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Abstract:  We describe a method that automatically extracts a type checking 
semantics, encoded as a set of type inference rules, from an action semantics 
definition of a programming language. The type inference rules are guaranteed 
to enforce strong typing, since they are based on an underlying metasemantics 
for action semantics, which uses typing functions and natural transformations 
to give meaning. Next, we use the type checking semantics to extract a dy- 
namic semantics definition from the original action semantics definition. We 
present an example. 

1 Introduct ion 

The key component of a compiler-based programming language is its typing system. A 
compiler-based language should have a static semantics (hereafter, called a typin 9 se- 
mantics) that matches the structure of the data types and operations that underlie the 
language. A typing semantics is accompanied by a dynamic semantics, which gives mean- 
ing to the well typed programs in the language. 

A language is statically typed if the typing annotations of the phrases in a program 
can be calculated without running the program. The language is strongly typed if every 
program that is completely annotated with typings (such a program is well typed) will 
not produce an operator-operand incompatibility error (a typing error) when it is run. A 
statically typed language should be implemented by a compiler that annotates programs 
with typings, and the typing annotations make the language strongly typed. (Algol60 is 
an example of a statically typed language that is not strongly typed, due to imprecise 
typing of procedure parameters [27].) 

These goals place upon the language designer the burden of designing a typing se- 
mantics that enforces strong typing. Since the design of a strongly typed language is 
nontrivial, a language designer would do best to follow a methodology based on a formal 
semantics; the methodology should support a method for deriving the typing semantics 
and showing that it is a strong typing. But this is surprisingly difficult to do with existing 
semantics methods. Consider a definition in denotational semantics [33]; here is a sample 
clause of a definition: 

*Partially supported by NSF Grants CCR-8822378 and CCR-9102625. 
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C is_zero = cases  (EI[E e s)  of 
isI, teger(i) (i =, , ,  O) 
i s R e a l ( r )  --* (r =~at 0.0) 
is B ool ean (  b ) ---} e r ror  

�9 �9 �9 end  

The clanse suggests the typing rule: 

t y p i n g s _ i n ( e )  ~- E : "r 
t y p i n g s _ i n ( e )  ~- is_zero E : B o o l e a n  

r E { I n t e g e r ,  R e a l }  

but the formal derivation of the rule from the clause is intricate. Noteworthy attempts 
are by Barbuti and Martelli [1] and Montenyohl and Wand [19], where a separate typing 
semantics is handwritten and proved to enforce strong typing with respect to the original 
semantics. Then, hand transformations are performed on the original semantics to derive 
a dynamic semantics. 

An approach that is often relevant is the application of a partial evaluator to the 
semantics definition [11, 14, 15, 35]. When supplied with a semantics definition, a partial 
evaluator produces a compiler. The generated compiler takes a source program as input, 
translates the program into an expression in the semantic metalanguage, and evaluates 
the static parts of the expression�9 The result is a compiled program that contains only 
dynamic operations. If a typing semantics is encoded within a semantics definition, and 
it is static, then the compiler performs type checking. This occurs in Montenyohl and 
Wand's example [19], as demonstrated by Consel and Danvy [6]. Of course, there is no 
guarantee that the semantics definition contains a static typing semantics. Also, a partial 
evaluator does not extract the typing semantics and present it separately, which is our 
goal here. 

Finally, a language designer might apply operational or axiomatic semantics techniques 
and hand code the typing and dynamic semantics. Then, hand proofs must be done for 
static and strong typing properties [3, 10, 34]. This task is daunting. 

None of the above approaches are completely satisfactory, so we report another ap- 
proach, based on Mosses and Watt's action seman t i c s  [20, 21, 25, 24, 26, 36], which 
surmounts the problems noted above. From an action semantics definition of a program- 
ming language, we can mechanically extract a typing semantics that is a static and a 
strong typing�9 The proofs of static and strong typing are immediate, from general results 
about the model for action semantics notation [12]. Further, we show how to calculate 
the dynamic semantics of a language from its typing semantics and the original action 
semantics definition. The result is a strong typing semantics and a dynamic semantics, 
which can be used along the lines suggested by Lee and Pleban [16, 17] and Nielson and 
Nielson [28, 29] to define a compiler for the language�9 Since the typing semantics can 
be represented in inference rule format, it also serves as documentation of the typing 
structure for the language designer and users. 

The remainder of the paper goes as follows. We first introduce action semantics 
notation; next, we describe the approach for extracting the typing semantics and dynamic 
semantics; and finally, we apply the algorithms to an example language definition. 



153 

Functional facet: Its types are Proper-functional-type U { ns }, where: 
t E Proper-functional-type 

t ::= int I real I bool I tl • t2 I tl -~ t2 
The ordering is the smallest reflexive, transitive ordering such that: 

int < real 
t < ns for all t 
tl • 2 1 5  <t~and t2<t ' 2  
t 1 ~ t 2 < t~ "+ t~ iff t'~ < tl and t2 < t~2 

Declarative facet: Its types are Proper-declarative-type O { ns }, where: 
d E Proper-declarative-type 

d ::= {i : tl}ieI where I is a finite set of identifiers. 
The ordering is the smallest reflexive, transitive ordering such that: 

d < ns for all d 
{i : tl}~el < {i : t~}iel iff for all i e I ,  t~ < t~ 

Figure 1: Facets 

2 A c t i o n  Semant ic s  

Action semantics is a high level notation for writing modular programming language 
definitions [21, 25, 24, 26, 36]. The notation consists of combinator-like entities, called 
actions, that operate upon facets. A facet is a collection of types, and a type is a col- 
lection of values. The functional facet contains those data types that can be used as 
temporary values ("transient information" [21]) in a computation. Types like int ,  bool, 
real,  in t  x bool, and so on, belong to the functional facet. Actions that  take arguments 
and produce answers in the functional facet include arithmetic and logical operations. 
A second facet is the declarative facet, which contains types of identifier, value binding 
("scoped information"). The types in the declarative facet are record types [5, 13, 31]; an 
example type is {A:int ,  B:bool}, which describes those binding sets ("records") that  map 
A to an integer value and B to a boolean value. Actions that take arguments and produce 
answers in the declarative facet include operations for making and finding bindings (in 
a symbol table). A third facet is the imperative facet, which contains types of storage 
structures. Actions include operations for accessing and updating primary storage. Yet 
another is the communicative facet, which describes structures for communication and 
has actions for file and message input/output.  Due to lack of space, we will not explore 
the last two facets. 

The set of types for each facet also includes an error type, which we call ns (for 
"nonsense"). An output of ns type occurs when an action receives an argument whose 
type is incompatible with the action, that is, when a typing error arises. For example, an 
ns-typed output occurs when a boolean value is given to an addition action. 

The types in a facet can be ordered to express subtyping relationships. For example, 
we might have in t  < real in the functional facet, that is, int  is a subtype of veal [13, 31], 
or {A: in t }  < {A:real}  in the declarative facet. Figure 1 shows the internal structure 
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Action 
copy 
give(n :to) 
eqzero 

add 

Kind ] Typing function 

F---+F At : F. t 

I---+F At : i. to 
F---+F 

F--*F 

bind I F---~D 
find I I)---+F 

Meaning 
At :F .Av:Lv  
At:l.Av:t.n 

At : F. i f  t < real At : F. cases t o f  
then bool int : Av:int . (v  =int O) 

real : Av:real.(v =real 0.0) 
else : Av.error 

end 
At :F. 

i f  f s t ( t )  <_ real 
and snd(t) < real 
then fs t ( t )  LJ snd(t) 

At :F. 
cases toy 

int• : A(vl, v2) : int• vl-l-int V2 
int• : A(vl , v2) : int• coerce-real(v1) +r~ t  v2 
realxint  : A(vl, v2) : realxint,  vl +r,at coerce-real(v2) 
real• : A(vl , v2) : real• vl +r~at v2 
else : A(vl, v2). error 

end 
At:F. {I:  t} At :F.Av :t. {I = v} 
Ad:V. i f  {I : t } e d  Ad:D.Ar:d.r.I 

then t 

Note: "if C then T "  abbreviates "if C then T else ns" 
f s t ( t l  xt2) = tl, snd(t l  xt2) = t2 
f s t ( in t )  = fst(real)  = fst(bool) = ns = snd(bool) = snd(real) = snd(int)  
"r.r' is record indexing 

F i g u r e  2: A c t i o n s  

of the two facets we use in this paper. (Note that the type sets of the two facets form 
sup-semilattices. Also, the typing ordering for the declarative facet is simpler than the 
version that is normally used; see [13].) 

An action is a mapping whose domain and codomain are facets. For example, the 
action copy : F --+ F is the identity mapping on the functional facet. ("F" stands for 
the functional facet, and "D" stands for the declarative facet.) Since the functional facet 
contains many types, copy is in fact a family of identity functions: an identity function for 
integer inputs, an identity for boolean inputs, an identity for real inputs, and so on. Thus, 
copy = { )W: t . v} teF ,  which we also write as At:F.Av:t .v .  We can summarize copy's behavior 
with the t y p i n g  f u n c t i o n  Tcopy = A t : F . t ,  which states that,  whenever copy receives an 
input of type t, its output  is of type t. 

Each action, a,  has a typing function, Ta,  that characterizes its behavior. In analogy 
with the typing system in Automath [8], a typing function A t : F . f ( t )  encodes the second 
order type V t : F . f ( t ) .  Further,  the typings are "shallow," in the sense of ML types [18]. This 
makes actions into polymorphic functions, where the polymorphism can be parametric,  
inclusive, or ad-hoc. A mathematical  view is that an action, a, is a natural transformation 
in 27 -~ 27 o Ta,  where 27 is the interpretation functor that maps the type names in the 
facets to the value sets they represent and where Ta is treated as an endofunctor on the 
facet. Details are found in [12] .1 

1A related model, which is based on unified algebra rather than category theory, is described in 
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Action 

a 1 then a2 

al  and a 2 

Kind ] T y p i n g  funct ion I Meaning 

K:t-'-*K 3 [ ) ik:Ki.  Ta~(Ta l (k ) )  
where al : K 1 ~ K 2 and as : K 2 ---+ K 3 
K 1 --* K 2 )ik :K1.TmergeK(Tal(k) ,  Ta2(k)) 

2 

where al : K 1 ~ K 2 and a2 : K 1 ~ K 2 
D ~ F ) id:D.Ta2(Ta,(d) ,  d) 

] )ik: K 1. )iv: k.a2(Ta,  (k))(al  (k)(v)) 

)ik: K 1.)iv :-k.mergeK2 (Ta, (k), Ta~ (k)) 
(al(~)(v), a2(k)(v)) 

al an&hen a2 )id:D.)ir : d.a2(Ta,  (d), d)(al(d)(r), r) 
where al : D ---+ F and a2 : F• ---* F 

al elsea~ F• ---~F ) i ( t ,d ) :F•  ) i ( t ,d ) :F•  
i f  t < bool i f  t <_ bool 
then T s , ( d )  tt Ts2(d)  then )i(v, r ) : t xd ,  i f  v then a l (d ) ( r )  

else as(d)(r)) 
else )i(v, r) :t • d.error 

w h e r e a l  : V - - ~ F a n d a s : V ~ F  
fur thermore a D ---~ D ])id:D.Ta(d)@d I)id:D.)ir:d.a(d)(r)catr 

where a : D ---* D 
FxD--~ D I )i(t ,d):FxD.Ta(t)@d 
where s : F ---+ D 

I )i(t ,d):F•215 eat r 

where TmergeF(Q , t2) = t l  • t2 

mergeF(t l ,  t2)(Vl, v2) = (Vl, v2) 
Tmerge  D (da, d2) = i f  have-disjoint-fields( dl, d2) then dl @d2 
mergeD(d1, d2) = i f  have-disjoint-fields( dl, ds) then )i(rl, rs).rt eat r2 else )i(n, rs).error 
"4"  represents  record type  concatenat ion 

(e.g., { A :  int, B :  bool}@{B : int, C :  real} = { A :  int, B :  bool, C:  real}) 
"car '  represents  record concatenat ion 

(e.g., {A = 0, B = false} eat {B = 1, C = 2.2} = {A = 0, B = false, C = 2.2}) 

Figure 3: Act ion Combinators  

The relationship between the typing function and the action it describes is exact: 
if Ta(t)  = t', then for all arguments v of type t, a(t)(v) has type t'. In particular, 
if Ta(t)  = ns, then a(t)(v) is an error. 2 This exact relationship is no accident. It 
is demanded .by the mathematical model we use, for the typing functions and facets 
constitute the operator names and sort names, respectively, of a signature of a category- 
sorted algebra [30, 32]. The actions and value sets form the operations and carriers, 
respectively, of the category-sorted algebra. This relationship lets us extract the strong 
typing laws from a language definition. The formalities of category sorted algebra and 
action semantics are described in [12]. 

Actions exist for all the fundamental operations of programming languages: value 
passing, arithmetic, binding creation and lookup, storage allocation and updating, and so 
on [20, 24, 26, 36]. Our version of action notation is combinator-based, for technical and 
historical reasons, but it is interconvertible with the notation in Mosses' book [25]. 

Figure 2 presents the actions we use in this paper. We have already seen action copy. 
give(n : to) emits n as its output. Since give requires no input, we use a degenerate facet, 

[21, 22, 23] 
~Also, typing  funct ions are "ns-strict":  T a ( n s )  = ns, for all act ions a. 
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Abstract  Syntax 
D E Declaration 
E E Expression 
N E Int-numeral 
R E l~al-numeral 

D ::= v a l I =  E I D1,D2 
E : : = N I R I E I + E 2  lifE1 thenE2elseE3 l i s - z e r o E [ I l l e t D i n E e n d  

A c t i o n  Semantics 
declare : Declaration --* ActionD~ D 

declare[val I -- E l = evaluateirE [ then bind I 
declareirD1, D2I = declare[[D1] and declare[[D21 

evaluate : Expression --* ActionD_.F 
evaluateirN l = give([Nl : int) 
evaluateirR] = give(Ira]  : real) 
evaluateirE1 + E2I = (evaluateirE1] and evaluateirE2] ) then add 
evaluate[if E1 then E2 else Es] = evaluate[Ell andthen (evaluate~E21 else evaluateirE3l) 
evaluateiris_zero E l = evaluate[[E l then eqzero 
evaluate[I~ = find I 
evaluate~et D in E end I = (furthermore declare~D]) then evaluateirE ] 

F i g u r e  4: A n  E x a m p l e  E x p r e s s i o n  L a n g u a g e  

called 1, for its domain, eqzero checks if a number  is zero; add adds a pair of numbers;  
bind I maps a value into a binding set with a single binding for I to the value; and find I 
maps  a binding set to the value bound to I in the set. 3 

Actions are composed into compound actions with combinators. For example,  actions 
al  : Ka ~ K2 and a 2 : K2 --~ K3 can be sequentially composed into a 1 then a 2 : K1 ~ K3 
by the then combinator.  (The codomain facet of al must match the domain facet of a2.) 
Combinators  possess typing functionais that  map  the typing functions of the component  
actions into a typing function for the compound action. Figure 3 gives the definitions and 
typing functions for the combinators we use. 

In addition to sequential composition, we have the parallel composition al and a2, 
which gives its input to both  al and a2 and allows them to evaluate in parallel; the results 
are "merged." The compound action al andthen a2 is a combination of then and and. 
The  action al else a2 models choice: the input,  a Boolean, selects al or a2 for evaluation. 
Finally, furthermore a concatenates the binding set produced by a to the input binding 
set. 

Figure 4 gives a language definition in action semantics. 

aA reader familiar with Montenyohl and Wand's work [19] will notice that the structure of the meanings 
of the actions in Figure 2 match the structure of denotations in [19] following factorization and static 
replacement. This is not surprising, since the structure is a natural one for a language with static and 
dynamic stages. What is significant is that the meanings in Figure 2 must  have proper structure because 
they are natural transformations - the category theory model makes the representations correct. 
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3 D e r i v a t i o n  o f  t h e  T y p i n g  S e m a n t i c s  

We derive the typing semantics for a language definition by deriving a typing rule for each 
semantic equation in the definition. This is done in two steps: (i) calculate the typing 
function for the semantic equation; (ii) translate the equation into an inference rule. For 
example, the semantic equation: 

evaluate ~is_zero E~ = evaluate [[E] then eqzero 

has as its typing function: 

typing Iris_zero E~ = Ad:D. if typing lIE]](d) < real then bool 

This typing function is translated into the rule: 

d F- E : t<real 
d F- is_zeroE : bool 

We now present the details. 

3.1 Calculation of Typing Functions 

Typing functions have the syntax: 

F E Typing-function-expression C E Constraint 
T E Type-expression I E Type-identifier 
A E Atomic-expression O E Primitive-operator 

F ::= M.T  
T ::= A [ F T  [ if C then T [ O(T1,. . . ,  T~), n > 0 
A ::= I [ O ( A 1 , . . . , A ~ ) , n  >_ 0 
C ::= A1 < A2 I C~ andC2 I O(A1, . . . ,Am),n > 0 

(Recall that "if C then T" abbreviates "if C then T else us.") Primitive operators, O, 
include constants like int and operators like fst from the third column of Figure 2. 

A typing function expression is normalized by these rules: 

(1) (~I.T)A =} [A/I]T 

(2) F(i f  C then T) =} if C then F T  
(3) O(TI , . . . ,  (if C then T~),..., T~) =~ if C then O(T~,. . . ,  T i , . . . ,  T~) 

(4) if  C1 then if C2 then T =} if C1 and C2 then T 
(5) Is t (r l  x T2) 
(6) fst(int) =~ ns 
Rules similar to (5) and (6) are used for the other primitive operators. 

The rules are confluent and strongly normMizing [9]; they remove nested l~nbda 
abstractions and "flatten" a typing function expression with nested occurrences of "if C 
then T" into an expression with at most one occurrence. Importantly, normM forms must 
have the format "M. if C then A ' ,  which proves cruciM for building the inference rules. 
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Here is an example rewriting: 

Teqzero then copy = Xt.Tcopy(Teqzero(t)) 
= )tt.()tt'.t')(($t'.if t' < real then bool)(t)) 

~t.()~t'.t')(if t < real then bool) by (1) 
At.if t < real then (~t'.t')bool by (2) 
)tt.if t < real then bool by (1) 

A semantic equation's typing function is derived in a similar fashion. Given a semantic 
equation: valuate [lop E l . . .  En]] . . . .  valuate IIEa]]..- valuate [[En~ �9 �9 �9 

we wish to calculate Tval,,at e [[op E l . . .  En]], which we also call typing [[op E~. . .  E=]]. 
We replace each action, a, by Ta; occurrences of valuate [[Ei]] are replaced by "primitive 
operators" Tvaluate[[Ei]]. We then apply the rewriting rules to normalize. 

Here is an example. For the equation: 

evaluate~[Ez -I- E2]] = (evaluate[[E1]~ and evaluate[[E2]]) then add 

The derivation goes: 

Tevaluate lIE1 +E2ll 
= typing[[El + E2]~ 

= T(evaluate ~1]1 and evaluate [E2]) then add 
= ~d'Tadd (Tevaluate [Eli and evaluate [E211(d)) 

= )td.Tadd(Tevaluate ~111(d) • Tevaluate ~211(d)) 
= Sd.Tad d (typing[[E1]](d) • typingl[E2]] (d)) 

= ~d.($t. i f  fs t ( t )  < real and snd(t) < real then fst( t)  t_l snd(t)) 

(typing[[E1]](d) • typingI[E2]](d)) 

~d. i f  fst(typing[[E1]l(d) • typing[[E2]l(d)) < real and 
snd(typing[[E~]](d) • typing[[E2]l(d)) < real 

then fs t (  typing[[E1]]( d) • typing[[E2]](d)) t_l snd( typingITE~( d) • typingI[E2]](d)) 

~ *  ~d. i f  typingl[Ex]](d) < real and typing[[E2]](d) <_ real 

then typing[[E1]](d) LJ typingl[E~]](d) 

3.2 T r a n s l a t i o n  in to  I n f e r e n c e  Rules  

We can simply translate a semantic equation's typing function into an inference rule. A 
first step is to rewrite the typing function so that occurrences of phrases typing I[Ei]](T) 
have explicit names. This is done by the rewriting rule: 

~I.C[typing [[Ei]](A)] ~ )~I. let I '  = typing [[Ei]](A) in C[I'] 
where C[] is a context, 

A contains no occurrences of any typing ~Ei]]-phrases , and 
I '  is a fresh identifier 
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Here is the derivation of the new form of typing function for the example from the previous 
section: 

typing ~[E1 + E2~ = ~d.if typing JElly(d) < real and typing ~[E.2~(d) < real 

then typing ~E1]](d) t.J typing l[Eg_~(d) 

)~d.let tl = typing I[E1]](d) 
in i f  tl <_ real and typing [[E2]](d) _< real 

then tl U typingl[E2]](d) 

,\d.let tl = typing HEI~(d) and 

t2 = typing [[E2]](d) 

in i f  tl <_ real and t2 < real then tl U t2 

The general form of typing function is now: 

typing [[op E1 . . .  En] = At. let tl = typing ~E1]](t~) and 
: 

t~ = typing [[En]](t~) 
in i f  C then A 

where C and A contain no occurrences of any typing[[Ei]~. This format can always be 
obtained, since the normalization of the original typing function removed all nested ,k- 
abstractions, hence there is no danger in violating binding scopes by moving a typingl[E~] (A) 
to the front of a typing function. 

Now, the typing function is simply reformatted into the rule: 

t~ ~- E1 : t l  . . .  tin ~- En : t .  
t F- o p E 1 . . . E  n : A i f C  

which is the typing rule for "op E1 . . .  En". 
In the case of the above example, we find that the typing rule for addition is: 

d t- E l : t 1 d F- E 2 : t 2 
d F- E I + E  2 : t l l l t  2 i f  tl <_ real and t2 < real 

We can reformat the rule more attractively by moving the constraints on tl and t2 to the 
antecedents: 

d I- E 1 : t l<real  d P E 2 : t2<real 
d F E I + E  2 : tlUt2 

Since the transformation steps in this and the previous section are purely syntactic in 
nature, the characterization property of the typing functions is preserved in the inference 
rules. Thus, not only have we derived static typing rules, we have derived strong typing 
rules, and indeed, the rules are the "strongest" that they can be, in the sense that  they 
state exactly the conditions under which a program phrase will not produce a typing error. 
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4 D y n a m i c  S e m a n t i c s  

The typing semantics defines a sublanguage of the original language. We should "spe- 
cialize" the semantics definition to the sublanguage defined by the typing semantics. The 
result is the dynamic semantics. 

In action semantics, each action is a polymorphic function, that is, a collection of 
monomorphic functions that behave consistently (cf. the definitions in Figure 2). But 
when actions are composed, not all of the monomorphic functions in an action are needed. 
For example, the action copy, as it appears in the action expression eqzero then copy, can 
be narrowed to a single monomorphic function - the identity map on booleans - since 
eqzero emits only boolean values. A similar phenomenon arises in a language definition: 
the composition of the actions in a semantics equation limits the domains of the arguments 
to the actions. For example, the typing rule: 

d ~- E : t<real  
d ~- is_zero E : bool 

allows us to specialize the semantic equation for is_zero E to: 

evaluate ~d t- is_zero E : bool] = evaluate [d t- E : t <_ real] then eqzero{~nt .... 0 

that is, the semantic equation is specialized to operate on bool-typed phrases, and the 
action eqzero is restricted to a set of just two functions: one that checks integers for zero 
and one that checks reals for zero. The other functions in the action are discarded. 

Specialization proves to be important for compiler construction. In [16, 17], Lee and 
Pleban propose that actions like eqzero and copy should be implemented as code generation 
routines, and a program is compiled by mapping it through the semantics definition to 
an action expression. Then, the actions in the action expression translate to target code. 
Since the meaning of an action is a family of monomorphic functions, the implementation 
of an action is a table of code generation routines, one for each monomorphic function. 
For example, the table of code generation routines for the eqzero action would be: 

integer => "code to 
real =~ "code to 
bool =~ "code to 

check if fixed point number is zero" 
check if floating point number is zero" 
generate exception" 

The specialization of eqzero in the above semantic equation means that its code generation 
table need only contain the first two entries. 

The specialization step goes as follows: given the typing rule: 

~i ~- E1 : t~ "-" tn I- En : ~ 
~- opE 1...En : t I 

for the semantics equation: 

valuate ~op E1 . . .  E~]  . . . .  val-ate ~El~ . . .  valuate ~E.~ . . .  
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we label the occurrences of valuate ~Ei~ with ti, t~, giving: valuate [ti I- Ei : t~.  Next, 
we propagate the ti, t~ information throughout the right-hand side of the equation. As a 
result, every action in the right-hand side is labeled by input-output typing information, 
which allows us to specialize the actions. 

An example shows how this is done. Once again, here is the typing rule for E1 + E2: 

d F" E 1 : t l<rea l  d l -  E 2 : t2<real 
d ~- EI-I-E 2 : t lUt 2 

and its semantic equation: 

evaluate HE1 + E2]~ = (evaluate ~[E1]] and evaluate [[E2~) then add 

If we draw the semantic equation as a tree, then the propagation of typing information 
can be viewed as a post-order tree traversal algorithm with synthesized and inherited 
attributes. An action, a, that appears as a node in the tree, is of course associated with 
its typing function, Ta. The input type, i, to the node is an inherited attribute, and 
Ta(i) is the synthesized attribute for the node. If we write the inherited attributes and 
subscripts and the synthesized attributes as superscripts on the tree, we obtain: 

evaluate~d I- E1 + E2 : tl U t2~ = evaluate~d I- E1 + E2 : tl U t2~ = 
t k ~  tlUt~,tl<real a n d  t2<_real  

andS1 xt2_<re Xrea 

evaluate~d I- E1 : tl < rea l ]  evaluatel[d I- E2 : t2 < real] .ddtlUt2,t, <~.z  and t2<~az - -  a t l  X t2  < _ r ~ a l x r e a l  - 

When an inherited attribute, di, is passed to a leaf, evaluate~di I- El : tiE, we claim that  
the synthesized attribute for the leaf is tl. This allows the analysis to proceed throughout 
the entire tree, even though the value of Ei is unknown. 

The linearized version of the above tree is: 

evaluatel[d I- El + E2 : tl LI t2~ = 
(evaluate[[d I- E1 : t l  ~ real~ 

thend addtl X~2<_realxreal 

andd evaluate[d ~- E~ : t2 < real]) 

where we display the inherited attributes only. As a result of the analysis, we note that  
the add action can be specialized to four entries in its code generation table. 

5 A n  E x a m p l e  E x p r e s s i o n  L a n g u a g e  

We now derive the typing and dynamics semantics for the language in Figure 4. 
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T y p i n g  F u n c t i o n s  

typing : Declaration --~ Typing-FunctionD-~D 

typing~[val I = Eli = Ad. { I :  typing[[El(d)} 

typing[~D1, D2] = Ad. i f  have-disjoint-fields(typing[[D1]](d),typing[[D2]](d)) 

then typingl[D1] (d)@typing[[D2]] (d) 
typing : Expression ---> Typing-FunctionD._+F 

typingl[N ] = Ad. int  

typingl[R] = Ad. real 

typingl[E1 + E2]I = Ad. i f  typingl[E1](d) < real and typing[[E2]](d) < real 

then typingl[E1]](d) LJ typing[[E2]~(d) 

typing~if E1 then E2 else E3]] = Ad. i f  typing[[E1]l(d) < bool 

then typing[[E2](d) LJ typingl[E3](d) 

typingl[is_zero Eli = Ad. i f  typingl[E](d) < real then bool 

typing[[I] = Ad. i f  {I :  t} Ed then t 

typing[let D in E end] = Ad. typing~E](typing~D](d)@d) 

T y p i n g  ( S t a t i c )  S e m a n t i c s  

Declaration 

val I = E d F  E : t  
d F v a l I = E  : {I:t} 

d F D 1 : d 1 d r -  D~ : d~ 
D1,D2 : d F D1,D 2 : dl~d2 

Expression 

N : d ~- N : int 

R : d F R : real 

d F E 1 : t l<real  d ~- E2 : t2<real 
E1 + E2 : d ~- E1TE 2 : t 1 U t2 

d F E 1 : bool d F E2 : t2 d F E.~ : ts 
if El then  E2 else E3 : d ~- i f E l t h e n E  2e l seE  3 : t 2 U t  3 

d ~- E : t<real 
is_zero E : d F is_zero E : bool 

I : d F - I : t  i f { I : t } E d  

d b D  : s  d @ d F E : t  
l e t D i n E e n d  : d F  l e t D i n E e n d  : t 

if have-disjoint-fields(d1, d2) 
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Spec ia l i zed  ( D y n a m i c )  Seman t i c s  

declare: Decorated-Declaration ---* Mono-ActionD~D 

declare~d I- val I = E : {I : t}] = evaluate[[d I- E : t]] thend bind It 

declare[[d I- Dz, D2 : dz@d2 if  have-dispoint-fields(dz, d2)] = 

dectare]d I- DI:  dz]] andd dectare[d I- D2: d2] 

evaluate: Decorated-Expression -+ Mono-ActionD__.F 

evaluate[[d I- N:  int] = give(IN]: int)d 
evaluatel[d I- R :  real] = give(~R]] : real)d 
evaluate~d ~- E1 + E2 : tl II t2] = 

( evaluate~d I- E1 : tl _< real] andd evaluate[[d I- E2: t2  _< Teal] ) 
thend addtl xt2_<T~alx~e~l 

evaluate[[d I- if E1 then E2 else E3 : t2 II t3] = 
evaluate[[d F- Ez : bool] andthend ( evaluate~d F- E2 : t2]] elsea evaluate[d b E3 : t3]] ) 

evaluatel[d I- is_zero E : bool] = eva lua te [d  I- E :  t < r e a l ) ]  thend eqzerot_<~,  

evaluate[[d I- I : t  i f  {I:t} E d~ = find Id 

evaluate[[d I- let D in E end : t] = 

(furthermored declare]d ~- D:  d']) henced evaluate[d'@d F- E :  t] 

6 E x t e n s i o n s  a n d  F u t u r e  W o r k  . 

The result of previous sections can be extended to deal with more complex language 
features: abstraction and recursive bindings. Higher order constructs can be analyzed: 

evaluate [[lam I .  Ell = abstract ((furthermore (bind I)) then evaluate [[E]) 

where abstract a converts an action a into a functional facet value. Given Tabstract a 
= Ad. t -* Ta(t ,d) ,  the typing function is: 

typing [lam I .  Ell = Ad. t ---* typing ~E]({I : t}@d) 

which gives the rule: 

{ I : t )@d t- E : t I 
d I- l a m I .  E : t--*t I 

This is the typing rule for lambda abstraction in ML [7]. But the typing rule for ML's 
polymorphic "let" cannot be derived here, since it requires a subphrase to have the quan- 
tified type Vt.F[t], and such types are not included in Figure 1. A facet might include 
quantified types, cf. page 7 of [2], but we leave this for further exploration. 

Recursive definitions can also be handled. Action semantics uses a recursively I a to 
define scope of recursive binding of I in action a. Thus: 

evaluate [[fix I . E l  - -  recursively I evaluate I[E] 
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where Trec,,rsiveN ~ a = fix (Af.Ad.Ta({I: f(d)}@d)). The typing function for the action 
semantics equation is: fix F, where F = Af.Ad.typing [El ({I: f(d)}@d), provided that  we 
make the facets into pointed cpos. We use the fixed point property to derive the typing 
rule: 

t' = (fix F)d = let t = typing [El ({I:  t'}@d) in t 

But t = t', and we obtain the expected rule: 

{I: t}@d ~- E : t 
d ~- f i x I . E  : t 

We are currently implementing the results in this paper as part of an action semantics- 
directed prototyping system. The system utilizes tools developed by Brown, Mourn, and 
Watt  [4], and future integration of their results with ours is likely. 
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