
Back to Direct Style

Olivier Danvy
D e p a r t m e n t of C o m p u t i n g and In fo rma t ion Sciences

Kansas S t a t e Univers i ty *
danvy@cis .ksu .edu

Abstract

While a great deal of at tention has been devoted to transforming direct-style (DS)
functional programs into continuation-passing style (CPS), to the best of our knowl-
edge, the transformation of CPS programs into direct style has not been investi-
gated. This paper describes the mapping of continuation-passing A-terms to their
applicative-order direct style counterpart . We set up foundations and outline appli-
cations of the direct style transformation.

We derive the direct style transformer from a non-standard denotational semantics
of the untyped Av-calculus, that we prove congruent to the s tandard one.

Under precise conditions (linear occurrences of continuation parameters and no first-
class use of continuations due to control operators such as c a n / c o) , we show the DS
and the CPS transformations to be inverse.

The direct style transformation can be used in part ia l evaluation, based on the fact
tha t semantics-based program manipulation performs bet ter when source programs
are first t ransformed into CPS. As a result, specialized programs are expressed in
CPS as well. The DS transformation maps them back to direct style.

Keywords
Direct style transformation, continuation-passing style transformation,

Av-calculus, Scheme.

*Manhattan, Kansas 66506, USA. Part of this work was supported by NSF under grant CCR-9102625. Another
part was carried out while visiting Xerox PARC in summer 1991.

131

1 I n t r o d u c t i o n

A considerable amount of work is dedicated to the continuation-passing style (CPS) transforma-
tion: van Wijngaarden transforms ALGOL 60 programs to eliminate labels [34]. Mazurkiewicz
proves algorithms [24]. Fischer compares the generalities of implementations based on retention
and deletion strategies [13]. Strachey and Wadsworth formalize control flow in the denotational
semantics of programming languages with jumps [33]. Reynolds and Plotkin identify the eval-
uation order independence of CPS terms [30, 29]. Felleisen bases several syntactic theories of
sequential control on continuations [10, 11]. Steele reveals CPS to be a well-suited intermediate
representation for compiling strict functional languages [32] and Appel builds his implementa-
tion of SML on a preliminary transformation into CPS [1]. The CPS representation is at the core
of Wand's combinator-based compilers [36] and is also used for s programs by program
transformation [21, 14]. Together with first-class continuations as a programming paradigm [15],
continuations are generally agreed to be an essential item in programming languages [16]. They
also are ubiquitous in many areas of Computer Science: Moggi formalizes them using monads
[25]. "Filinski discovers values and continuations to be dual in a category theoretical sense [12].
Griffin and Murthy point out that the CPS transformation corresponds to the double negation
translation in proof theory [17, 26].

Yet to the best of our knowledge, the inverse transformation, i.e., transforming'CPS terms
into direct style (DS), has not been investigated despite its obvious value, e.g., to disassemble
CPS programs into something readable. Yet there is a need for the DS transformation, for
example in the area of partial evaluation (cf. Section 5). Moreover, like the CPS transformation
[8], the DS transformation can be derived formally.

1.1 T o w a r d s a d irec t s ty l e t r a n s f o r m e r

In a CPS term, continuations are produced by function composition and const~med by function
application. In an empty context, the continuation is initialized with the identity function, i.e.,
the identity element for function composition.

For example, if dfac and cfac respectively denote the DS and the CPS definitions of the
factorial function, they are related by the traditional congruence relation

Vn E Nat, Vk E [Nat --* Ans], e fac (n ,k)= k(dfae(n))

where dfae: Nat --* Nat and c/ac: Nat • [Nat --~ Ans] ~ Ans for some domain of final
answers. An answer is the result of the expression that introduced the initial continuation and
whose computation involved calling cfae.

cfac ~c A (n , k) . n = O ~ k (1) , c f a c (n - l , A v . k (n •

Intuitively, we want to transform a CPS term into a DS term by symbolically applying the
continuation of an expression such as the recursive call

cfac(n - 1 , A v . k (n x v))

to this expression, letting the continuation of this expression be the identity function. For
example, using this intuition on the factorial function yields the following definition.

fae r~=~ A (n , k) . n = O ~ k(1) , (A v . k (n x v)) (f a c (n - l , A v . v))

This definition can be simplified into

fac r~_c A (n , k) . n = O ~ k (1) , k (n • A v . v)))

132

If we carry out this transformation for all expressions, k will always denote the identity
function and therefore we only need to apply the functions extending the continuation to all
the expressions where continuations are extended (in practice: applications and conditional
expressions), lett ing their continuation be identity. As a final step, we can get rid of all the
continuation arguments (since they only denote identity). Going back to the example, this
t reatment yields the usual (direct style) definition of the factorial fuxiction.

dfac re=c A (n) . n = 0 ---+ 1, n x (d f a c (n - 1))

1.2 O v e r v i e w

This paper is organized as follows. Section 2 reviews the CPS transformation and specifies
the BNF of CPS terms. The derivation of the DS transformer for Av-terms (i.e., caLl-by-value
A-terms) is described in Section 3. The CPS transformer and the DS transformer are inverses
of each other. This point is addressed in Section 4. The need for going back to direct style is
i l lustrated with semantics-based program manipulation in Section 5. Section 5 also illustrates the
use of shifting back and forth between direct and continuation-passing styles. Section 6 situates
our approach among related work. Finally Section 7 puts this investigation into perspective.

2 T r a n s f o r m a t i o n i n t o D i r e c t v s . i n t o C o n t i n u a t i o n - P a s s i n g S t y l e

The CPS transformation is generally perceived to be a complicated affair. Similarly, CPS ' te rms
(such as in a continuation semantics) are perceived as unfriendly to read and to understand,
unless one develops a part icular skill for it. CPS terms do not appear amenable to an inverse
transformation into direct style, 1 otherwise this transformation would already be part of the
debugging package of a compiler. These observations motivated us to investigate the direct
style transformation. In part icular, we wanted to derive it soundly rather than coming up
with just another algorithm. Since the CPS transformation can be derived from a continuation
semantics of the A~-calculus [2, 8, 35], we chose to derive the DS transformer from a direct
semantics of the Av-calculus dedicated to CPS A-terms.

2.1 T h e C P S t r a n s f o r m a t i o n

Here is the abstract syntax for A-terms (where the symbol @ denotes an application)

e E Exp - - domain of expressions
I E Lam - - domain of A-abstractions
op E Opr - - domain of primitive operators
c E Cst - - domain of first-order constant values
i E Ide - - domain of identifiers

::= c I �9 I I I Q ~o (~ , ..., ~ ,) I ~o ~ ~ , ~ [op (~ , ..., e ~)
I let (i l , ..., i,~) = (el , ..., e ,) in eo I letrec (i l , ..., i~) = (11, ..., In) in eo

1 ::---- A(i l , . . . , i n) . e

Let us present a one-pass CPS transformer for applicative order (call-by-value) 3~-terms as we
derived it in an earlier work [8]. This transformer is an optimized version of Fischer & Plotkin 's
CPS transformer [13, 29].

1For example, one could try to speci(y a relation between DS and CPS terms, express it in Prolog, and try
to give Prolog a CPS term in the hope of producing the corresponding DS term. Unfortunately, our experience
shows that this process is prone to looping.

133

Ic]

[~ (*~, ..., ,~). el
[~ ~0 (~x, ..., e ,)]

[e 0 .-~ el~ e2]

[op(~, , ..., e~) l

[let (i~, ..., i~) = (el, ..., e~)in eo]

[letrec (i~, ..., i~) = (11, ..., l~) in eo]

where k is a fresh variable.

= ~ . ~ c
= ,~.@~ z

= ~ . ~ (h(xl, ..., x, , k).~[e] (~.~_k v))

= ,~ . ~ [eo]
,~vo. 0 l ed

,~vn.~vo (vl, ..., v , , ~_v.r v)

= ~a. le t k = ~ a . ~ g a

in ~[eo] (~p.p--* ~[e l] (~m.~k m) ,_
~[e2] (~n.Ok ~))

~V 1 ~- [em]

~ m . ~ (~ (V l , ..., ~))

= ,~ . ~ l e d
~'01 "~ [en]

Avr~.@n (let (ia , in) = (v~, ..., vn)
in ~[~o1 ~)

= ~ . l e t r e c (i~, ..., in) = (~[/~] (~fl-f~),

in ~[eo]

Figure 1: The CPS transformation

These equations can be read as a two-level specification d la Nielson and Nielson [28]. Op-
erationally, the overlined A's and @'s correspond to functional abstractions and applications
in the translation program, while only the underlined occurrences represent abstract-syntax
constructors.

The result of transforming a term e into CPS in any context (represented with a unary
function: the continuation) is given by

By construction, if the CPS transformer produces the term A k. e, then the term @ (,k k. e)(,k v. v)
has the same meaning as the original DS term.

2.2 S i m p l i f i e d C P S t e r m s

In the transformation above ~ in the present work, we disregard the simplifications clue to
tail-cMls, ~-reductions, or identity let expressions. For example, the direct style conditional
expression

~ (x) . x -~ y, O f (z)

is transformed into

,Xk.~k(,X(x , k') . let k" = , X v . ~ k ' v i n x --+ ~ k " y , ~ f (z , ,Xv. Ok"v))

134

Of course, in practice, we reduce this to

) ~ k . @ k () ~ (x , k ') . x ~ @k' y, @ f (z , k '))

instead, 2 bu t these simplifications actually complicate the development of this section - - hence
the purity. In practice, our CPS t ransformer produces such simplified terms [8] and our DS
t ransformer handles them as well, using a refinement of the following BNF. 3

2.3 A b s t r a c t s y n t a x o f C P S t e r m s

Let us give the BNF of CPS terms as they are produced by the CPS t ransformer of last section.
Since a fresh variable k is in t roduced for each abst ract ion and each condit ional expression,
let us index each non- te rmina l with this k as an inherited a t t r ibute . Much as Reynolds [30],
we dist inguish between "serious" and "trivial" expressions. Serious expressions e k inherit a
cont inuat ion k and trivial expressions t k denote values tha t are passed to a cont inuat ion k.

A CPS term is of the form A k . e k, where e k is defined by the following a t t r ibu te grammar .

e E Exp
l E Lam
op E Opr
c E Cst
i , v , k E Ide

- - domain of expressions
- - domain of ,k-abstractions
- - domain of primitive operators
- - domain of first-order constant values
- - domain of identifiers

e k : := @ k t k

I @t~o (t~, ..., t~, ~ v . e k)
= k' k ' [letk' Av .e~ in t k' ~ e 2 , e 3

[let (i l , ..., in) = (tl k, ..., t k) in e k
I letrec (i l in) = (11 k, ..., I k) in e k

t k : : = C

l i
I t k
lop ...,

I k : := A (i l , ..., i,~, k ') . e k'

where v # k
where v r k and k r F V (t k' ..., e2k', e3k')
where Vj E { 1 , . . . , n } , i j # k
where Vj E { 1 , . . . , n } , i j 7 s k

where i ~ k

where k f[F V (A (i l , ..., in, k ') . e k')

Each non- te rmina l is indexed with an identifier k denot ing the current cont inuat ion. This
a t t r ibu te k allows us to restrict the BNF to CPS terms tha t correspond to purely funct ional
terms. For example, a ,k-term such as ,k (x, k) . @ k ~ x is not produced by this BNF. We refer
to this const ra int as the passing constraint. The passing constraint is embodied in the first
product ion e k : := @ k t k, in tha t only the current continuation can be applied.

2.4 S y n t a c t i c p r o p e r t i e s o f C P S t e r m s

The dist inct ion between serious expressions e and trivial expressions t (and l) is captured in the
following property. This proper ty can be checked with the a t t r ibu te g rammar .

Propos i t ion 1 k f[F V (t k) []

2Sometimes, the form A x k ' . x --* k ' y , f z k ' is preferred if the t e rm occurs in an empty context , since the
cont inuat ion corresponding to an empty context is the ident i ty function - - the point here is only the dropping of
A k . ~ k ...

3For a simpler fix: the various *l-redexes can be restored at syntax analysis time.

135

C o r o l l a r y 1 k r F V (l k) []

The following syntact ic proper ty of CPS A-terms is mot iva ted by the passing const ra int - - at
any stage in an evaluat ion, there is only one "current" cont inuat ion.

P r o p o s i t i o n 2 A CPS term resulting from the CPS transformation o f a pure A-term (i.e., a
A-term without r162 needs only one variable k to denote the current continuation.

P r o o f : By s t ruc tura l induct ion over the a t t r ibu te g r a m m a r above.

Here are the two product ions where a new cont inuat ion is in t roduced.

k' k ' ek :: I let k' = A v . el k in t k' ~ e 2 , e 3 where v r k
and k ~_ F V (t k' k' k' e 2 , e3)

...
I k : : = A (i l , . . . , in, k ') . e k' where k r FV(,~ (i l , . . . , in, k ') . e k')

These two product ions come with the condit ion tha t k does not occur free in the
body of the let expression and in the A-abstraction. If we replace k' by k as a formal
pa rame te r of the let and of the A, then all occurrences of k in the bodies will refer
to this k, by vir tue of lexicai scope. Afor t ior i , they will not occur free in the let

expression nor in the A-abstraction. []

In practice, a fresh identifier k (i.e., an identifier tha t does not occur free in the DS t e rm to
be CPS- t rans formed) is provided by the CPS t ransformer . We use this fresh identifier as a
B N F a t t r i bu te to ensure tha t only the current cont inuat ion is applied and also to dist inguish
the identifier represent ing the current cont inuat ion from the o ther identifiers. Its unici ty (cf.
Proposi t ion 2) mot iva tes the following revision.

2.5 R e v i s e d a b s t r a c t s y n t a x o f C P S t e r m s

Let us s ta te the B N F of CPS A-terms where continuat ions are denoted with a unique and fresh
identifier k. The whole B N F is parameter ized with this identifier k. Since the k -a t t r ibu te is now
unnecessary, we have s t r ipped it off.

A CPS t e rm is of the form A k. e, where e is defined by the following g rammar .

e E Exp k
1 E Lamk
op E Opr
c E Cst
i, v E Ide
k e {k}

- - domain of expressions

- - domain of A-abstractions
- - domain of pr imit ive opera tors
- - domain of f irst-order constant values

- - domain of identifiers s.t. k r Ide
- - singleton domain of cont inuat ion identifiers

e : : = @ k t

I ~ to (t l , ..., tn, A v. e)
] l e t k = A v . e l i n t --* e2, e3
I let (i l , ..., in) = (t l , . . . , tn) in e
] letrec (i l , ..., in) = (11, ..., In) in e

t ::---- e

l i
I I
I o p (t l , ..., tin)

l : : = A (i l , ..., in, k) . e

136

2.6 A linearity property

CPS terms also satisfy the following linearity property.

Proposition 3 In a C P S term, a con t inua t ion parame te r occurs linearly. [:3

This proper ty can be proven by structural induction over the CPS transformation of Section
2.1. The linearity can be characterized with the following inference rules (where "| stands for
"exclusive or"). A continuation ,X v. e is linear in its parameter v when the following judgement

v ~ - e

is satisfied. The linearity property will be used last in the derivation of the DS transformer.

v ~ - t

v }- @ k t

(| ~- t ~) | ^ v t- e)
V ~- ~ t o (t l , . . . , t n , ~ W. e)

(v # w ^ ~ ~ el) ~ (~ ~ t) ~ r Fv(e2) ~ r FV(e3)
v F- let k = A w. el in t ---, e2, e3

(@n=lv [- t i) ~ (V j E { 1 , . . . , n } , i j ~ v A v F e)

v F- let (i l , ..., in) = (t l , ..., t,~)in e

r y e { 1 ,n}, i~#v r y e { 1 n } , v C F V (l j)

v ~- letrec (i l , ..., i,~) = (l l , .'.., l,~) in e

v F - e

v l - v

| v ~- tl
v ~- op(tl, ...,tin)

Figure 2: Linearity conditions over the continuation ~ v. e

3 D e r i v a t i o n o f t h e D i r e c t S t y l e T r a n s f o r m e r

This section is organized as follows. First we define the denotat ional semantics of CPS terms from
the usual denotat ional semantics of the A.-calculus (reproduced in Appendix A). We express it as
a core semantics and a s tandard interpretation. We prove a property of this specification. Then
we successively present non-standard interpretations (together with their congruence proofs)
that are increasingly bet ter suited to the derivation of a direct style transformer. Finally, we

137

view the last non-standard semantics as a mapping from syntax to syntax (since denotat ions
are also expressed using A-expressions). Improving its binding times yields the direct style
transformer.

3.1 C o r e s e m a n t i c s a n d i t s s t a n d a r d i n t e r p r e t a t i o n

Based on the usual denotat ional semantics of A.-calculus (c f . Appendix A), let us derive the
meaning of CPS terms in an empty context. The meaning of the term

[~ (A k. e) (A v. v)]

is given by the s tandard interpretat ion of e

Zk[elp~n.[k ~ Id]

where l d denotes the identity function and is the continuation representing an empty context.
This way we can give a denotation for each of the terms defined by the BNF. We stick to

the distinction between serious and trivial terms by mapping them to their meaning' using two
valuation functions s and Tk. These valuation functions can be derived from the usual valuation
function C shown in Appendix A.

L'k : Exp k --~ E n v k --* Val
Idek = Idet_J{k} 7~ : Trivk ~ E n v k --* Val

Vark = VarU {k} s : Lamk ~ E n v k --* Fun
Val = (C s t + F u n) • C : Cst ~ Val

E n v k = Vark ~ Val
Fun = Val + --* VM Zk : Idek --* Vark

O : Opr ~ Val* --* Val

where Id = A(v). v E Fun

For simplicity, and as in appendix A, we will identify the syntactic domain of identifiers Idek
and the semantic domain of variables Vark. Therefore, a syntactic identifier i is mapped to a
semantic variable i.

There is only one point to be noted in the following equations. We have parameterized them
with four combinators Send, App, Close, and Cond:

Send: Val ~ Fun --* Val

App: Fun --, Val + - , Val

Close: "Car + ~ [Envk --* Val] ~ E n v k --* Fun

Cond: [Envk --* Val] --* [Envk --* Val] --, [Envk ~ Val] --* E n v k --* {k} ~ F u n --* Val

This technique of defining a core semantics and a s tandard interpretat ion can be found in
Nielson's work on da ta flow analysis by abstract interpretat ion [27] and in Jones and Mycroft 's
work on Minimal Function Graphs [18]. Today Jones and Nielson are developing this technique
as a convenient format for specifying abstract interpretat ions [19].

ck[e k q p
s to (ta, ..., t , , A v. e)] p

s k = A v . e l in t ~ e2, e j] p

= le t v = Tk[t]p in Send v (pk)

= l e tvo = 7~[to]p, vl = Tk[tlI p, ..., v , = TkEt,~ l p
in App vo (v l , vn, A (a) . s ~ a])

= let n = A(a) .Zk [e]]p[v ~-* a]

in Cond (Tk[t]) (C•[[e2]) (Ck[ej]) p k

138

gkl[let (i l , ..., in) = (t l , ..., tn) in el p

gk[letrec (i1, ..., in) = (l l , ..., In) in e] p

7~[c ip

~[i]p
7~[t]p

Tk[op (t l , ..., tm)] p

s (i l , ..., in, k) . e l p

The following four combinators

= le t vl = Tk~'tl]p, ..., vn ---- Tk[tn lp
in Ck[elp[il ~ Vl, . . . , in ~ Vn]

= l e t r e c (f l , ..., fn) = (Lk[ll] p[il ~ s ..., in ~ fn],
;..,
~:k[lnip[il ~ s ..., in ~ /n])

in s ~ f l , ..., in ~ f~]

= c M

= p i

= c d q p

= le t vl = 7-k[tl]p, ..., Vm = Tk[tm]p
in O[op] (V l , . . . , Vm)

---- Close (i l , ..., in, k) (Ckie]) p

specify the s tandard in terpre ta t ion of this core semantics.

Send: Val ~ Fun ~ Val
S e n d v a = ~;(v)

App: Fun ~ Val + ---* Val

App f (vl , ..., Vn, ~) = f (Vl , ..., Vn, e;)

Close: Var + --* [Envk ~ Vail ---* Envk ~ Fun
C l o s e (i b ..., in, k)O p = A(vm, ..., Vn,a).Op[il ~'~ vl , ..., in ~ Vn, k ~ ~]

Cond: [EnVk --+ Vail --+ [Envk --* Vail --* [Envk -* Vail -* EnVk -~ {k} ~ Fun --* Val
Cond 0 02 03 p k/ ' i ; - - 0 p[k ~ ~] --* 02 p[k ~ ~], 03 p[k ~-~ *;]

Actually, this last combina tor can be refined, as captured in the following property.

Proposi t ion 4 For all expressions t and legal environments p[k ~ ~],

Tdt] p[k ~ ~] = ~[t] p

Proof." By const ruct ion of any trivial te rm t, k does not occur free in t (cf. Proposi t ion 1).
Hence, evaluat ing t in an envi ronment is insensitive as to whether this envi ronment binds k or
not. D

Therefore we can rewrite the definition of Cond as follows.

Cond: [Envk ~ Val] ---* [EnVk ~ Val] --.* [Envk --* Yal] ~ Envk -.-* {k} ~ Fan ~ Val

Cond 0 02 03 p k ~ = 0 p ---, 02 p[k ~ a], 03 p[k ~ g]

3.2 Towards a direct style transformer (revisited)

Intuit ively, if a procedure terminates , its cont inuat ion is guaranteed to be sent the "result" of
this procedure (this passing constraint over cont inuat ions was captured in the k a t t r ibute) . This
in tu i t ion can be extended to a rb i t ra ry expressions: if evaluat ing a n expression terminates , its
cont inuat ion is guaranteed to be sent the corresponding value.

Suppose tha t , ins tead of the denota t ion of the current cont inuat ion , we pass the denota t ion
of the ident i ty procedure (i.e., the ident i ty function) when we call a procedure. This funct ion

139

would then be applied to the "result" of this procedure and would return it. If we send this
result to the current continuation, the computat ion would proceed as before.

This intuition can be extended to arbi t rary expressions: if we evaluate a terminat ing expres-
sion in an environment where the continuation identifier is bound to the identity function, this
function will be applied to an intermediate value and will return it. Should we send this value
to the current continuation, the computat ion would continue as before.

Regarding non-termination, this intuition still holds: if a procedure does not terminate, its
continuation will never be applied to any "result." Therefore subst i tut ing the identity function
for its continuation does not change the (absence of) result of the whole computat ion. Dit to for
expressions whose evaluation does not terminate - - substi tuting the identity function for their
continuation in the environment will make the evaluation diverge as well.

The following section formalizes these intuitions as properties of the denotat ional semantics
above.

3.3 S e m a n t i c p r o p e r t i e s o f C P S A-terms

Definit ion 1 A value f E Val is well-behaved i f

f = A(vl, ..., vn, ~) . let v = f (vl , ..., vn, Id)
in a(v)

whenever f E Fun, f E Val n+l --* Val, and n > O. (NB: as in Appendix A, the let construct is
strict.)

Definit ion 2 A n environment p E Env is well-behaved i fV i E Var, p i is well-behaved.

Based on these two definitions, let us prove the three following properties.

Propos i t ion 5 (g-proper ty) For all expressions e E Exp k and well-behaved environments
p[k ~-~ ~] binding k to some tr Val --* Val,

s ~-* ~] = le t v = gk[e]p[k ~ Id]
in to(v)

P r o p o s i t i o n 6 (L-proper ty) For all expressions A (i l , ..., in, k) . e E Lama and well-behaved
environments p,

/ ; a [A(i l , ..., in, k) . e] p = A(vl, ..., Vn ,~) . let v = s ~ vl , ..., in ~ vn, k ~ 1(t]
in t~(v)

P r o p o s i t i o n 7 (T-proper ty) For all expressions t E Triva and well-behaved environments p,
Tk[t] p is well-behaved.

P r o o f : By mutual structural induction over the syntactic categories e, t, and l [31, Section 1.2].
In particular, the equality

s (i l , ..., in) = (11, ..., In) in e~ p[k ~ ~]
= let v = Ck[letrec (i l , in) = (ll, ..., In)in e]p[k ~-~ Id]

in a(v)

is proved by fixpoint induction. This requires proving the two following lemmas [31, Section
6.7].

Lemma 1 The predicate "is well-behaved" is inclusive over the domain Val n+l --* Val.

Lemma 2 -kFu n is well-behaved.

140

3.4 N o n - s t a n d a r d i n t e r p r e t a t i o n a n d its congruence p r o o f

The continuation gets extended with another function only for applications and for conditional
expressions, whose meanings are defined by the combinators App and Cond. The properties
above suggest the following non-standard combinators.

App' : F u n ~ Val + ---* Val

App' f (vl , ..., v=, ,~) = let v = f (v l , ... , vn , 1(t) in to(v)

Cond': [E n v k ~ Vail ---* [E nvk ---* Vail ~ [E n v k ~ Val] ~ E n v k ~ {k} ~ F u n ~ Val

Cond '002 Oa p k n = O p ~ let v2 = 02 p[k ~ Id] in ~(v2),
let v3 = 03 p[k ~ Id] in n(v3)

Together with Send ~ and Close ~ (which do not change)

Send ~ = Send
Close ~ = Close

App ' and Cond' define a non-standard interpretat ion of the core semantics.

P r o p o s i t i o n 8 The s t a n d a r d a n d the n o n - s t a n d a r d i n t e r p r e t a t i o n s de f ine the s a m e language .

P r o o f : by s tructural induction, using the E, s and T-propert ies. Here are the only interesting
cases.
Let f be well-behaved.

App f (Vl, ..., vn, ~)

= f(vl,..., vn, ~)
= (A(vl, ..., vn, to). le t v = f (v l , ..., vn , I d) in ~(v))(Vl, ..., v,~, n)
= let v = f (v l , v = , I d) in ~(v)
= App ' f (vl, ..., vn, n)

- - de f in i t ion of App
- - f is w e l l - b e h a v e d

- - E - r e d u c t i o n

- - de f in i t i on of App '

Corid (Tk[t]) (gk[e2]) (Ek[e3]) p k/~

Zde3]p[k ~ ~1
= ~ [t] p ~ l e t v2 = ~k[e2] p[k ~ Id] in to(v2),

l e t v3 = gk[e3] p[k ~ Id] in ~(v3)
= Cond' (Tk[t]) (gk[e2]) (Ek[e3]) p k

- - de f in i t i on of Cond

- - E - p r o p e r t y

- - de f in i t i on of Cond'

[]

Under the present interpretat ion, and intuitively, k denotes Id at every point. The following
section captures this intuition in another interpretat ion of the core semantics that we prove
congruent to the present one.

3.5 One s tep further

Let Env~ ~ ({p 6 EnVk I p k = Id},___~vk/. Envy, is a cpo.
Let us define three new valuation functions.

E~ :Expk ~ Env 'k ~ Val

7 ; : T r i v k ~ Env~ ~ Val

s :Lamk --+ E n v ' k ~ F un

141

as a s 7~, and s interpretat ion with Env~k domain and App ' and Cond' as combinators.

P r o p o s i t i o n 9 s T~, and s k are well defined and

{ Z [e]p = Zk[e]p

L (t] p = Lk[l] p

whenever e E Expk
whenever t E Wrivk
whenever 1 E Lamk

and whenever p E Envy .

Proof." By structural induction on the syntax of EXPk , Trivk, and Lamk. We must verify tha t
all environments built within the right-hand sides of semantic equations are in EnV~k .

Here is the main step. There are only two cases where a new k is introduced: in A-abstractions
and in conditional expressions. The / : -p rope r ty tells us that the environment is extended with
the continuation parameter denoting Id. In the case of conditional expressions, Cond' tells us
that the consequent and alternative expressions are evaluated in an environment where the new
continuation parameter denotes Id.

Equality immediately follows from well definedness since ,5"~ uses the same semantic equations
as ~k.

Finally let us notice that the meaning of the term

e) v)]

is given by the s tandard interpretat ion of e

Zklelp . ,[k Id]

where k denotes Id. This establishes the "initial environment" for an expression. 1:2

Let us use Env~k from now on. This suggests going one step further with a new interpreta t ion
where the identity function is not passed at call sites but is introduced at definition sites instead.
This intuition is captured in the following domain and combinators.

F u n " = Val* ~ Val

App": Fun" ~ Val + --* Val
App" f (v l , ..., vn, n) = le t v = f (va , ..., vn) in n(v)

Close": Var + ~ [Env~k ~ Val] ~ Env~ ~ Fun"
Close"(ia , ..., in, k) bp = A(vl, ..., v,~).bp[ia ~ vl , ..., in ~ v n , k ~ Id]

Send" = Send'
Cond" = Cond I

P r o p o s i t i o n 10 s 7~, and s with Fun", App", and Close"are well-defined and equal s T~,
and f~l k with Fun, App' , and Close'.

P r o o f : By structural induction on the syntax of EXPk, Trivk, and Lamk. Here is the essential
step.

142

App' (Close' (i l , ..., in, k) b p) (vl, ..., vn, ~)
= le t v --- () ~ (V l , . . . , Vn, ~) . b p [i l ~-* va, ..., in ~'* vn, k ~-* ~])(vl, ..., vn, Id)

in n (v) - -de f in i t i on of App' and Close'
= le t v = bp[i l ~ v l , ..., in ~ v~, k ~ Id]

in ~ (v) - - f l - reduct ion

---- l e t v = () ~ (V l , . . . , V n) . b [[i I ~ v l , . . . , in ~ Vn, k ~'~ I d]) (V l , . . . , Vn)
in ~ (v) - - abs t rac t ion

= App" (Close" (i l , ..., in, k) b p) (v l , vn) - - def ini t ion of App" and Close"

[]

Let us go back to the denotat ion of [@ k t].

$ ~ [~ k t] p = l e t v = T ~ [t] p i n S e n d ' v (p k)

By definition of Env~k, the second argument of Send' is always Id. Let us capture this property
in a new definition of this combinator:

Send": Val ---, Fun ~ VM
Send" v (p k) = (p k) (v)

= I d (v)

= V

Proposition 11 C~ with Send" is well-defined and equals Ctk with Send'. []

This leads us to the following equivalent denotation of [@ k t]

k t]p = le t v = T~[t]p in Send" v (pk)
= l e t v -- T ~ [t] p i n v
= p

The syntactic continuation k is only looked up in the environment in the denotation of
[[@ k t], which, we just saw, can be simplified into an expression where k is not looked up in the
environment. Therefore at this point, k is completely useless.

Now we are equipped enough to actually derive the direct style transformer.

3.6 F r o m t h e n o n - s t a n d a r d d e n o t a t i o n a l spec i f i c a t i on to a d e f i n i t i o n a l i n t e r p r e t e r ,
a n d f r o m t h e i n t e r p r e t e r to a c o m p i l e r b a s e d on b i n d i n g t i m e a n a l y s i s

It is possible to take the denotat ional specification of the last section literally as a functional
program, following Reynolds's definitional interpreter insight [30]; and then to analyze its binding
times, as customary in par t ia l evaluation, to compile and to generate the corresponding compiler
[20, 51 .

Although straightforward, the derivation is a bit lengthy, so for conciseness, let us instead
consider the denotat ional specification above as a rewriting system from syntax to semantics.
Still with an eye on binding times, we will alter this rewrite system in a meaning-preserving
way, yielding the final direct style transformer. This is done in the following section.

143

3.7 Viewing the denotational specification as a rewriting sys tem

Let us take the homomorphic metaphor of denotat ional semantics (i .e . , from syntax to semantics)
literally, based on the fact that both the syntax and the semantics are expressed as A-terms.
Taking the equations above as specifying a syntactic rewrite system and letting variables denote
themselves (which makes the environment useless) leads to the direct style transformer. We
decide that our target language is to be the A.-calculus, so there is no need for the strict let
expressions anymore; we unfold them.

The term @ (A k. e)(A v. v) is rewritten as llell, where the rewrite function II II is defined induc-
tively as follows (for concision, we have unfolded the Send, App, Close, and Cond combinators
of the last non-standard interpretat ion).

ll~ k t]

ll@ to (t~ , tn, A v . e)ll

[[let k = A v. ex in t ---* e2, e3]]

[[let (i l , ..., in) = (t l , ..., tn) in ell

llletrec (i l , ..., i~) = (/1, ..., In)in ell

H
[i]

lop (t~, ..., t ,O]

llA (i~, ..., i~, k) . el

= i t l
= ~ (Av .H) (~ ito] (lltlll lit=l))
= @ (A v . l l e l]) (l l t] ~ lle2] , ie3l l)

= let (i l , ..., in) = (lltlll, ..., l l tn]) in Jell

= letrec (i l , in) = (~ll]], ..., , lllnll) in lle]

---- e

= i

= op([t l l , ..., l i t ,J)

= A (i1, ..., i ,) . H

"Figure 3: Syntax-directed transformation into direct style

Alternatively, this rewriting can be seen as going from an environment model to a Church-
style encoding of binding relations. Wand has proven that these two encodings are equivalent
[37].

3.8 The actual direct style transformer

The rewriting system of Section 3.7 can be subjected to an impor tant binding time improvement
based on the linearity property of continuation parameters. Since the body of a continuation is
linear in its argument (cf. Proposition 3), and due to the call-by-value nature of our setting, the
outer redex produced by the translation of applications can actually be reduced at t rans la t ion
t ime. Based on this improvement, it is possible to map a term such as

into

instead of mapping it to

Ak.k(Axk.gz(Av. f v(Aa.ka)))

Az . / (gx)

~x.((~v.(Aa.a)(fv))(gx))
only. By the same token, the fl-redex produced by the translat ion of conditional expressions
should be reduced at translat ion time as well.

Using the same two-level notation as in Section 2, let us reexpress the DS transformation,
distinguishing between translation time and run time constructs.

144

[e k t l

[4 to (t l , ..., tn, A v . e)]

[let k = A v. el in t --+ e2, e3]

[let (i l , in) = (t l , ..., tn) in e]

[letrec (i l , ..., in) = (11, ..., l~) in e]

H

l o p (t 1 , tm) l

[A (i 1 , in, k) . e]

= i q
= ~ (~ v . [e]) (~ t o] ([t~ l , [tn]))

= ~(Av.ied) ([tl ~[~21 _,ie~])
= l e ~ (i l , in) = (Ir , [t , l) ~ [e]

= l e trec (i~, . . . , i .) = ([t d , . . . , , [tn l) ~ [e l

e

= i

= o p (~ t l] , . . . , [t m])

= A(i l , ..., in).~e]

Figure 4: The DS transformation

4 A r e t h e C P S a n d D S T r a n s f o r m a t i o n s I n v e r s e ?

Proposition 12 The D S and the C P S transformations are inverses o f each other, up to c~.
conversion.

P r o o f i This proof is not immediate because of the translat ion-t ime simplifications (specified
by the overlined @ and A in Sections 1 and 4). Therefore we cannot line up producers and
consumers together and simplify the composition of these two transformations. Instead, let us
stage these two transformations.

Let 7) denote the DS transformation. We stage 7) as follows.

/) = /) 2 o/)1

7)1 is specified in Section 3.7. It maps a CPS term into a non-simplified DS term (i .e. , a A-term
with ~ and ~). /)2 carries the fl-reductions involving ~ and ~.

Correspondingly, let C denote the CPS transformation. We stage C as follows.

C = C2 o C1

C1 maps a DS term into a term specified by the following BNF.

e : : = L l_ t
s : := ~ (A v . e) (~ to (t l , ... , tn))

I ~ (A v . e l) (t --, e2, e3)
[let (i l , ..., in) = (t l , ..., tn) in e
I letrec (i l , ..., in) = (t l , ..., tn) in e

t ::= c
t i

l o p (t 1 , t i n)
t A (i l , ..., i n) . e

Intuitively, C1 transforms a A-term into a head form by introducing a bunch of/~-redexes and
then sequentializing them [6]. C1 and 1)2 are inverses of each other.

Using a unique identifier k, C2 introduces continuations. It is the inverse of /)1 . El

145

5 S e m a n t i c s - B a s e d P r o g r a m M a n i p u l a t i o n

CPS matters when one manipulates programs based on their semantics because it makes flow
analyses yield more precise results [27]. As a program specialization technique, partial evalua-
tion benefits from pre-transforming source prograzns into CPS [4]. Since residual programs are
expressed in CPS, they are good candidates for the DS transformation, if partial evaluation is
to be seen as a source-to-source transformation.

6 C o m p a r i s o n w i t h R e l a t e d W o r k

Properly speaking, there are no related works since (again to the author 's best knowledge) trans-
forming continuation-passing terms into direct style has not been explored so far. There appears
to be two main classes of applications for the CPS transformation: for program analysis and
transformation, and for functional reasoning about control operators. Our DS transformation
covers the first class but not the second. It can be extended by relaxing the passing constraint
over CPS terms, as investigated in "Back to Direct Style II" [9]. Further, relaxing the linearity
property on continuation parameters is handled by inserting a let or a sequence expression.
Finally, relaxing the CPS texture amounts to introducing control operators such as shift and
r�9 [7].

7 C o n c l u s i o n s a n d I s s u e s

Work in semantics-based program manipulation revealed the need for a transformation into
direct style. We have shown that such transformations exist and we have derived one for call-
by-value soundly. In the area of partial evaluation , we have applied the CPS transformation
to source programs and the DS transformation to specialized programs, obtaining substantial
improvements.

A number of issues remain to be explored. Here are a few of them.

Currently the DS transformer assumes continuations to occur as the last parameter. How-
ever nothing in a general-purpose partial evaluator ensures that residual continuations
occur last. How could the DS transformer cope with continuations occurring anywhere?

Can the DS transformer be extended to produce DS terms including control operators
such as ca l l / co? (NB: in collaboration with Lawall, we have extended the DS transformer
to handle first-class continuations [9].)

�9 Does there exist a DS transformer towards An-terms? (NB: we have derived one at this
time.)

The DS and the CPS transformations are too strong in that they are global. Often
we know that parts of our programs are "trivial" in Reynolds's sense [30] and therefore
they do not need to be transformed. Can we minimize the extent of the DS and CPS
transformations? We understand that Wadler's use of monads corresponds to this, together
with instrumenting the continuation to receive not only a value but also a single-threaded
resource, e.g., for monitoring [35, 22].

CPS programs are single-threaded in their continuation and therefore their control is in-
herently sequential. Could the DS transformer be used as a tool for parallelization? We
are thinking of a programming style where DS sub-terms would be evaluated in parallel
and CPS terms would be evaluated sequentially.

146

�9 The CPS transformation corresponds to other transformations in constructive mathematics
[17, 26]. Can the DS transformation have a similar equivalent?

�9 Finally the DS transformer can contribute to derive program analyzers for CPS code that
are at least as good as program analyzers for DS code. Here is the idea.

Let C and 9 be inverse CPS and DS transformers, respectively; and let .Ad and .dc be
program analyzers for DS and for CPS programs, respectively, such that

Ac o C ~_ Ad

In other terms, analyzing a DS program should yield a result which is at least as good
as analyzing the CPS counterpart of this program (cf. Section 5). We can isolate Ac by
composing C on the right

Ac oC o T) ~ Ad oC

and by simplifying (composition is associative, and C and T~ are inverses of each other)

Ac ~ .Ad oC

There are two ways to read this equation.

1. Trivial way: "To analyze a CPS program, first map it back to DS and then analyze
it by conventional means. The result is guaranteed not to get worse."

2. Insightful way: "To derive an analyzer of CPS terms, symbolically compose (and
simplify!) an analyzer of DS terms and the DS transformer."

The la t ter way offers a practical insight to build program analyzers for CPS programs
that are at least as good as existing program analyzers for DS programs. Such a class
of new program analyzers appears to be needed in modern compilers for strict functional
languages (Scheme, ML). Tarditi is working on this class of new program analyzers at
Carnegie-Mellon University.

A c k n o w l e d g e m e n t s

This work benefited from Karoline Malmkjmr's patient and sharp-wit ted comments and from
David Schmidt 's interest and rigor. Thanks are also due to Andrzej Filinski, Charles Consel,
Jim des Rivi~res, Peter Sestoft, and Julia Lawall.

A D e n o t a t i o n a l S e m a n t i c s o f t h e A . - C a l c u l u s

This appendix addresses the A.-calculus applied to t he usual first-order constants (boolean,
numbers, etc.) and extended with conditional expressions, recursive definitions, and primitive
operations. Primitive operators either map first-order arguments to first-order results or are
da ta structure constructors and destructors such as in list operations.

A b s t r a c t S y n t a x

e E Exp
1 E Lam
op E Opr
c E Cst

- - domain of expressions
- - domain of A-abstractions
- - domain of primitive operators
- - domain of first-order constant values

147

i E Ide - - domain of identifiers

e : : - - c I i [I [~ e 0 (e l , . . . , en) [op (e l , . . . , era) [
ex ---* e2, e3 [let (i l , ..., i~) = (el , ..., en) in eo I letrec (i l , i,~) = (lx, ..-, ln) in eo

I : := A (i l , ..-, i n) . e

NB: The symbol @ denotes an application.

S e m a n t i c D o m a i n s

g : Exp ~ E n v --* Val

Val = (C s t + F u n) • s : Lam ~ E n v -* F u n

E n v = Var--* Val C : C s t - - , Val

F u n = Val* --* Val Z : Ide ~ Var

0 : Opr --* Fun

For simplicity, we identify the syntact ic domain of identifiers Ide and the semant ic domain of
variables Var. Literally speaking, a syntact ic identifier i is mapped into a semant ic variable Z[i] ,

but we will refer to this variable as i. Identifying identifiers and variables allows to refer to them
uniformly. This makes it easier to read the following equations.

V a l u a t i o n f u n c t i o n s

We assume the semantic l e t construct to be strict. This ensures the call-by-value na tu re of the
defined language. We also leave out the inject ion and project ion of sum m ands , for simplicity.

g l c] p

Elilp
c[qp

~ [~ eo (e l , ..., en)] P

C[op (e l , ..., em)]p

~[e I -"* e2, e3] P

g[le t (i l , ..., in) = (el , ..., en) in eo]p

g~letrec (i l , ..., i~) = (/a l~) in eo] p

s (i l , ..., i , ~) . e l p

= C[cl

= pi

: C l l l p

: l e t vo = g [e o] p , Vl = g [e l] p , ..., vn = s
in vO(Vl, ..., v,~)

= l e t ,,~ = C l e d p, .. . , ,,m = E [e m l p

in O[op] (vx , vm)

= l e t b = g [e 0] p i n b ---* g [e l] p , L'[e2]p

= le t v, = oC[ellp, ..., vn = C [e n] p

in s p[i l ~ v l , ..., i,~ ~ v,~]

= l e t r e c (f l , ..., f n) = (L [l l] p [i l ~ f l , ..., in ~ f~],

z F , l p [i l ~ A , ..., i , ~ s
in C[eo lp [h ~ v, , ..., i , ~ v,]

= ~(~1, ..., v ,) . ~ [e l p [h ~ v , , ..., i , ~ ~,]

The meaning of a t e rm [e] is given by 8[e] pi,,it where pi,~it denotes the ini t ial envi ronment .

148

References

[i] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[2] Anders Bondorf. Automatic autoprojection of higher-order recursive equations. Science of
Computer Programming, 1991. To appear.

[3] William Clinger and Jonathan Rees, eds. Revised 4 report on the algorithmic language
Scheme. LISP Pointers, IV(3):1-55, July-September 1991.

[4] Charles Consel and Olivier Danvy. For a better support of static data flow. In Proceedings of
the 1991 Conference on Functional Programming and Computer Architecture, number 523
in Lecture Notes in Computer Science, pages 496-519, Cambridge, Massachusetts, August
1991. Springer-Verlag.

[5] Charles Consel and Olivier Danvy. Static and dynamic semantics processing. In Proceedings
of the Eighteenth Annual A CM Symposium on Principles of Programming Languages, pages
14-24, Orlando, Florida, January 1991. ACM Press.

[6] Olivier Danvy. Three steps for the CPS transformation. Technical Report CIS-92-2, Kansas
State University, Manhattan, Kansas, 1992.

[7] Olivier Danvy and Andrzej Filinski. Abstracting control. In LFP'90 [23], pages i51-160.

[8] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS transforma-
tion. Technical Report CIS-91-2, Kansas State University, Manhattan, Kansas, 1991.

[9] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations. Tech-
nical Report CIS-9~-1, Kansas State University, Manhattan, Kansas, 1992.

[10] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. A syntactic
theory of sequential control. Theoretical Computer Science, 52(3):205-237, 1987.

[11] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of sequen-
tial control and state. Technical Report Rice COMP TR89-100, Department of Computer
Science, Rice University, Houston, Texas, June 1989. To appear in Theoretical Computer
Science.

[12] Andrzej Filinski. Declarative continuations: An investigation of duality in programming lan-
guage semantics. In D.H. Pitt et al., editors, Category Theory and Computer Science, num-
ber 389 in Lecture Notes in Computer Science, pages 224-249, Manchester, UK, September
1989.

[13] Michael J. Fischer. Lambda calculus schemata. In Proceedings of the ACM Conference on
Proving Assertions about Programs, pages 104-109. SIGPLAN Notices, Vol. 7, No 1 and
SIGACT News, No 14, January 1972.

[14] Pascal Fradet and Daniel Le M4tayer. Compilation of functional languages by program
transformation. ACM Transactions on Programming Languages and Systems, 13:21-51,
1991.

[15] Daniel P. Friedman. Applications of continuations. Report 237, Computer Science Depart-
ment, Indiana University, Bloomington, Indiana, January 1988. Tutorial of the Fifteenth
Annual ACM Symposium on Principles of Programming Languages, San Diego, California.

149

[16] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials of Programming
Languages. MIT Press and McGraw-Hill, 1991.

[17] Timothy G. Griffin. A formulae-as-types notion of control. In Proceedings of the Seven-
teenth Annual ACM Symposium on Principles of Programming Languages, pages 47-58,
San Francisco, California, January 1990. ACM Press.

[18] Nell D. Jones and Alan Mycroft. Data flow analysis of applicative programs using minimal
function graphs. In Proceedings of the Thirteenth Annual ACM Symposium on Principles
of Programming Languages, pages 296-306, January 1986.

[19] Neil D. Jones and Flemming Nielson. Abstract interpretation: a semax~tics-based tool for
program analysis (chapter in preparation). In The Handbook of Logic in Computer Science.
North-Holland, 1991.

[20] Nell D. Jones, Peter Sestoft, and I-Iarald Sondergaard. MIX: A self-applicable partial eval-
uator for experiments in compiler generation. LISP and Symbolic Computation, 2(1):9-50,
1989.

[21] Richard Kelsey and Paul Hudak. Realistic compilation by program transformation. In
Proceedings of the Sixteenth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 281-292, Austin, Texas, January 1989.

[22] Amir Kishon, Paul I-Iudak, and Charles Consel. Monitoring semantics: A formal framework
for specifying, implementing, and reasoning about execution monitors. In Proceedings of the
ACM SIGPLAN'91 Conference on Programming Languages Design and Implementation,
pages 338-352, Toronto, Ontaxio, June 1991.

[23] Proceedings of the 1990 ACM Conference on Lisp and Functional Programming, Nice,
France, June 1990.

[24] Antoni W. Mazurkiewicz. Proving algorithms by tail functions. Information and Control,
18:220-226, 1971.

[25] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth
Annual Symposium on Logic in Computer Science, pages 14-23, Pacific Grove, California,
June 1989. IEEE.

[26] Chetan R. Murthy. An evaluation semantics for classical proofs. In Proceedings of the Sixth
Symposium on Logic in Computer Science, Amsterdam, The Netherlands, July 1991. IEEE.

[27] Flemming Nielson. A denotational framework for data flow analysis. Acta Informatiea,
18:265-287, 1982.

[28] Flemming Nielson and Hanne Riis Nielson. Two-level semantics and code generation. The-
oretical Computer Science, 56(1):59-133, January 1988.

[29] Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer
Science, 1:125-159, 1975.

[30] John C. Reynolds. Definitional interpreters for higher-order programming languages. In
Proceedings of 25th ACM National Conference, pages 717-740, Boston, 1972.

[31] David A. Schmidt. Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon, Inc., 1986.

150

[32] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-474, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts,
May 1978.

[33] Christopher Strachey and Christopher P. Wadsworth. Continuations: A mathematical
semantics for handling full jumps. Technical Monograph PRG-11, Oxford University Com-
puting Laboratory, Programming Research Group, Oxford, England, 1974.

[34] Adriaan van Wijngaarden. Recursive definition of syntax and semantics. In T. B. Steel, Jr.,
editor, Formal Language Description Languages for Computer Programming, pages 13-24.
North-Holland, 1966.

[35] Philip Wadler. Comprehending monads. In LFP'90 [23], pages 61-78.

[36] Mitchell Wand. Semantics-directed machine architecture. In Proceedings of the Ninth
Annual A CM Symposium on Principles of Programming Languages, pages 234-241, January
1982.

[37] Mitchell Wand. A short proof of the lexical addressing algorithm. Information Processing
Letters, 35:1-5, 1990.

(lambda (f I) ; [A -> B] * List(A) -> List(B)
(letrec ([loop (lambda (i)

(if (null? i)
'()

(cons (f (car i)) (loop (cdr 1)))))])
(loop i)))

(lambda (k)
(k (lambda (f i k) ; [A * [B -> Ans] -> Ans]* List(B) * [List(B) -> Ans] -> Arts

(letrec ([loop (lambda (1 k)
(if (null? i)

(k , ())
(f (car i) (lambda (v)

(loop (cdr I) (lambda (vs)
(k (Cons V vs))~)))))])

(loop 1 k)))))

Figure 5: Interconvertible DS and CPS definitions of the map procedure in Scheme
As can be noticed, the CPS transformation commits the order of evaluation of sub-expressions
m an application, which is not in the true spirit of Scheme [3].

(lambda (x) x) (lambda (k) (k (lambda (x k) (k x))))

Figure 6: Interconvertible DS and CPS definitions of the identity procedure in Scheme

