~ = 0.1, 
and ws~ = 1.5, with a 3 x 3 correlation window. An initial temperature of T(0) = 0.3 
was chosen with a cooling rate of T ( t  + 1) = T ( t )  - 0.0025 and AD was set to 5.0. 

T h e  P e p s i  Sequence  1 The first sequence consists of ten 64 x 64 square images; the 
first image in the sequence is shown in figure 5a. The Canny edge operator was applied 
to the image and the edges are shown in figure 5b. For comparison, figure 5c shows an 
intensity based segmentation using a piecewise constant intensity model with no motion 
information. The figure shows the estimate for a single static image after 25 iterations 
of the annealing algorithm. As with the Canny edges, the results correspond to intensity 
markings. 

Figure 5d shows the results for the same image when a joint intensity and motion 
model is used. The results are from a two image sequence after 25 iterations. Compare 
the boundaries corresponding to the right and left edges of the can. In figure 5c the 
similarity of intensity between the can and the background results in smoothing across 
the object boundary. When motion information is added in figure 5d the object boundary 
is detected (figure 5e) and smoothing does not occur across it. 

Figures 5f-51 show the results of incrementally processing the full ten image sequence. 
Figure 5f shows the last image in the sequence. The horizontal and vertical motion is 
shown in figures 5g and 5h respectively. Dark areas indicate leftward or upward motion 
and similarly, bright areas indicate motion to the right and down. Figure 5i shows the 
intensity estimates of the patches and figure 5j shows the discontinuities. Figure 5k shows 
the detected motion boundaries, while figure 51 shows the classification of the boundaries 
as occluding (bright areas) or disoccluding (dark areas). Figure 6 shows the evolution of 
the features over the ten image sequence. The estimates start out noisy and are refined 
over time. Only five iterations of the annealing algorithm were used between each pair 
of frames. The processing time for each frame was approximately 30 seconds. 

T h e  Coke Sequence  2 The second image sequence contains 38 images of size 128 x 128 
pixels. Figures 7a and b show the first and last images in the sequence respectively. 
Figure 7c shows the image features at the end of the image sequence. Unlike standard 
segmentation, these features have been tracked over the length of the sequence. Figure 
7d shows only features which are likely to correspond to surface boundaries. The pencils 
and metal bracket are correctly interpreted as physically significant while the sweater is 
interpreted as purely surface marking. Notice that  the Coke can boundary is incorrectly 
interpreted as surface marking. This is a result of small interframe displacements; the 
motion of the can boundary is not significant enough to classify it as structural with 
the current scheme. Figure 8 shows the evolution of the image features over time. The 
segmentation improves as the features are tracked over the image sequence. Five iter- 
ations of the annealing algorithm were used between frames with a processing time of 
approximately one minute per frame. 

1 This image sequence was provided by Joachim Heel. 
2 This sequence was provided by Dr. Baaavar Sridhar at the NASA Ames Research Center. 
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Fig .  5. Fea tu r e  E x t r a c t i o n :  a) First image in the Pepsi can sequence, b) Edges in the image 
extracted with the Canny edge operator, c) Intensity based segmentation without motion, d) 
Segmentation using joint intensity and motion model, e) Structural features in the scene. ] )  Last 
image in the sequence, g) Horizontal component of image motion, h) Vertical component of image 
motion, i) Reconstructed intensity image, j) Final patch boundaries, k) Motion boundaries, l) 
Occlusion and disocclusion boundaries. 
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Fig. 6. Incremental Feature Extraction. The images show the evolution (left to right, top 
to bottom) of features over a ten image sequence. 
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Fig. 7. The Coke Sequence.  a, b) first and last images in the sequence, c) image features at 
the end of the sequence, d) those features which axe likely to have a physical interpretation. 
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Fig. 8. Inc rementa l  Feature  Ext rac t ion .  The sequence shows the evolution (left to right, 
top to bottom) of features at every third image in the 38 image sequence. 

5 I s s u e s  a n d  F u t u r e  W o r k  

There are a number of issues to be addressed regarding the approach described. First, the 
current implementation employs only simple first order models of  intensity and motion. 
To cope with textured surfaces more complicated image segmentation models will be 
required. 

A second issue which must be addressed is one shared by many minimization ap- 
proaches; tha t  is the parameter estimation problem. The construction of an objective 
function with weights controlling the importance of the various terms is often based on 
intuition or empirical studies. The problem becomes more pronounced as the complexity 
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of the model increases. Experiments with the current model indicate that it is relatively 
insensitive to changes in the parameters. 

6 Conclusion 

We have presented an incremental approach to extracting stable perceptual features over 
time. The approach formulates a model of surface patches in terms of constraints on 
intensity and motion while accounting for discontinuities. An incremental minimization 
scheme is used to segment the scene over a sequence of images. 

The approach has advantages over traditional segmentation and motion estimation 
techniques. In particular, it is incremental and dynamic. This allows segmentation and 
motion estimation to be performed over time, while reducing the amount of computation 
between frames and increasing robustness. 

Additionally, the approach provides information about the structural properties of the 
scene. While intensity based segmentation alone provides information about the spatial 
structure of the image, motion provides information about object boundaries. Combining 
the two types of information provides a richer description of the scene. 
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