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A b s t r a c t .  Affine transformations of the plane have been used by model- 
based recognition systems to approximate the effects of perspective projec- 
tion. Because the underlying mathematics are based on exact data, in prac- 
tice various heuristics are used to adapt the methods to real data where 
there is positional uncertainty. This paper provides a precise analysis of 
affine point matching under uncertainty. We obtain an expression for the 
range of affine-invariant values consistent with a given set of four points, 
where each data point lies in an e-disc. This range is shown to depend on 
the actual x-y-positions of the data points. Thus given uncertainty in the 
data, the representation is no longer invariant with respect to the Carte- 
sian coordinate system. This is problematic for methods, such as geometric 
hashing, that depend on the invariant properties of the representation. We 
also analyze the effect that uncertainty has on the probability that recogni- 
tion methods using affine transformations will find false positive matches. 
We find that such methods will produce false positives with even moderate 
levels of sensor error. 

1 I n t r o d u c t i o n  

In the model-based approach to object recognition, a set of geometric features from an 
object model are compared against like features from an image of a scene (cf. [3, 9]). This 
comparison generally involves determining a valid correspondence between a subset of the 
model features and a subset of the image features, where valid means there exists some 
transformation of a given type mapping each model feature onto its corresponding image 
feature. The quality of an hypothesized transformation is then evaluated by determining 
if the number of features brought into correspondence accounts for a sufficiently large 
portion of the model and the data. 

Several recent systems have used affine transformations of the plane to represent the 
mapping from a 2D model to a 2D image (e.g. [4, 5, 15, 16, 20, 21, 22, 24, 25, 28]). 
This type of transformation also approximates the 2D image of a planar object at an 
arbitrary orientation in 3D space, and is equivalent to a 3D rigid motion of the object, 
followed by orthographic projection and scaling (dilation). The scale factor accounts for 
the perceptual shrinking of objects with distance. This affine viewing model does not 
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capture the perspective distortions of real cameras, but it is a reasonable approximation 
to perspective except when an object is deep with respect to its distance from the viewer. 

Recognition systems that use 2D affine transformations fall into two basic classes. 
Methods in the first class explicitly compute an affine transformation based on the corre- 
spondence of a set of 'basis features' in the image and the model. This transformation is 
applied to the remaining model features, mapping them into the image coordinate frame 
where they are compared with image features [2, 15, 16, 24]. Methods in the second class 
compute and directly compare affine invariant representations of the model and the im- 
age [4, 5, 20, 21, 22, 25, 28] (there is also recent work on deriving descriptions of shapes 
that are invariant under perspective projection [8, 27]). In either case, recognition sys- 
tems that employ affine transformations generally use some heuristic means to allow for 
uncertainty in the location of sensory data. One notable exception is [4] who formulate 
a probabilistic method. [26] also discusses bounds on the effects of error on invariants, 
and [7] addresses this problem for simpler similarity transformations. In previous work 
[17] we provided a precise account of how uncertainty in the image measurements affects 
the range of transformations consistent with a given configuration of points acting under 
an afflne transformation. Here, we show that many existing recognition methods are not 
actually able to find instances of an object, without also admitting a large number of 
false matches. The analysis further suggests techniques for developing new recognition 
methods that will explicitly account for uncertainty. 

1.1 Afllne T r a n s f o r m a t i o n s  a n d  I n v a r i a n t  R e p r e s e n t a t i o n s  

An affine transformation of the plane can be represented as a nonsingular 2 x 2 matrix 
L, and a 2-vector, t, such that a given point x is transformed to x '  = Lx  + t. Such a 
transformation can be defined to map any triple of points to any other triple (expect in 
degenerate cases). As well, three points define an affine coordinate frame (analogous to a 
Cartesian coordinate frame in the case of Euclidean transformations) [6, 18], e.g., given 
a set of points { m l , m 2 , m a } ,  any other point x can be expressed as: 

x = + a(m  - r e x )  - (1) 

c~ and/3 remain unchanged when any affine transformation A is applied to the points: 

A(x) = A(ml)  + a(A(m2) - A(ml))  +/3(A(m3) - A(ml)) .  

Thus the pair (a,/3) constitute affine-invariant coordinates of x with respect to the basis 
(ml ,  m2, m3). We can think of (a,/3) as a point in a 2D space, termed the a-/3-plane. 

The main issue we wish to explore is: Given a model basis of three points and some 
other model point, what sets of four image features are possible transformed instances of 
these points? The exact location of each image feature is unknown, and thus we model 
image features as discs of radius e. The key question is what effect this uncertainty has 
on which image quadruples are possible transformed instances of a model quadruple. 

We assume that a set of model points is given in a Cartesian coordinate frame, and 
some distinguished basis triple is also specified. Similarly a set of image points is given 
in their coordinate frame. Two methods can be used to map between the model and 
the image. One method, used by geometric hashing [20], maps both model and image 
points to (c~,/3) values using the basis triples. The other method, used by alignment [15], 
computes the transformation mapping the model basis to the image basis, and uses it to 
map all model points to image coordinates. In both cases, a distinguished set of three 
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model and image points is used to map a fourth point (or many such points) into some 
other space. We consider the effects of uncertainty on these two methods. 

First we characterize the range of image measurements in the x-y (Euclidean) plane 
that  are consistent with the (a,/9) pair computed for a given quadruple of model points, 
as specified by equation (1). This corresponds to explicitly computing a transformation 
from one Cartesian coordinate frame (the model) to another (the image). We find that  if 
sensor points '  locational uncertainty is bounded by a disc of radius e, then the range of 
possible image measures consistent with a given (c~,/9) pair is a disc with radius between 
e(1 + [c~[ + [/9[) and 2e(1 + [a[ + [/9[). This defines the set of image points that  could match 
a specific model point, given both an image and model basis. 

We then perform the same analysis for the range of affine coordinate, (c~,/9), values 
that  are consistent with a given quadruple of points. This corresponds to mapping both 
the model and image points to (a,/9) values. To do this, we use the expressions derived 
for the Euclidean case to show that  the region of a-/9-space that  is consistent with a 
given point and basis, is in general an ellipse containing the point (c~,/9). The parameters 
of the ellipse depend on the actual locations of the points defining the basis. Hence the 
set of possible values in the a-/9-plane c a n n o t  be computed independent of the actual 
locations of the image basis points. In other words there is an interaction between the 
uncertainty in the sensor values and the actual locations of the sensor points. This limits 
the applicability of methods which assume that  these are independent of one another. For 
example, the geometric hashing method requires that  the a-/9 coordinates he independent 
of the actual location of the basis points in order to construct a hash table. 

2 Image U n c e r t a i n t y  a n d  Aff ine  C o o r d i n a t e s  

Consider a set of three model points, m l ,  m~, m3, and the affine coordinates (a,/9) of a 
fourth model point x defined by 

X = II11 Jr" o~(m~ -- m l )  + /9(m3 -- m l )  (2) 

plus a set of three sensor points Sl, s2, s3, such that  si = T (mi )  Jr e i ,  where T is some 
affine transformation, and ei is an arbitrary vector of magnitude at most ei. That  is, T 
is some underlying affine transformation that  cannot be directly observed in the data  
because each data  point is known only to within a disc of radius ei. 

We are interested in the possible locations of a fourth sensor point, call it ~1, such that  
could correspond to the ideally transformed point T(x).  The possible positions of  ~ are 

affected both by the error in measuring each image basis point, sl, and by the error in 
measuring the fourth point itself. Thus the possible locations are given by transforming 
equation (2) and adding in the error e0 from measuring x, 

= T ( m l  + a ( m 2  - m l )  + / 9 ( m 3  - m l ) )  + eo 

= Sl -~- or(s2 - Sl) q-/9(s3 - Sl) - el -~- or(el - e2) q-/9(el - e3) -I- eo. 

The measured point ~ can lie in a range of locations about  the ideal location Sl + a(s~ - 
sl) +/9(s3 - sl) with deviation given by the linear combination of the four error vectors: 

- -  el + a(e l  -- e2) +/9(el -- e3) + e0 : --[(I -- ~ --/9)el + o~e2 +/9e3 -- e0]. (3) 

The set of possible locations specified by a given ei is a disc of radius el about the origin: 

C(~i)  = {ei I Ileill _< el}. 
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Similarly, the product of any constant k with ei yields a disc C(kei) of radius Iklei 
centered about the origin. Thus substituting the expressions for the disc in equation (3), 
the set of all locations about the ideal point sl + 4(s2 - sl) +/~(s~ - sl)  is: 

C([1 - 4 - ~]el) @ C(ae2) @ C(j3e3) 6~ C(eo), (4) 

where @ is the Minkowski sum, i.e. A @ B = {p + alp 6 A, q E B} (similarly for 6)). 
In order to simplify the expression for the range of ~ we make use of the following 

fact, which follows directly from the definition of the Minkowski sum for sets. 

Claim 1 C(r~) �9 C(r~) = C(r~) e C(,'~) = C(,'1 + ,'~.), where C(,'i) is a disc of radi ,s  
ri centered about the origin, ri > O. 

If we assume that  the ei = e, Vi, then Claim 1 simplifies equation (4) to 

C ( e [ J ] -  4 -  ~l + I~l + I~l + 1]). 

The absolute values arise because a and ~ can become negative, but  the radius of a 
disc is a positive quantity. Clearly the radius of the error disc grows with increasing 
magnitude of 4 and ~, but the actual expression governing this growth is different for 
different portions of the 4 - fl-plane, as shown in figure 1. 

P 

Fig. 1. Diagram of error effects. The region of feasible points is a disc, whose radius is given by 
the indicated expression, depending on the values of tr and 19. The diagonal line is 1 - a - 19 = 0. 

We can bound the expressions defining the radius of the uncertainty disc by noting: 

I + 14 l +  l~J < (11 -  4 - ~ J +  J~J+ J~1+ 1) < 2 ( 1 +  l a l +  i~i). 

We have thus established the following result, illustrated in figure 2: 

P r o p o s i t i o n  I .  The range of image locations that is consistent with a given pair of affine 
coordinates (4,~) is a disc of radius r, where 

e(1 + 141 + I~1) < r < 2e(1 + 141 + I~1) 

and where e > 0 is a constant bounding the positional uncertainty of the image data. 
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Fig. 2. Diagram of error effects. On the left are four model points, on the right are four image 
points, three of which are used to establish a basis. The actual position of each transformed 
model point corresponding to the basis image points is offset by an error vector of bounded 
magnitude. The coordinates of the fourth point, written in terms of the basis vectors, can thus 
vary from the ideal case, shown in solid lines, to cases such as that shown in dashed lines. This 
leads to a disc of variable size in which the corresponding fourth model point could lie. 

The expression in Proposition 1 allows the calculation of error bounds for any method 
based on 2D affine transformations, such as [2, 15, 24]. In particular, if [a[ and [fl[ are 
both less than 1, then the error in the position of a point is at most 6e. This condition 
can be met by using as the affine basis, three points m l , m ~  and ma  that  lie on the 
convex hull of the set of model points, and are maximally separated from one another. 

The expression is independent of the actual locations of the model or image points, 
so that  the possible positions of the fourth point vary only with the sensor error and the 
values of a and ft. They do not vary with the configuration of the model basis (e.g., even 
if close to collinear) nor do they vary with the configuration of the image basis. Thus,  
the error range does not depend on the viewing direction. Even if the model is viewed 
end on, so that  all three model points appear nearly collinear, or if the model is viewed 
at a small scale, so that  all three model points are close together, the size of the region 
of possible locations of the fourth model point in the image will remain unchanged. 

The viewing direction does, however, greatly affect the affine coordinate system de- 
fined by the three projected model points. Thus the set of possible ~ n e  coordinates of 
the fourth point, when considered directly in a-j3-space, will vary greatly. Proposition 1 
defines the set of image locations consistent with a fourth point. This implicitly defines 
the set of affine transformations that  produce possible fourth image point locations, which 
can be used to characterize the range of (a,/~) values consistent with a set of four points. 

We will do the analysis using the upper bound on the radius of the error disc from 
Proposition 1. In actuality, the analysis is slightly more complicated, because the expres- 
sion governing the disc radius varies as shown in figure 1. For our purposes, however, 
considering the extreme case is sufficient. It should also be noted from the figure tha t  the 
extreme case is in fact quite close to the actual value over much of the range of a and/~. 

Given a triple of image points that  form a basis, and a fourth image point, s4, we 
want the range of affine coordinates for the fourth point that  are consistent with the 
possibly erroneous image measurements. In effect, each sensor point si takes on a range 
of possible values, and each quadruple of such values produces a possibly distinct value 
using equation (1). As illustrated in figure 3 we could determine all the feasible values 
by varying the basis vectors over the uncertainty discs associated with their endpoints,  
finding the set of (a ' , /~ ~) values such that  the resulting point in this affine basis lies 
within e of the original point. By our previous results, however, it is equivalent to find 
affine coordinates (a ' , /~')  such the Euclidean distance from s 1 --]- O~t(S2 - -  S l )  -~- f l ' ( S  3 - -  81 )  
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to sl  + a(s2  - Sl) + ~(s3 - s l )  is b o u n d e d  above by  2e(1 + I~'1 + IZ'I). 

a'u' 

Fig.  3. On the left is a canonical example of affine coordinates. The fourth point is offset from 
the origin by a scaled sum of basis vectors, a u  +/~v.  On the right is a second consistent set of 
affine coordinates. By taking other vectors that lie within the uncertainty regions of each image 
point, we can find different sets of affine coordinates a ' ,  ~'  such that  the new fourth point based 
on these coordinates also lies within the uncertainty bound of the image point. 

The  b o u n d a r y  of the region of such poin ts  ( a ' ,  ~ ' )  occurs when  the d is tance  from the  
nomina l  image po in t  s4 = Sl + a(s2 - s l )  + /~(s3  - s l )  is 2e(1 + la'] + I~'D, i.e. 

[ 2 d l  + I~'l + I~'1)] 2 = [(~ - ~')u] 2 + 2(~  - ~ ' ) ( ~  - ~ ' ) w  cos r + [(~ - ~')v] 2 (5) 

w h e r e u  = s~ s t , v  = s a - s l , u  = H [],v Hv]l and  where the  angle made  by the  
image basis vectors s2 - st  and  s3 - Sl is r Considered  as an  implici t  func t ion  of a ' ,  ~ ,  
equa t ion  (5) defines a conic. If  we expand  out  equa t ion  (5), we get 

all(OL') 2 -{- 2a12c~'~' + a22(j3') 2 + 2a13a' + 2a23j3' + a33 = 0 (6) 

where 

a l l  : u 2 - -  4e ~ a22 = v 2 - 4e 2 

al~ = v u c o s r  4 s ~ s ~  ~ a13 = - u  [ ~ u  + ~ v  cos  r - 4 s ~  2 

a23 = --v [au cos r + j3v] - 4s~e 2 a3a = a2u  2 + 2 a ~ u v  cos r +/~2v2 - 4e 2 

and  where sa  denotes  the sign of a ,  wi th  so = 1. 
We can use this  form to compute  the  invar ian t  character is t ics  of a conic [19]: 

I = u 2 + v 2 - 8r 2 

D = u2v 2 sin 2 r - 4e 2 (u s - 2 u v s a s ~  cos r + v ~) 

A = - 4 e 2 u 2 v  2 sin 2 r + sao~ + s#/~) 2 

If u 2 + v 2 > 8e 2, then  ~ < 0. Fur thermore ,  if 

u2v ~ sin 2 r > 4e ~ (u 2 - 2 u v s ~ s  z cos r + v 2) 

(v) 

(s)  

(9) 
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then D > 0 and the conic defined by equation (5) is an ellipse. These conditions are not 
met  only when the image basis points are very close together,  or when the image basis 
points are nearly collinear. For instance, if the image basis vectors u and v are each at  
least 2e in length then u 2 +  v 2 > 8e s. Similarly, if s i n e  is not small, D > 0. In fact, cases 
where these conditions do not hold will be very unstable and should be avoided. 

We can now compute characteristics of the ellipse. The area of the ellipse is given by 

4~eSuZv s sin s r + s~a  + s0/~) s (10) 
[u~v s sin '  r - 4d  (u s - 2uvsas~ cos r + vS)] ~" 

The  center of the ellipse is at 

40 = D -x [4=2v2 sin s ~ - 4 d ( - -  s - s , (1  + s , ~ ) v  s + uv c o s ~ ( ~ +  s , ( l  - s , , ) ) ) ]  

/~0 = D -1 [/~uSvS sins r - 4es(/~v 2 - s~(1 + s , 4 ) u  2 + uvcosr  + s , (1  - s~/~)))]. 
(11) 

The  angle �9 of the principal axes with respect to the 4 axis is 

tan 2~ = 2[uv cos r - 4e2 s~s~] (12) 
us _ V2 

Thus we have established the following: 

P r o p o s i t i o n  2. Given bounded errors of e in the measurement of the image points, the 
region of uncertainty associated with a pair of alpine coordinates (a, ~) in a./~-space is 
an ellipse. The area of this ellipse is given by equation (10), the center is at (a0,/~0) as 
given by equation (11), and the orientation is given by equation (12). 

Hence, given four points whose locations are only known to within e-discs, there is an 
elliptical region of possible (a,/~) values specifying the location of one point with respect 
to the other three. Thus  if we compare (a,/~) values generated by some object  model with 
those specified by an e-uncertain image, each image da tum actually specifies an ellipse 
of (a ,  f~) values, whose area depends on e, a ,  f/, and the configuration of the three image 
points tha t  form the basis. To compare the model values with image values one must  see 
if the affine-invariant coordinates for each model point lie within the elliptical region of 
possible affine-invariant values associated with the corresponding image point. 

The  elliptical regions of consistent parameters  in 4-/~-space cause some difficulties 
for discrete hashing schemes. For example,  geometric hashing uses affine coordinates 
of model points, computed with respect to some choice of basis, as the hash keys to 
store the basis in a table. In general, the implementat ions of  this method use square 
buckets to tessellate the hash space (the a-/~-space). Even if we chose buckets whose size 
is commensurate  with the ellipse, several such buckets are likely to intersect any given 
ellipse due to the difference in shape. Thus,  one must  hash to multiple buckets,  which 
increases the probabil i ty that  a random pairing of model and image bases will receive a 
large number  of votes. 

A further problem for discrete hashing schemes is tha t  the size of the ellipse increases 
as a function of (1 + 141 + I~1) s. Thus points with larger affine coordinates give rise to 
larger ellipses. Either one must  hash a given value to many  buckets, or one must  account 
for this effect by sampling the space in a manner  tha t  varies with (1 + 141 + I~1) s. 

The most  critical issue for discrete hashing schemes, such as geometric hashing, is 
tha t  the shape, orientation and position of the ellipse depend on the specific image basis 
chosen. Because the error ellipse associated with a given (4,/~) pair depends on the 



298 

characteristics of the image basis, which are not known until run time, there is no way 
to pre-compute the error regions and thus no clear way to fill the hash table as a pre- 
processing step, independent of a given image. It is thus either necessary to approximate 
the ellipses by assuming bounds on the possible image basis, which will allow both false 
positive and false negative hits in the hash table, or to compute the ellipse to access 
at run time. Note that the geometric hashing method does not address these issues. It 
simply assumes that some 'appropriate' tessellation of the image space exists. 

In summary, in this section we have characterized the range of image coordinates and 
the range of (a, j3) values that are consistent with a given point, with respect to some 
basis, when there is uncertainty in the image data. In the following section we analyze 
what fraction of all possible points (in some bounded image region) are consistent with a 
given range of (a,/~) values. This can then be used to estimate the probability of a false 
match for various recognition methods that employ affine transformations. 

3 T h e  S e l e c t i v i t y  o f  A f f l n e - I n v a r i a n t  R e p r e s e n t a t i o n s  

What is the probability than an object recognition system will erroneously report an 
instance of an object in an image? Recall that such an instance in general is specified by 
giving a transformation from model coordinates to image coordinates, and a measure of 
'quality' based on the number of model features that are paired with image features under 
this transformation. Thus we are interested in whether a random association of model 
and image features can occur in sufficient number to masquerade as a correct solution. 
We use the results developed above to determine the probability of such a false match. 
There are two stages to this analysis; the first is a statistical analysis that is independent 
of the given recognition method, and the second is a combinatorial analysis that depends 
on the particular recognition method. In this section we examine the first stage. In the 
following section we apply the analysis to the alignment method. 

To determine the probability that a match will be falsely reported we need to know 
the 'selectivity' of a quadruple of model points. Recall that each model point is mapped 
to a point in a-/~-space, with respect to a particular model basis. Similarly each image 
point, modeled as a disc, is mapped to an elliptical region of possible points in a-/~-space. 
Each such region that contains one or more model points specifies an image point that is 
consistent with the given model. Thus we need to estimate the probability that a given 
image basis and fourth image point chosen at random will map to a region of a-/~-space 
that is consistent with one of the model points written in terms of some model basis. 
This is characterized by the proportion of ~-/~-space consistent with a given basis and 
fourth point (where the size of the space is bounded in some way). As shown above, the 
elliptical regions in a-j3-space are equivalent to circular regions in image space. Thus, for 
ease of analysis we use the formulation in terms of circles in image space. 

To determine the selectivity, assume we are given some image basis and a potential 
corresponding model basis. Each of the remaining m - 3  model points are defined as affine 
coordinates relative to the model basis. These can then be transformed into the image 
domain, by using the same affine coordinates, with respect to the image basis. Because 
of the uncertainty of the  image points, there is an uncertainty in the associated affine 
transformation. This manifests itself as a range of possible positions for the model points, 
as they are transformed into the image. Previously we determined that a transformed 
model point had to be within 2e(1 + [c~J + J/~[) of an image point in order to match it. 
That calculation took into account error in the matched image point as well as the basis 
image points. Therefore, placing an appropriately sized disc about each model point is 
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equivalent to placing an ~ sized disc about each image point. We thus represent each 
transformed model point as giving rise to a disc of some radius, positioned relative to the 
nominal position of the model point with respect to the image basis. For convenience, we 
use the upper bound on the size of the radius, 2e(1 + I~1 + I/~1). For each model point, 
we need the probability that at least one image point lies in the associated error disc 
about the model point transformed to the image, because if this happens then there is 
a consistent model and image point for the given model and image basis. To estimate 
this probability, we need the expected size of the disc. Since the disc size varies with 
I~l + 1/31, this means we need an estimate of the distribution of points with respect to 
affine coordinates. By figure 1 we should find the distribution of points as a function of 
(~,/~). This is messy, and thus we use an approximation instead. 

For this approximation, we measure the distribution with respect to p = I~1+1/~1, since 
both the upper and lower bounds on the disc size are functions ofp. Intuitively we expect 
the distribution to vary inversely with p. To verify this, we ran the following experiment. 
A set of 25 points were generated at random, such that their pairwise separation was 
between 25 and 250 pixels. All possible bases were selected, and for each basis for which 
the angle between the axes was at least ~/16, all the other model points were rewritten 
in terms of atilne invariant coordinates (~,/3). This gave roughly 300,000 samples, which 
we histogrammed with respect to p. We found that the maximum value for p in this case 
was roughly 51. In general, however, almost all of the values were much smaller, and 
indeed, the distribution showed a strong inverse drop off (see figure (4)). Thus, we use 
the following distribution of points in affine coordinates: 

{kp p _< I (13) 
6(~,/~)= kp -~ p__1. 
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Fig. 4. Histogram of distribution of [~[ + I/~[ values. Vertical axis is ratio of number of samples 
to total samples, horizontal axis is value for I~1 + I/~1. The maximum over 300,000 samples was 
51. Only the first portion of the graph is displayed. Overlayed with this is the distribution given 
in equation (13). 

Note that this model underestimates the probability for large values of p, while over- 
estimating it for small values of p. Since we want the expected size of the error disc, and 
this grows with p, such an approximation will underestimate the size of the disc. 

First, we integrate equation (13) and normalize to 1 to deduce the constant: 

2 
k =  (14) 
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where P,n is the maximum value for p. 
Next, we want to find the expected area of a disc in image space. Recall that we are 

using the upper bound on disc size, so in principle this area is just 47re2(1 +p)2. We could 
simply integrate this with respect to the distribution from equation (13). This, however, 
ignores the fact that the image is of finite size (say each dimension is 2r), and some of 
the disc may lie beyond the bounds of the image. We therefore separate out four cases. 

The first case is for p _< 1. Here we get an expected area 

I 1 
A1 = 4~re2(1 + p)2kpdp = 4~eSkl . (15) 

----0 

The second case considers discs that lie entirely within the image. For convenience, 
assume that the coordinate frame of the basis is centered at the image center (since the 
circle is entirely inside the image), and the image dimensions are 2r by 2r. In this case, 
we have r -  p _> 7 where 7 = 2e(1 + p). In general, we have p <_ pd where d is the 
separation between two of the basis points in the image, and thus if 1 _< p _< cl where 

cl = min {Pro, 
2 e + d J  

then the discs will all lie entirely within the image. Thus the second case is 

[ As = + p)Skp-2 do = 4re2k Cl 2t- 2 log Cl -- 

= 41resk 2 1 ~  + ( d + 2 e ) ( r - 2 e )  J" (16) 

The final expansion assumes that Pm> Cl, which is true for virtually all cases of interest. 
Two other cases deal with discs that are partially truncated by the image bound- 

aries. Details of these areas A3 and A4 are found in [14]. Because these areas contribute 
minimally to the overall expected area, we focus on the cases described above. 

Depending on the specific values for Pm and Cl we can add in the appropriate contri- 
butions of A1, . . . ,  A4, together with the value for k (equation 14) to obtain an underesti- 
mate for the expected area of an error disc - -  the expected area of a circle in image space 
that will be consistent with a point expressed in terms of some affine basis. Since such 
discs can in general occur with equal probability anywhere in the image, the probability 
that a model point lies within a disc associated with an image point is simply the ratio 
of this area to the area of the image. Thus by normalizing these equations, we have an 
underestimate for the selectivity of the scheme. This leads to the following result: 

P r o p o s i t i o n 3 .  Given a model basis and a fourth model point, the probability that a 
corresponding image basis and fourth image point will map at random to a region of 
(~-fl-space consistent with the model point and basis is given by 

A1 + As + As + A4 
p = 4r 2 (17) 

where the Ai's are the areas for the four cases considered above. 

This uses the upper bound on the radius of the error discs. As noted earlier, a simple 
lower bound can be obtained by substituting e/2 in place of e, reflecting the use of the 
bound e(1 +p) in place of 2e(1 + p). In this case, the bounds cl and cs will change slightly. 
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We can use this to compute example values for the selectivity, which depends on Prn 
(the maximum value of Icrl + IflD. If we allow any possible triple of points to form a basis, 
then Pm can he arbitrarily large. Consider a point p that  makes an angle 0 with the u 
axis, and where u,  v make an angle ~. The value for p associated with the point p is 

P (u I sin 01 + v I sin(~b - O)l). 
uv  I sin </'i 

As ~b approaches 0, this value becomes unbounded. We can exclude unstable bases if 
we set limits on the allowable range of values for ~b, in particular, we can restrict our 
attention to bases with the property that  

~bo _< ~b < ~r - ~bo or ~r + ~bo < q~ < 2r - ~o. 

By applying standard minimization methods, the maximum value for p is given by 

M 1 
Pm< (18) 

- rn sin 2.~t 

where m and M are the minimum and maximum distance between any two model points. 
To evaluate the selectivity, we also need to know d, the length of the basis vector, 

1 < d < r. Given a specific value for d, we can compute the selectivity. To get a sense of 
the variation of/~, it is plotted as a function of d in figure 5, for e = 3. 

O.e05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  " . . . . . . . . . . . . . . . . . .  

1 . 0 0 4  

1.103 

0.002 

0 . I 0 1  

O.O00 
$0 leo ISO 200 2SO 

Fig. 5. Graph of selectivity tt for �9 = 3 as the basis vector length d varies. 

In general, d will take on a variety of  values, as the choice of  basis points in the 
image is varied. To estimate the expected degree of selectivity, we perform the following 
analysis. We assume, for simplicity, that  the origin of the image basis is at the center of 
the image. The second point used to establish the basis vector can lie anywhere in the 
image, with equal probability. Hence the probability distribution for d is roughly ~ .  We 
could explicitly integrate equation 17 with respect to this distribution for d to obtain an 
expected selectivity. This is messy, and instead we pursue two other options. 

First, we can integrate this numerically for a set of examples, shown in Table 1 under 
the column marked predicted, which lists values for p as a function of noise in the image 
(with an image dimension of 2r = 500). The value of pm was set using ~0 = ~r/16, 
and a ratio of minimum to maximum model point separation of M / r n  = 10. It  should 
be noted that  varying ~0 over the range lr/8 to lr/32 produced results very similar to 
those reported in the table. As expected, the probability of a consistent match increases 
(selectivity decreases) with increasing error in the measurements. Thus, for ranges of 
parameters that  one would find in many recognition situations, a considerable fraction 
of  the space of possible a and ~ values are consistent with a given feature and basis. 
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To test the validity of our formal development, we ran a series of simulations to 
test the selectivity values p predicted by equation (17). We generated sets of model and 
image features at random, chose bases for each at random, then checked empirically the 
probability that  a model point, rewritten in the image basis, lay within the associated 
error disc of an image point. We chose to consider only cases in which the error disc fit 
entirely within the image bounds, since we know that  our predictions are underestimates 
for the other cases. Table 1 summarizes the results, under the measured column. 

Table  l .  Table comparing ~mulated and 

Case Measured 
= 1 .000116 

r = 3 .001146 
e = 5 .003142 

~redicted sdectivities. See text for discus~on. 

Predated Approximation 
.000117 .000118 
.001052 .001064 
.002911 .002955 

Second, we can approximate the selectivity expression. By applying power series ex- 
pansions and keeping only first and second order terms, we get: 

k~re 2 [17 r r 2 - d 2] 
D ~  ~ - 4 -  2log ~ -t- ~ j  . (19) 

We can find the expected value for equation 19 over the distribution for d, where ~ < 
d < r, for some minimum value g. If we assume g << r, this expected value reduces to 

' -  r log ~ . (20) 

This predicts values close to those in Table 1, as shown in the approximation column. 
Note that  the selectivity is clearly not linear in sensor error. For a fixed size image, in- 

creasing the error e by some amount  should decrease the selectiviby by at least a quadratic 
effect (perhaps more since there are higher order terms). This is reflected in Table 1. This 
expected value of the selectivity allows us to analyze the probability that  a match will be 
reported at random by some recognition method that  uses affine transformations. The 
selectivity, 7,  in essence reflects the power of a given quadruple of features to distinguish 
a particular model. Now we consider the manner in which information from multiple 
quadruples is combined. This analysis differs slightly for different recognition methods. 
As an illustration of how the analysis applies, we consider the alignment method. 

4 T h e  S e n s i t i v i t y  o f  A l i g n m e n t  i n  t h e  P r e s e n c e  o f  N o i s e  

The initial version of the affine-invariant alignment method was restricted to planar 
objects [15], whereas later versions operate on 3D models (unlike affine hashing which 
uses 2D  models) [16]. We consider the 2D case. The basic method is: 

- Choose an ordered triple of image features and an ordered triple of model features, 
and hypothesize that  these are in correspondence. 

- Use this correspondence to compute an affine transformation mapping model into 
image. 
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- Apply this transformation to all of the remaining model features, thereby mapping 
them into the image. 

- Search over an appropriate neighborhood about each projected model feature for a 
matching image feature, and count the total number of matched features. 

This operation is in principle repeated for each ordered triple of model and image 
features, although it may be terminated after one or more matches are found, or after a 
certain number of triples are tried without finding a match. 

We can use the expressions derived above to analyze the sensitivity of the alignment 
method. The key question is whether a random collection of sensor points can masquerade 
as a correct interpretation. In this case, we can investigate the probability of such false 
positive identifications as follows: 

1. The selectivity of a given quadruple of points is given by ~g (equation (17)). 
2. Since each model point is projected into the image, the probability that a given model 

point matches at least one image point is 

p = 1 - ( 1 - p ) ' - a  

because the probability that a particular model point is not consistent with a partic- 
ular image point is ( 1 -  ~) and by independence, the probability that all s -  3 points 
are not consistent with this model point is (1 - ~ ) , - 3 .  

3. The process is repeated for each model point, so the probability of exactly k of them 
having a match is 

qk = k p k ( 1  - . (2D 

Further, the probability of a false positive identification of size at least k is 

k - 1  

wk = 1 - E qi. 
i=0  

Note that this is the probability of a false positive for a particular sensor basis and 
a particular model basis. 

4. This process is repeated for all choices of model bases, so the probability of a false 
positive identification for a given sensor basis with respect to any model basis is 

ek - 1 - (1 - wk)(~') . (22) 

4 . 1  T e s t i n g  t h e  mode l  

To check the correctness of our model, we ran a series of experiments based on equa- 
tion 21. In particular, we used our analysis to generate a distribution for the probability 
of a false positive of size k, given e -- 3 and r -- ~ ,  and using a model with 25 features 
and images with 25, 50,100 and 200 features. For comparison, we also generated sets of 
model and image points of the same sizes, selected bases for each at random, and de- 
termined the size of vote associated with that pairing of bases. That is, for each model 
point (other than the basis points) we computed the affine coordinates relative to the 
chosen basis. Then we used the affine coordinates to determine the nominal position of 
an associated image point. If at least one image point was contained within a given model 
point's error disc, then we incremented the vote for this pairing of bases. This trial was 
repeated 1000 times. The results are shown in figure (6). 
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Fig .  6.  Comparison of predicted and measured probabilities of false positives. Each graph com- 
pares the probability of a false peak of size k observed at random. The cases are for m = 25 
and s = 25 and 50, in the top row, and s = 100 and 200 in the bottom row. In each case, �9 = 3. 
The graphs drawn with triangles show the predicted probability, while the graphs drawn with 
squares show the observed empirical probabilities. 
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Fig .  7.  Graph of probability of false positives. In each graph, vertical axis is probability of false 
positive of size k, horizontal axis is k. Each family of plots represents a different number of 
sensor features, starting with s = 25 for the left most plot, and increasing by increments of 25. 
For the three families in the top row, the model consisted of 25 features, and the sensor error 
was �9 = 1,3 and �9 = 5 (from right to left). For the three families in the bottom row, �9 was fixed 
at 3, and the model had 25, 38 and 50 features (from right to left). 

One can see tha t  the cases are in good agreement.  In fact, our model  tends to overes- 
t ima te  the probabi l i ty  of small  false posit ives ,  and underes t imate  the probabi l i ty  of large 
false positives, so our results will tend to be conservative. 

Next,  what  does ek look like? As an i l lustrat ion,  we graph in figure (7) the probabi l i ty  
of a false posit ive based on equation (22). In par t icular ,  we use a selectivity based on 
e -- 3, obta ined from Table 1, and plot  the value of ek for an object  with 25, 38 or 50 
model  features,  for different values of k and a given number  of sensor features s. This is 
graphed in figure (7). The  process was repeated  for different numbers of sensor features 
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s, generating the family of graphs in the figure. 
In figure (7), we show the false positive rate as the error rate changes. Each figure 

plots the false positive rate, for model features rn = 25, and for sensor features varying 
from s = 25 to s = 200 by increments of 25. The individual plots are for varying numbers 
of sensory features, and the process is repeated for changes in the bound on the sensor 
error, given a fixed threshold on angle of r = ~r/16. If the error is very small, the 
method performs well, i.e. the probability of a false positive rapidly drops to zero even 
for small numbers of model features. As the error increases, however, the probability of 
a false positive rapidly increases, as can be seen by comparing different families of plots 
in figure (7). Note that the best possible correct solution would be for k = 22. 

While we have used our methods to analyse the alignment method, very similar results 
hold for the case of geometric hashing. For details, see [14]. 

5 Summary 

The computation of an affine-invariant representation in terms of a coordinate frame 
( m l , m 2 , m 3 )  has been used in a number of model-based recognition methods. Nearly 
all of these recognition methods were developed assuming no uncertainty in the sensory 
data, and then various heuristics were used to allow for error in the locations of sensed 
points. In this paper we have formally examined the effect of sensory uncertainty on such 
recognition methods. This analysis involves considering both the Euclidean plane used 
by the alignment method, and the space of affine-invariant (a,/~) coordinates used by 
the geometric hashing method. Our analysis models each sensor point in terms a disc of 
possible locations, where the size of this disc is bounded by an uncertainty factor, e. 

Under the bounded uncertainty error model, in the Euclidean space the set of possible 
values for a given point x and a basis (raz, m2, m3) forms a disc whose radius is bounded 
by r = ke(1 + Ic~l + 1/31), where 1 < k < 2. That  is, assuming that  each image point has 
a sensing uncertainty of magnitude e, the range of image locations that are consistent 
with x forms a circular region. In the a-/~-space, the set of possible values of the affine 
coordinates of a point x in terms of a basis ( m l , m ~ , m 3 )  forms an ellipse (except in 
degenerate cases). The area, center and orientation of this ellipse are given by somewhat 
complicated expressions that depend on the actual configuration of the basis points. 

The most important consequence of our analysis is that the set of possible values in the 
a-/~-plane cannot be computed independent of the actual locations of the model or image 
basis points. This means that the table constructed by the geometric hashing method 
can only approximate the correct values, because the locations of the image points are 
not known at construction time. We further find for even moderately large positional 
uncertainty, methods that use affine transformations have a substantial probability of 
false positive matches. These methods only check the consistency of each matched point 
with a set of basis matches. They do not ensure the global consistency of all matched 
points. Our results suggest that such methods will require that a substantial number of 
hypothesized matches be ruled out by some subsequent verification stage. 
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