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Abstract 

While a great deal of at tention has been devoted to transforming direct-style (DS) 
functional programs into continuation-passing style (CPS), to the best of our knowl- 
edge, the transformation of CPS programs into direct style has not been investi- 
gated. This paper describes the mapping of continuation-passing A-terms to their 
applicative-order direct style counterpart .  We set up foundations and outline appli- 
cations of the direct style transformation. 

We derive the direct style transformer from a non-standard denotational  semantics 
of the untyped Av-calculus, that  we prove congruent to the s tandard  one. 

Under precise conditions (linear occurrences of continuation parameters  and no first- 
class use of continuations due to control operators such as c a n / c o ) ,  we show the DS 
and the CPS transformations to be inverse. 

The direct style transformation can be used in part ia l  evaluation, based on the fact 
tha t  semantics-based program manipulation performs bet ter  when source programs 
are first t ransformed into CPS. As a result, specialized programs are expressed in 
CPS as well. The DS transformation maps them back to direct style. 
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1 I n t r o d u c t i o n  

A considerable amount of work is dedicated to the continuation-passing style (CPS) transforma- 
tion: van Wijngaarden transforms ALGOL 60 programs to eliminate labels [34]. Mazurkiewicz 
proves algorithms [24]. Fischer compares the generalities of implementations based on retention 
and deletion strategies [13]. Strachey and Wadsworth formalize control flow in the denotational 
semantics of programming languages with jumps [33]. Reynolds and Plotkin identify the eval- 
uation order independence of CPS terms [30, 29]. Felleisen bases several syntactic theories of 
sequential control on continuations [10, 11]. Steele reveals CPS to be a well-suited intermediate 
representation for compiling strict functional languages [32] and Appel builds his implementa- 
tion of SML on a preliminary transformation into CPS [1]. The CPS representation is at the core 
of Wand's combinator-based compilers [36] and is also used for s programs by program 
transformation [21, 14]. Together with first-class continuations as a programming paradigm [15], 
continuations are generally agreed to be an essential item in programming languages [16]. They 
also are ubiquitous in many areas of Computer Science: Moggi formalizes them using monads 
[25]. "Filinski discovers values and continuations to be dual in a category theoretical sense [12]. 
Griffin and Murthy point out that the CPS transformation corresponds to the double negation 
translation in proof theory [17, 26]. 

Yet to the best of our knowledge, the inverse transformation, i.e., transforming'CPS terms 
into direct style (DS), has not been investigated despite its obvious value, e.g., to disassemble 
CPS programs into something readable. Yet there is a need for the DS transformation, for 
example in the area of partial evaluation (cf. Section 5). Moreover, like the CPS transformation 
[8], the DS transformation can be derived formally. 

1.1 T o w a r d s  a d irec t  s ty l e  t r a n s f o r m e r  

In a CPS term, continuations are produced by function composition and const~med by function 
application. In an empty context, the continuation is initialized with the identity function, i.e., 
the identity element for function composition. 

For example, if dfac and cfac respectively denote the DS and the CPS definitions of the 
factorial function, they are related by the traditional congruence relation 

Vn E Nat, Vk E [Nat --* Ans], e fac (n ,k )=  k(dfae(n)) 

where dfae: Nat --* Nat and c/ac: Nat • [Nat --~ Ans] ~ Ans for some domain of final 
answers. An answer is the result of the expression that introduced the initial continuation and 
whose computation involved calling cfae. 

cfac ~c A ( n , k ) . n = O  ~ k ( 1 ) , c f a c ( n - l , A v . k ( n •  

Intuitively, we want to transform a CPS term into a DS term by symbolically applying the 
continuation of an expression such as the recursive call 

cfac(n - 1 , A v . k ( n  x v)) 

to this expression, letting the continuation of this expression be the identity function. For 
example, using this intuition on the factorial function yields the following definition. 

fae r~=~ A ( n , k ) . n = O  ~ k(1) ,  ( A v . k ( n x  v ) ) ( f a c ( n -  l , A v . v ) )  

This definition can be simplified into 

fac r~_c A ( n , k ) . n = O  ~ k ( 1 ) , k ( n •  A v . v ) ) )  
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If we carry out this transformation for all expressions, k will always denote the identity 
function and therefore we only need to apply the functions extending the continuation to all 
the expressions where continuations are extended (in practice: applications and conditional 
expressions), lett ing their continuation be identity. As a final step, we can get rid of all the 
continuation arguments (since they only denote identity).  Going back to the example, this 
t reatment  yields the usual (direct style) definition of the factorial fuxiction. 

dfac re=c A ( n ) . n = 0  ---+ 1, n x ( d f a c ( n - 1 ) )  

1.2 O v e r v i e w  

This paper is organized as follows. Section 2 reviews the CPS transformation and specifies 
the BNF of CPS terms. The derivation of the DS transformer for Av-terms (i.e., caLl-by-value 
A-terms) is described in Section 3. The CPS transformer and the DS transformer are inverses 
of each other. This point is addressed in Section 4. The need for going back to direct style is 
i l lustrated with semantics-based program manipulation in Section 5. Section 5 also illustrates the 
use of shifting back and forth between direct and continuation-passing styles. Section 6 situates 
our approach among related work. Finally Section 7 puts this investigation into perspective. 

2 T r a n s f o r m a t i o n  i n t o  D i r e c t  v s .  i n t o  C o n t i n u a t i o n - P a s s i n g  S t y l e  

The CPS transformation is generally perceived to be a complicated affair. Similarly, CPS ' te rms 
(such as in a continuation semantics) are perceived as unfriendly to read and to understand,  
unless one develops a part icular  skill for it. CPS terms do not appear  amenable to an inverse 
transformation into direct style, 1 otherwise this transformation would already be part  of the 
debugging package of a compiler. These observations motivated us to investigate the direct 
style transformation.  In part icular,  we wanted to derive it soundly rather  than coming up 
with just another algorithm. Since the CPS transformation can be derived from a continuation 
semantics of the A~-calculus [2, 8, 35], we chose to derive the DS transformer from a direct 
semantics of the Av-calculus dedicated to CPS A-terms. 

2.1 T h e  C P S  t r a n s f o r m a t i o n  

Here is the abstract  syntax for A-terms (where the symbol @ denotes an application) 

e E Exp - -  domain of expressions 
I E Lam - -  domain of A-abstractions 
op E Opr - -  domain of primitive operators 
c E Cst - -  domain of first-order constant values 
i E Ide - -  domain of identifiers 

::= c I �9 I I I Q ~o ( ~ ,  ..., ~ , )  I ~o ~ ~ ,  ~ [ op ( ~ ,  ..., e ~ )  
I let ( i l ,  ..., i,~) = (el ,  ..., e , )  in eo I letrec ( i l ,  ..., i~) = (11, ..., In) in eo 

1 ::---- A( i l ,  . . . , i n ) . e  

Let us present a one-pass CPS transformer for applicative order (call-by-value) 3~-terms as we 
derived it in an earlier work [8]. This transformer is an optimized version of Fischer & Plotkin 's  
CPS transformer [13, 29]. 

1For example, one could try to speci(y a relation between DS and CPS terms, express it in Prolog, and try 
to give Prolog a CPS term in the hope of producing the corresponding DS term. Unfortunately, our experience 
shows that this process is prone to looping. 
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Ic] 

[~ (*~, ..., ,~). el 
[~  ~0 (~x, ..., e , ) ]  

[e 0 .-~ el~ e2] 

[op(~, ,  ..., e~) l  

[let (i~, ..., i~) = (el, ..., e~)in eo] 

[letrec (i~, ..., i~) = (11, ..., l~) in eo] 

where k is a fresh variable. 

= ~ . ~  c 
= ,~.@~ z 

= ~ . ~  (h(xl, ..., x, ,  k).~[e] (~.~_k v)) 

= ,~ .  ~ [eo] 
,~vo. 0 l ed  

,~vn.~vo (vl, ..., v , ,  ~_v.r v) 

= ~a. le t  k = ~ a . ~ g  a 

in ~[eo] (~p.p--* ~[e l ]  (~m.~k m) ,_ 
~[e2] (~n.Ok ~)) 

~V 1 . . . .  ~- [em] 

~ m . ~ ( ~ ( V l ,  ..., ~ ) )  

= ,~ .  ~ l e d  
~'01 . . . .  "~ [en] 

Avr~.@n (let (ia . . . .  , in) = (v~, ..., vn) 
in ~[~o1 ~) 

= ~ . l e t r e c  (i~, ..., in) = (~[/~] (~fl-f~), 

in ~[eo] 

Figure 1: The CPS transformation 

These equations can be read as a two-level specification d la Nielson and Nielson [28]. Op- 
erationally, the overlined A's and @'s correspond to functional abstractions and applications 
in the translation program, while only the underlined occurrences represent abstract-syntax 
constructors. 

The result of transforming a term e into CPS in any context (represented with a unary 
function: the continuation) is given by 

By construction, if the CPS transformer produces the term A k. e, then the term @ (,k k.  e)(,k v. v) 
has the same meaning as the original DS term. 

2.2  S i m p l i f i e d  C P S  t e r m s  

In the transformation above ~ in the present work, we disregard the simplifications clue to 
tail-cMls, ~-reductions, or identity let expressions. For example, the direct style conditional 
expression 

~ ( x ) . x  -~ y, O f ( z )  

is transformed into 

,Xk.~k( ,X(x ,  k') . let  k" = , X v . ~ k ' v i n x  --+ ~ k " y ,  ~ f ( z ,  ,Xv. Ok"v) )  
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Of course, in practice, we reduce this to 

) ~ k . @ k ( ) ~ ( x , k ' ) . x  ~ @k'  y, @ f ( z ,  k '))  

instead,  2 bu t  these simplifications actually complicate the development of this section - -  hence 
the purity. In practice, our CPS t ransformer  produces such simplified terms [8] and our DS 
t ransformer  handles them as well, using a refinement of the following BNF. 3 

2.3 A b s t r a c t  s y n t a x  o f  C P S  t e r m s  

Let us give the BNF of CPS terms as they are produced by the CPS t ransformer  of last section. 
Since a fresh variable k is in t roduced for each abst ract ion and each condit ional  expression, 
let us index each non- te rmina l  with this k as an inherited a t t r ibute .  Much as Reynolds [30], 
we dist inguish between "serious" and "trivial" expressions. Serious expressions e k inherit  a 
cont inuat ion  k and  trivial  expressions t k denote values tha t  are passed to a cont inuat ion  k. 

A CPS term is of the form A k .  e k, where e k is defined by the following a t t r ibu te  grammar .  

e E Exp 
l E Lam 
op E Opr 
c E Cst 
i , v , k E  Ide 

- -  domain  of expressions 
- -  domain of ,k-abstractions 
- -  domain of primitive operators 
- -  domain of first-order constant  values 
- -  domain  of identifiers 

e k : := @ k t k 

I @t~o (t~, ..., t~, ~ v . e  k) 
= k'  k '  [letk' Av .e~ in t  k' ~ e 2 , e 3 

[let  ( i l ,  ..., in) = (tl  k, ..., t k) in e k 
I letrec (i l  . . . . .  in) = (11 k, ..., I k) in e k 

t k : : =  C 

l i  
I t  k 
lop  ..., 

I k : := A ( i l ,  ..., i,~, k ' ) .  e k' 

where v # k 
where v r k and k r F V ( t  k' ..., e2k', e3k') 
where Vj  E { 1 , . . . , n } , i j  # k 
where Vj  E { 1 , . . . , n } , i j  7 s k 

where i ~ k 

where k f[ F V ( A  ( i l ,  ..., in, k ' ) .  e k') 

Each non- te rmina l  is indexed with an identifier k denot ing the current  cont inuat ion.  This 
a t t r ibu te  k allows us to restrict the BNF to CPS terms tha t  correspond to purely funct ional  
terms.  For example,  a ,k-term such as ,k (x, k) .  @ k ~ x is not  produced by this BNF. We refer 
to this const ra int  as the passing constraint. The passing constraint  is embodied in the first 
product ion  e k : := @ k t k, in tha t  only the current continuation can be applied. 

2.4 S y n t a c t i c  p r o p e r t i e s  o f  C P S  t e r m s  

The dist inct ion between serious expressions e and trivial expressions t (and l) is captured in the 
following property. This proper ty  can be checked with the a t t r ibu te  g rammar .  

Propos i t ion  1 k f[ F V ( t  k) [] 

2Sometimes,  the form A x k ' .  x --* k ' y ,  f z k '  is preferred if the t e rm occurs in an empty  context ,  since the 
cont inuat ion  corresponding to an empty  context  is the ident i ty  function - -  the point  here is only the dropping of 
A k . ~ k  ... 

3For a simpler fix: the various *l-redexes can be restored at syntax analysis time. 
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C o r o l l a r y  1 k r F V ( l  k) [] 

The  following syntact ic  proper ty  of  CPS A-terms is mot iva ted  by the  passing const ra int  - -  at  
any stage in an evaluat ion,  there  is only one "current"  cont inuat ion.  

P r o p o s i t i o n  2 A CPS term resulting from the CPS transformation o f  a pure A-term (i.e., a 
A-term without r162  needs only one variable k to denote the current continuation. 

P r o o f :  By s t ruc tura l  induct ion  over the  a t t r ibu te  g r a m m a r  above.  

Here are the two product ions  where a new cont inuat ion  is in t roduced.  

k'  k '  ek :: . . . .  I let k'  = A v .  el k in t k' ~ e 2 , e 3 where v r k 
and k ~_ F V ( t  k' k' k' e 2 , e3 ) 

... 
I k : : =  A ( i l ,  . . . ,  in, k ' ) .  e k' where k r FV(,~ ( i l ,  . . . ,  in, k ' ) .  e k') 

These two product ions  come with the  condit ion tha t  k does not  occur  free in the  
body of the  let expression and in the A-abstraction.  If we replace k'  by k as a formal  
pa rame te r  of  the let and of the A, then all occurrences of  k in the  bodies will refer 
to this k, by vir tue  of  lexicai scope. Afor t ior i ,  they will not  occur  free in the let 

expression nor  in the A-abstraction. [] 

In practice,  a fresh identifier k (i.e., an identifier tha t  does not  occur  free in the  DS t e rm to  
be CPS- t rans formed)  is provided by the  CPS t ransformer .  We use this fresh identifier as a 
B N F  a t t r i bu te  to ensure tha t  only the current  cont inuat ion is applied and also to dist inguish 
the  identifier represent ing the current  cont inuat ion from the  o ther  identifiers. Its unici ty (cf. 
Proposi t ion  2) mot iva tes  the  following revision. 

2.5 R e v i s e d  a b s t r a c t  s y n t a x  o f  C P S  t e r m s  

Let us s ta te  the B N F  of CPS A-terms where continuat ions are denoted  with a unique and fresh 
identifier k. The  whole B N F  is parameter ized  with this identifier k. Since the k -a t t r ibu te  is now 
unnecessary, we have s t r ipped it off. 

A CPS t e rm is of the form A k.  e, where e is defined by the  following g rammar .  

e E Exp k 
1 E Lamk 
op E Opr 
c E Cst  
i, v E Ide 
k e {k}  

- -  domain  of  expressions 

- -  domain  of A-abstractions 
- -  domain  of pr imit ive opera tors  
- -  domain of f irst-order constant  values 

- -  domain of identifiers s.t. k r Ide 
- -  singleton domain  of cont inuat ion identifiers 

e : : =  @ k t  

I ~ to ( t l ,  ..., tn, A v.  e) 
] l e t k = A v . e l i n t  --* e2, e3 
I let  ( i l ,  ..., in) = ( t l ,  . . . ,  tn)  in e 
] letrec ( i l ,  ..., in) = (11, ..., In) in e 

t ::---- e 

l i  
I I  
I o p ( t l ,  ..., tin) 

l : : =  A ( i l ,  ..., in, k ) . e  
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2.6 A linearity property 

CPS terms also satisfy the following linearity property. 

Proposition 3 In  a C P S  term,  a con t inua t ion  parame te r  occurs  linearly. [:3 

This proper ty  can be proven by structural  induction over the CPS transformation of Section 
2.1. The linearity can be characterized with the following inference rules (where "| stands for 
"exclusive or"). A continuation ,X v.  e is linear in its parameter  v when the following judgement 

v ~ - e  

is satisfied. The linearity property will be used last in the derivation of the DS transformer. 

v ~ - t  

v }- @ k t  

( |  ~- t ~ ) |  ^ v t- e) 
V ~- ~ t o ( t l ,  . . . ,  t n ,  ~ W. e)  

(v # w ^ ~ ~ el) ~ (~ ~ t) ~ r Fv(e2)  ~ r FV(e3) 
v F- let k = A w.  el in t ---, e2, e3 

(@n=lv [- t i)  ~ ( V j E { 1 , . . . , n } , i j ~ v  A v F e) 

v F- let ( i l ,  ..., in) = ( t l ,  ..., t,~)in e 

r y e { 1  . . . .  ,n}, i~#v r y e { 1  . . . . .  n } , v C F V ( l j )  

v ~- letrec ( i l ,  ..., i,~) = (l l ,  .'.., l,~) in e 

v F - e  

v l - v  

| v ~- tl 
v ~- op(tl, ...,tin) 

Figure 2: Linearity conditions over the continuation ~ v. e 

3 D e r i v a t i o n  o f  t h e  D i r e c t  S t y l e  T r a n s f o r m e r  

This section is organized as follows. First  we define the denotat ional  semantics of CPS terms from 
the usual denotat ional  semantics of the A.-calculus (reproduced in Appendix A). We express it as 
a core semantics and a s tandard interpretation.  We prove a property of this specification. Then 
we successively present non-standard interpretations (together with their congruence proofs) 
that  are increasingly bet ter  suited to the derivation of a direct style transformer. Finally, we 
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view the last non-standard semantics as a mapping from syntax to syntax (since denotat ions 
are also expressed using A-expressions). Improving its binding times yields the direct style 
transformer. 

3.1 C o r e  s e m a n t i c s  a n d  i t s  s t a n d a r d  i n t e r p r e t a t i o n  

Based on the usual denotat ional  semantics of A.-calculus (c f .  Appendix A), let us derive the 
meaning of CPS terms in an empty context. The meaning of the term 

[~  (A k.  e) (A v. v)] 

is given by the s tandard interpretat ion of e 

Zk[elp~n.[k ~ Id] 

where l d  denotes the identity function and is the continuation representing an empty  context.  
This way we can give a denotation for each of the terms defined by the BNF. We stick to 

the distinction between serious and trivial terms by mapping them to their meaning'  using two 
valuation functions s and Tk. These valuation functions can be derived from the usual valuation 
function C shown in Appendix A. 

L'k : Exp k --~ E n v k  --* Val 
Idek = Idet_J{k} 7~ : Trivk ~ E n v k  --* Val 

Vark = VarU {k} s  : Lamk ~ E n v k  --* Fun  
Val = ( C s t  + F u n ) •  C : Cst ~ Val 

E n v k  = Vark ~ Val 
Fun = Val + --* VM Zk : Idek --* Vark 

O : Opr ~ Val* --* Val 

where Id = A(v). v E Fun  

For simplicity, and as in appendix A, we will identify the syntactic domain of identifiers Idek 
and the semantic domain of variables Vark.  Therefore, a syntactic identifier i is mapped  to a 
semantic variable i. 

There is only one point to be noted in the following equations. We have parameterized them 
with four combinators Send, App, Close, and Cond: 

Send: Val ~ Fun  --* Val 

App: Fun --, Val + - ,  Val 

Close: "Car + ~ [Envk  --* Val] ~ E n v k  --* Fun  

Cond: [Envk  --* Val] --* [Envk  --* Val] --, [Envk  ~ Val] --* E n v k  --* {k} ~ F u n  --* Val 

This technique of defining a core semantics and a s tandard  interpretat ion can be found in 
Nielson's work on da ta  flow analysis by abstract  interpretat ion [27] and in Jones and Mycroft 's  
work on Minimal Function Graphs [18]. Today Jones and Nielson are developing this technique 
as a convenient format for specifying abstract  interpretat ions [19]. 

ck[e k q p 
s to (ta, ..., t , ,  A v. e)] p 

s k = A v . e l  in t ~ e2, e j ] p  

= le t  v = Tk[t]p in Send v (pk )  

= l e tvo  = 7~[to]p, vl = Tk[tlI p, ..., v ,  = TkEt,~ l p  
in App vo (v l  . . . .  , vn,  A ( a ) . s  ~ a]) 

= let  n = A(a ) .Zk [e ] ]p[v  ~-* a] 

in Cond (Tk[t]) (C•[[e2]) (Ck[ej]) p k 
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gkl[let ( i l ,  ..., in) = ( t l ,  ..., tn) in el p 

gk[letrec (i1, ..., in) = (l l ,  ..., In) in e] p 

7~[c ip  

~[i]p  
7~[ t ]p  

Tk[op ( t l ,  ..., tm)] p 

s ( i l ,  ..., in, k ) . e  l p  

The following four combinators  

= le t  vl = Tk~'tl]p, ..., vn ---- Tk[ tn lp  
in  Ck[elp[il ~ Vl, . . . ,  in ~ Vn] 

= l e t r e c  ( f l ,  ..., fn)  = (Lk[ll] p[il ~ s  ..., in ~ fn], 
;.., 
~:k[lnip[il  ~ s  ..., in ~ /n]) 

in  s ~ f l ,  ..., in ~ f~] 

= c M  

= p i  

= c d q p  

= le t  vl = 7-k[tl]p, ..., Vm = Tk[tm]p 
in  O[op] ( V l ,  . . . ,  Vm) 

---- Close ( i l ,  ..., in, k) (Ckie]) p 

specify the s tandard  in terpre ta t ion  of this core semantics.  

Send: Val ~ Fun ~ Val 
S e n d v a  = ~;(v) 

App: Fun ~ Val + ---* Val 

App f (vl ,  ..., Vn, ~) = f (Vl ,  ..., Vn, e;) 

Close: Var + --* [Envk ~ Vail ---* Envk  ~ Fun 
C l o s e ( i b  ..., in, k)O p = A(vm, ..., Vn,a).Op[il ~'~ vl ,  ..., in ~ Vn, k ~ ~] 

Cond: [EnVk --+ Vail --+ [Envk --* Vail --* [Envk -* Vail -* EnVk -~ {k} ~ Fun --* Val 
Cond 0 02 03 p k/ ' i ;  - -  0 p[k ~ ~] --* 02 p[k ~ ~], 03 p[k ~-~ *;] 

Actually, this last combina tor  can be refined, as captured in the following property. 

Proposi t ion 4 For all expressions t and legal environments p[k ~ ~], 

Tdt] p[k ~ ~] = ~[t] p 

Proof." By const ruct ion of any trivial te rm t, k does not  occur free in t (cf. Proposi t ion 1). 
Hence, evaluat ing t in an envi ronment  is insensitive as to whether  this envi ronment  binds k or 
not.  D 

Therefore we can rewrite the definition of Cond as follows. 

Cond: [Envk ~ Val] ---* [EnVk ~ Val] --.* [Envk --* Yal] ~ Envk  -.-* {k} ~ Fan ~ Val 

Cond 0 02 03 p k ~ = 0 p ---, 02 p[k ~ a], 03 p[k ~ g] 

3.2 Towards a direct style transformer (revisited) 

Intuit ively,  if a procedure terminates ,  its cont inuat ion is guaranteed to be sent the "result" of 
this procedure (this passing constraint  over cont inuat ions was captured in the k a t t r ibute) .  This 
in tu i t ion  can be extended to a rb i t ra ry  expressions: if evaluat ing a n  expression terminates ,  its 
cont inuat ion  is guaranteed  to be sent the corresponding value. 

Suppose tha t ,  ins tead of the denota t ion  of the current  cont inuat ion ,  we pass the denota t ion  
of the ident i ty  procedure (i.e., the ident i ty  function) when we call a procedure. This funct ion 
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would then be applied to the "result" of this procedure and would return it. If we send this 
result to the current continuation, the computat ion would proceed as before. 

This intuition can be extended to arbi t rary  expressions: if we evaluate a terminat ing expres- 
sion in an environment where the continuation identifier is bound to the identity function, this 
function will be applied to an intermediate value and will return it. Should we send this value 
to the current continuation, the computat ion would continue as before. 

Regarding non-termination, this intuition still holds: if a procedure does not terminate,  its 
continuation will never be applied to any "result." Therefore subst i tut ing the identity function 
for its continuation does not change the (absence of) result of the whole computat ion.  Dit to for 
expressions whose evaluation does not terminate - -  substi tuting the identity function for their 
continuation in the environment will make the evaluation diverge as well. 

The following section formalizes these intuitions as properties of the denotat ional  semantics 
above. 

3.3 S e m a n t i c  p r o p e r t i e s  o f  C P S  A-terms 

Definit ion 1 A value f E Val is well-behaved i f  

f = A(vl, ..., vn, ~) .  let  v = f (vl ,  ..., vn, Id) 
in a(v)  

whenever f E Fun, f E Val n+l --* Val, and n > O. (NB: as in Appendix A, the let construct is 
strict.) 

Definit ion 2 A n  environment  p E Env  is well-behaved i fV i  E Var, p i  is well-behaved. 

Based on these two definitions, let us prove the three following properties.  

Propos i t ion  5 (g-proper ty)  For all expressions e E Exp k and well-behaved environments  
p[k ~-~ ~] binding k to some tr Val --* Val, 

s ~-* ~] = le t  v = gk[e]p[k ~ Id] 
in to(v) 

P r o p o s i t i o n  6 (L-proper ty)  For all expressions A ( i l ,  ..., in, k) .  e E Lama and well-behaved 
environments p, 

/ ; a [A( i l ,  ..., in, k ) . e ] p  = A(vl, ..., Vn ,~) .  let v = s ~ vl ,  ..., in ~ vn, k ~ 1(t] 
in t~(v) 

P r o p o s i t i o n  7 (T-proper ty )  For all expressions t E Triva and well-behaved environments  p, 
Tk[t] p is well-behaved. 

P r o o f :  By mutual  structural  induction over the syntactic categories e, t, and l [31, Section 1.2]. 
In particular,  the equality 

s ( i l ,  ..., in) = (11, ..., In) in e~ p[k ~ ~] 
= let v = Ck[letrec ( i l  . . . .  , in) = (ll, ..., In)in e]p[k ~-~ Id] 

in a(v)  

is proved by fixpoint induction. This requires proving the two following lemmas [31, Section 
6.7]. 

Lemma 1 The predicate "is well-behaved" is inclusive over the domain Val n+l --* Val. 

Lemma 2 -kFu n is well-behaved. 
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3.4 N o n - s t a n d a r d  i n t e r p r e t a t i o n  a n d  its congruence  p r o o f  

The continuation gets extended with another function only for applications and for conditional 
expressions, whose meanings are defined by the combinators App and Cond. The properties 
above suggest the following non-standard combinators.  

App' :  F u n  ~ Val  + ---* Val 

App'  f (vl ,  ..., v=, ,~) = let v = f ( v l ,  ... ,  vn ,  1(t) in to(v) 

Cond': [ E n v k  ~ Vail  ---* [E nvk  ---* Vail  ~ [ E n v k  ~ Val] ~ E n v k  ~ {k} ~ F u n  ~ Val 

Cond '002 Oa p k n = O p ~ let v2 = 02 p[k  ~ Id] in ~(v2), 
let v3 = 03 p[k ~ Id] in n(v3) 

Together with Send ~ and Close ~ (which do not change) 

Send ~ = Send 
Close ~ = Close 

App '  and Cond' define a non-standard interpretat ion of the core semantics. 

P r o p o s i t i o n  8 The  s t a n d a r d  a n d  the n o n - s t a n d a r d  i n t e r p r e t a t i o n s  de f ine  the  s a m e  language .  

P r o o f :  by s tructural  induction, using the E, s  and T-propert ies.  Here are the only interesting 
cases. 
Let f be well-behaved. 

App f (Vl, ..., vn, ~) 

= f(vl,..., vn, ~) 
= (A(vl, ..., vn, to). le t  v = f ( v l ,  ..., vn ,  I d )  in ~(v))(Vl, ..., v,~, n) 
= let v = f ( v l  . . . .  , v = , I d )  in ~(v) 
= App '  f (vl, ..., vn, n) 

- -  de f in i t ion  of App 
- -  f is w e l l - b e h a v e d  

- -  E - r e d u c t i o n  

- -  de f in i t i on  of App '  

Corid (Tk[t])  (gk[e2]) (Ek[e3]) p k/~ 

Zde3]p[k ~ ~1 
= ~ [ t ]  p ~ l e t  v2 = ~k[e2] p[k ~ Id] in to(v2), 

l e t  v3 = gk[e3] p[k ~ Id] in ~(v3) 
= Cond' (Tk[t])  (gk[e2]) (Ek[e3]) p k 

- -  de f in i t i on  of Cond 

- -  E - p r o p e r t y  

- -  de f in i t i on  of Cond'  

[] 

Under the present interpretat ion,  and intuitively, k denotes Id  at every point. The following 
section captures this intuition in another interpretat ion of the core semantics that  we prove 
congruent to the present one. 

3.5 One s tep  further 

Let Env~ ~ ({p 6 EnVk I p k  = Id},___~vk/. Envy, is a cpo. 
Let us define three new valuation functions. 

E~ :Expk  ~ Env 'k  ~ Val  

7 ; : T r i v k  ~ Env~ ~ Val 

s :Lamk --+ E n v '  k ~ F un  
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as a s 7~, and s interpretat ion with Env~k domain and App '  and Cond' as combinators.  

P r o p o s i t i o n  9 s T~, and s k are well defined and 

{ Z [e]p = Zk[e]p 

L (t] p = Lk[l] p 

whenever  e E Expk 
whenever  t E Wrivk 
whenever  1 E Lamk 

and whenever  p E Envy .  

Proof." By structural  induction on the syntax of EXPk , Trivk, and Lamk. We must  verify tha t  
all environments built within the right-hand sides of semantic equations are in EnV~k . 

Here is the main step. There are only two cases where a new k is introduced: in A-abstractions 
and in conditional expressions. The / : -p rope r ty  tells us that  the environment is extended with 
the continuation parameter  denoting Id. In the case of conditional expressions, Cond'  tells us 
that  the consequent and alternative expressions are evaluated in an environment where the new 
continuation parameter  denotes Id. 

Equality immediately follows from well definedness since ,5"~ uses the same semantic equations 
as ~k. 

Finally let us notice that  the meaning of the term 

e) v)] 

is given by the s tandard  interpretat ion of e 

Zklelp . ,[k Id] 

where k denotes Id. This establishes the "initial environment" for an expression. 1:2 

Let us use Env~k from now on. This suggests going one step further with a new interpreta t ion 
where the identity function is not passed at call sites but is introduced at definition sites instead. 
This intuition is captured in the following domain and combinators.  

F u n " =  Val* ~ Val 

App": Fun" ~ Val + --* Val 
App" f (v l ,  ..., vn, n) = le t  v = f ( va ,  ..., vn) in n(v) 

Close": Var + ~ [Env~k ~ Val] ~ Env~ ~ Fun" 
Close"(ia ,  ..., in, k)  bp  = A(vl, ..., v,~).bp[ia ~ vl ,  ..., in ~ v n , k  ~ Id] 

Send" = Send' 
Cond" = Cond I 

P r o p o s i t i o n  10 s 7~, and s with Fun", App", and Close"are well-defined and equal s T~, 
and f~l k with Fun, App' ,  and Close'. 

P r o o f :  By structural  induction on the syntax of EXPk, Trivk, and Lamk. Here is the essential 
step. 
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App'  (Close' ( i l ,  ..., in,  k)  b p)  (vl,  ..., vn, ~) 
= le t  v --- ( ) ~ ( V l ,  . . . ,  Vn, ~ ) . b p [ i l  ~-* va, ..., in ~'* vn,  k ~-* ~])(vl, ..., vn, Id)  

in n (v) - -de f in i t i on  of  App'  and Close' 
= le t  v = bp[i l  ~ v l ,  ..., in ~ v~, k ~ Id] 

in ~ (v) - -  f l - reduct ion  

---- l e t  v = ( ) ~ ( V l ,  . . . ,  V n ) . b [ [ i  I ~ v l ,  . . . ,  in ~ Vn, k ~'~ I d ] ) ( V l ,  . . . ,  Vn) 
in ~ (v) - -  abs t rac t ion  

= App" (Close" ( i l ,  ..., in,  k)  b p)  (v l  . . . .  , vn) - -  def ini t ion of App" and Close" 

[] 

Let us go back to the denotat ion of [@ k t]. 

$ ~ [ ~ k t ] p  = l e t v = T ~ [ t ] p i n S e n d ' v ( p k )  

By definition of Env~k, the second argument of Send' is always Id. Let us capture this property 
in a new definition of this combinator: 

Send": Val ---, Fun ~ VM 
Send" v (p k)  = (p k ) ( v )  

= I d ( v )  

= V 

Proposition 11 C~ with Send" is well-defined and equals Ctk with Send'. [] 

This leads us to the following equivalent denotation of [@ k t] 

k t]p = le t  v = T~[t]p in Send" v (pk)  
= l e t v  -- T ~ [ t ] p i n v  
= p 

The syntactic continuation k is only looked up in the environment in the denotation of 
[[@ k t],  which, we just saw, can be simplified into an expression where k is not  looked up in the 
environment. Therefore at this point, k is completely useless. 

Now we are equipped enough to actually derive the direct style transformer. 

3.6 F r o m  t h e  n o n - s t a n d a r d  d e n o t a t i o n a l  spec i f i c a t i on  to  a d e f i n i t i o n a l  i n t e r p r e t e r ,  
a n d  f r o m  t h e  i n t e r p r e t e r  to  a c o m p i l e r  b a s e d  on  b i n d i n g  t i m e  a n a l y s i s  

It is possible to take the denotat ional  specification of the last section literally as a functional 
program, following Reynolds's definitional interpreter insight [30]; and then to analyze its binding 
times, as customary in par t ia l  evaluation, to compile and to generate the corresponding compiler 
[20, 51 . 

Although straightforward, the derivation is a bit lengthy, so for conciseness, let us instead 
consider the denotat ional  specification above as a rewriting system from syntax to semantics. 
Still with an eye on binding times, we will alter this rewrite system in a meaning-preserving 
way, yielding the final direct style transformer. This is done in the following section. 
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3.7 Viewing the denotational  specification as a rewriting sys tem 

Let us take the homomorphic metaphor of denotat ional  semantics ( i .e . ,  from syntax to semantics) 
literally, based on the fact that  both the syntax and the semantics are expressed as A-terms. 
Taking the equations above as specifying a syntactic rewrite system and letting variables denote 
themselves (which makes the environment useless) leads to the direct style transformer.  We 
decide that  our target  language is to be the A.-calculus, so there is no need for the strict let 
expressions anymore; we unfold them. 

The term @ (A k. e)(A v. v) is rewritten as llell, where the rewrite function II II is defined induc- 
tively as follows (for concision, we have unfolded the Send, App, Close, and Cond combinators 
of the last non-standard interpretat ion).  

ll~ k t] 

ll@ to (t~ . . . .  , tn, A v .  e)ll 

[[let k = A v.  ex in t ---* e2, e3]] 

[[let ( i l ,  ..., in)  = ( t l ,  ..., tn)  in ell 

llletrec ( i l ,  ..., i~) = (/1, ..., In)in ell 

H 
[ i ]  

lop  (t~, ..., t ,O]  

llA (i~, ..., i~, k ) .  el  

= i t l  
= ~ (Av .H)  (~ ito] (lltlll ... . .  lit=l)) 
= @ ( A v . l l e l ] )  ( l l t ]  ~ lle2] , ie3l l )  

= let ( i l ,  ..., in) = (lltlll, ..., l l tn]) in  Jell 

= letrec ( i l  . . . .  , in) = (~ll]], ..., , lllnll) in lle] 

---- e 

= i 

= op([ t l l ,  ..., l i t ,J )  

= A (i1, ..., i , ) .  H 

"Figure 3: Syntax-directed transformation into direct style 

Alternatively, this rewriting can be seen as going from an environment model to a Church- 
style encoding of binding relations. Wand has proven that  these two encodings are equivalent 
[37]. 

3.8 The actual direct style transformer 

The rewriting system of Section 3.7 can be subjected to an impor tant  binding time improvement 
based on the linearity property of continuation parameters.  Since the body of a continuation is 
linear in its argument (cf. Proposition 3), and due to the call-by-value nature of our setting, the 
outer redex produced by the translation of applications can actually be reduced at t rans la t ion  
t ime.  Based on this improvement,  it is possible to map a term such as 

into 

instead of mapping it to 

Ak.k( Axk.gz( Av. f v( Aa.ka ) ) ) 

Az . / (gx )  

~x.((~v.(Aa.a)(fv))(gx)) 
only. By the same token, the fl-redex produced by the translat ion of conditional expressions 
should be reduced at translat ion time as well. 

Using the same two-level notation as in Section 2, let us reexpress the DS transformation,  
distinguishing between translation time and run time constructs. 
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[e k t l  

[ 4  to ( t l ,  ..., tn,  A v .  e)] 

[let k = A v.  el in t --+ e2, e3] 

[let ( i l  . . . .  , in) = ( t l ,  ..., tn) in e] 

[letrec ( i l ,  ..., in) = (11, ..., l~) in e] 

H 

l o p ( t 1  . . . .  , tm) l  

[A (i  1 . . . .  , in, k ) .  e] 

= i q  
= ~ ( ~ v . [ e ] )  ( ~ t o ]  ( [ t~ l  . . . .  , [ tn ] ) )  

= ~(Av.ied) ([tl ~[~21 _,ie~]) 
= l e ~ ( i l  . . . .  , in)  = (Ir . . . .  , [ t , l ) ~ [ e ]  

= l e trec  ( i~,  . . . ,  i . )  = ( [ t d ,  . . . , ,  [ tn l )  ~ [e l  

e 

= i 

= o p ( ~ t l ] , . . . , [ t m ] )  

= A( i l ,  ..., in).~e] 

Figure 4: The DS transformation 

4 A r e  t h e  C P S  a n d  D S  T r a n s f o r m a t i o n s  I n v e r s e ?  

Proposition 12 The D S  and the C P S  transformations are inverses  o f  each other, up to c~. 
conversion. 

P r o o f i  This proof is not immediate because of the translat ion-t ime simplifications (specified 
by the overlined @ and A in Sections 1 and 4). Therefore we cannot line up producers and 
consumers together and simplify the composition of these two transformations.  Instead, let us 
stage these two transformations.  

Let 7) denote the DS transformation.  We stage 7) as follows. 

/)  = / ) 2  o/)1 

7)1 is specified in Section 3.7. It maps a CPS term into a non-simplified DS term (i .e. ,  a A-term 
with ~ and ~). /)2 carries the fl-reductions involving ~ and ~. 

Correspondingly, let C denote the CPS transformation.  We stage C as follows. 

C = C2 o C1 

C1 maps a DS term into a term specified by the following BNF. 

e : : =  L l_ t  
s : := ~ ( A v . e )  ( ~  to ( t l ,  ... ,  tn) )  

I ~ ( A v . e l ) ( t  --,  e2, e3) 
[let  ( i l ,  ..., in) = ( t l ,  ..., tn) in  e 
I letrec ( i l ,  ..., in) = ( t l ,  ..., tn) in e 

t ::= c 
t i  

l o p ( t 1  . . . .  , t i n )  
t A (i l ,  ..., i n ) . e  

Intuitively, C1 transforms a A-term into a head form by introducing a bunch of/~-redexes and 
then sequentializing them [6]. C1 and 1)2 are inverses of each other. 

Using a unique identifier k, C2 introduces continuations. It is the inverse of / )1 .  El 
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5 S e m a n t i c s - B a s e d  P r o g r a m  M a n i p u l a t i o n  

CPS matters when one manipulates programs based on their semantics because it makes flow 
analyses yield more precise results [27]. As a program specialization technique, partial evalua- 
tion benefits from pre-transforming source prograzns into CPS [4]. Since residual programs are 
expressed in CPS, they are good candidates for the DS transformation, if partial evaluation is 
to be seen as a source-to-source transformation. 

6 C o m p a r i s o n  w i t h  R e l a t e d  W o r k  

Properly speaking, there are no related works since (again to the author 's best knowledge) trans- 
forming continuation-passing terms into direct style has not been explored so far. There appears 
to be two main classes of applications for the CPS transformation: for program analysis and 
transformation, and for functional reasoning about control operators. Our DS transformation 
covers the first class but not the second. It can be extended by relaxing the passing constraint 
over CPS terms, as investigated in "Back to Direct Style II" [9]. Further, relaxing the linearity 
property on continuation parameters is handled by inserting a let or a sequence expression. 
Finally, relaxing the CPS texture amounts to introducing control operators such as shift and 
r�9 [7]. 

7 C o n c l u s i o n s  a n d  I s s u e s  

Work in semantics-based program manipulation revealed the need for a transformation into 
direct style. We have shown that such transformations exist and we have derived one for call- 
by-value soundly. In the area of partial evaluation , we have applied the CPS transformation 
to source programs and the DS transformation to specialized programs, obtaining substantial 
improvements. 

A number of issues remain to be explored. Here are a few of them. 

Currently the DS transformer assumes continuations to occur as the last parameter. How- 
ever nothing in a general-purpose partial evaluator ensures that residual continuations 
occur last. How could the DS transformer cope with continuations occurring anywhere? 

Can the DS transformer be extended to produce DS terms including control operators 
such as ca l l / co?  (NB: in collaboration with Lawall, we have extended the DS transformer 
to handle first-class continuations [9].) 

�9 Does there exist a DS transformer towards An-terms? (NB: we have derived one at this 
time.) 

The DS and the CPS transformations are too strong in that they are global. Often 
we know that parts of our programs are "trivial" in Reynolds's sense [30] and therefore 
they do not need to be transformed. Can we minimize the extent of the DS and CPS 
transformations? We understand that Wadler's use of monads corresponds to this, together 
with instrumenting the continuation to receive not only a value but also a single-threaded 
resource, e.g., for monitoring [35, 22]. 

CPS programs are single-threaded in their continuation and therefore their control is in- 
herently sequential. Could the DS transformer be used as a tool for parallelization? We 
are thinking of a programming style where DS sub-terms would be evaluated in parallel 
and CPS terms would be evaluated sequentially. 
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�9 The CPS transformation corresponds to other transformations in constructive mathematics  
[17, 26]. Can the DS transformation have a similar equivalent? 

�9 Finally the DS transformer can contribute to derive program analyzers for CPS code that  
are at least as good as program analyzers for DS code. Here is the idea. 

Let C and 9 be inverse CPS and DS transformers, respectively; and let .Ad and .dc be 
program analyzers for DS and for CPS programs, respectively, such that  

Ac o C ~_ Ad 

In other terms, analyzing a DS program should yield a result which is at least as good 
as analyzing the CPS counterpart  of this program (cf. Section 5). We can isolate Ac by 
composing C on the right 

Ac oC o T) ~ Ad oC 

and by simplifying (composition is associative, and C and T~ are inverses of each other) 

Ac ~ .Ad oC 

There are two ways to read this equation. 

1. Trivial way: "To analyze a CPS program, first map it back to DS and then analyze 
it by conventional means. The result is guaranteed not to get worse." 

2. Insightful way: "To derive an analyzer of CPS terms, symbolically compose (and 
simplify!) an analyzer of DS terms and the DS transformer." 

The la t ter  way offers a practical insight to build program analyzers for CPS programs 
that  are at least as good as existing program analyzers for DS programs. Such a class 
of new program analyzers appears to be needed in modern compilers for strict functional 
languages (Scheme, ML). Tarditi  is working on this class of new program analyzers at 
Carnegie-Mellon University. 

A c k n o w l e d g e m e n t s  

This work benefited from Karoline Malmkjmr's  patient and sharp-wit ted comments and from 
David Schmidt 's interest and rigor. Thanks are also due to Andrzej Filinski, Charles Consel, 
Jim des Rivi~res, Peter Sestoft, and Julia Lawall. 

A D e n o t a t i o n a l  S e m a n t i c s  o f  t h e  A . - C a l c u l u s  

This appendix addresses the A.-calculus applied to t he  usual first-order constants (boolean, 
numbers, etc.) and extended with conditional expressions, recursive definitions, and primitive 
operations.  Primitive operators either map first-order arguments to first-order results or are 
da ta  structure constructors and destructors such as in list operations. 

A b s t r a c t  S y n t a x  

e E Exp 
1 E Lam 
op E Opr 
c E Cst 

- -  domain of expressions 
- -  domain of A-abstractions 
- -  domain of primitive operators 
- -  domain of first-order constant values 
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i E Ide - -  domain  of identifiers 

e : : - -  c I i [ I [ ~ e 0 ( e l ,  . . . ,  en) [ op ( e l ,  . . . ,  era) [ 
ex ---* e2, e3 [ let ( i l ,  ..., i~) = (el ,  ..., en) in eo I letrec ( i l  . . . .  , i,~) = (lx, ..-, ln) in eo 

I : := A ( i l ,  ..-, i n ) .  e 

NB: The  symbol  @ denotes an application. 

S e m a n t i c  D o m a i n s  

g : Exp ~ E n v  --* Val  

Val  = ( C s t  + F u n ) •  s : Lam ~ E n v  -*  F u n  

E n v  = Var--*  Val C : C s t - - ,  Val  

F u n  = Val* --* Val  Z : Ide ~ Var  

0 : Opr --* Fun  

For simplicity, we identify the syntact ic  domain  of identifiers Ide and the semant ic  domain  of 
variables Var. Literally speaking, a syntact ic  identifier i is mapped into a semant ic  variable Z[ i ] ,  

but  we will refer to this variable as i. Identifying identifiers and variables allows to refer to them 
uniformly. This makes it easier to read the following equations.  

V a l u a t i o n  f u n c t i o n s  

We assume the semantic  l e t  construct  to be strict.  This  ensures the call-by-value na tu re  of the 
defined language.  We also leave out  the inject ion and  project ion of sum m ands ,  for simplicity. 

g l c ] p  

Elilp 
c[qp 

~ [ ~  eo ( e l ,  ..., en)] P 

C[op (e l ,  ..., em) ]p  

~[e I -"* e2, e3] P 

g[ le t  ( i l ,  ..., in) = (el ,  ..., en ) in  eo]p 

g~letrec ( i l ,  ..., i~) = (/a . . . . .  l~) in eo] p 

s ( i l ,  ..., i , ~ ) . e l p  

= C[cl 

= pi 

: C l l l p  

: l e t  vo = g [ e o ] p ,  Vl = g [ e l ] p ,  ..., vn = s 
in  vO(Vl, ..., v,~) 

= l e t  ,,~ = C l e d  p, .. . ,  ,,m = E [ e m l  p 

in  O[op] (vx . . . .  , vm)  

= l e t b  = g [ e 0 ] p i n b  ---* g [ e l ] p ,  L'[e2]p 

= le t  v, = oC[ellp, ..., vn = C [ e n ] p  

in  s p[i l  ~ v l ,  ..., i,~ ~ v,~] 

= l e t r e c ( f l ,  ..., f n )  = ( L [ l l ] p [ i l  ~ f l ,  ..., in ~ f~], 

z F , l p [ i l  ~ A ,  ..., i ,  ~ s  
in C[eo lp [h  ~ v, ,  ..., i ,  ~ v,]  

= ~(~1, ..., v , ) . ~ [ e l p [ h  ~ v , ,  ..., i ,  ~ ~,] 

The meaning  of a t e rm [e] is given by 8[e]  pi,,it where pi,~it denotes the ini t ial  envi ronment .  
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(lambda (f I) ; [A -> B] * List(A) -> List(B) 
(letrec ([loop (lambda (i) 

(if (null? i) 
'() 

(cons (f (car i)) (loop (cdr 1)))))]) 
(loop i))) 

(lambda (k) 
(k (lambda (f i k) ; [A * [B -> Ans] -> Ans]* List(B) * [List(B) -> Ans] -> Arts 

(letrec ([loop (lambda (1 k) 
(if (null? i) 

(k , ())  
(f (car i) (lambda (v) 

(loop (cdr I) (lambda (vs) 
(k (Cons V vs) )~)) ) ) ) ] )  

(loop 1 k))))) 

Figure 5: Interconvertible DS and CPS definitions of the map procedure in Scheme 
As can be noticed, the CPS transformation commits the order of evaluation of sub-expressions 
m an application, which is not in the true spirit of Scheme [3]. 

(lambda (x) x) (lambda (k) (k (lambda (x k) (k x))))  

Figure 6: Interconvertible DS and CPS definitions of the identity procedure in Scheme 


