1

The array update problem in the implementation of a purely functional programming
language is the following: once an array is updated, both the original array and the newly
updated one must be preserved, preferably at a small cost, to maintain the referential
transparency of functional programs. Copying the whole array is usually regarded as
being too ineflicient. Depending on different perspectives of this problem, there have

Fully Persistent Arrays for Efficient
Incremental Updates and Voluminous Reads

Tyng-Ruey Chuang
Department of Computer Science
Courant Institute of Mathematical Sciences
New York University*

Abstract

The array update problem in a purely functional language is the following: once
an array is updated, both the original array and the newly updated one must
be preserved to maintain referential transparency. We devise a very simple, fully
persistent data structure to tackle this problem such that

o each incremental update costs O(1) worst—case time,
e a voluminous sequence of r reads cost in total O(r) amortized time, and
o the data structure use O(n 4 u) space,

where n is the size of the array and u is the total number of updates. A sequence
of r reads is voluminous if r is 2(n) and the sequence of arrays being read forms
a path of length O(r) in the version tree. A voluminous sequence of reads may be
mixed with updates without affecting either the performance of reads or updates.

An immediate consequence of the above result is that if a functional program
is single-threaded, then the data structure provides a simple and efficient im-
plementation of functional arrays. This result is not new. What is new is that
many multi-threaded functional array applications also exhibit the incremental up-
dates/voluminous reads execution pattern. Those applications can also be efficiently
implemented by the proposed data structure.

A comparison of our method to previous approaches to the array update problem
is briefly discussed. Empirical results have been collected to measure the effective-
ness of the proposed data structure.

Survey and Motivation

*Author’s address: 251 Mercer Street, New York, NY 10012, U.S.A. E-mail: chuang@cs.nyu.edu.
This research has been supported, in part, by the National Science Foundation (#CCR-8909634) and

DARPA (DARPA/ONR #N00014-91-J1472).

1

been various approaches to solve it. We classify three popular approaches to the array
update problem. They are the compile-time analysis approach, the language restriction
approach, and the run-time data structure approach. We briefly state the advantage and
disadvantage of the three approaches, as well as our motivation to design yet another
run—time structure to tackle this problem.

1.1 Compile—-Time Analysis

Let us use the term access to include both read and update operations to a data structure.
Schmidt [21] defines a program to be single-threaded if all accesses to the variables in the
program only refer to the most recent versions. A program is called multi-threaded if it
is not single-threaded. A non-standard semantics can be devised to detect, at compile
time, single-threaded accesses to arrays in a functional program and, in those cases, to
generate code to update arrays destructively. This approach is taken, for example, in the
works of Schwartz [22,23], Hudak & Bloss [16], Bloss [9,10], and Odersky [19].

The advantage of this approach is that it is possible to generate very efficient code
because no overhead is spent in maintaining multiple versions of arrays. The disadvantage
is that the analyses usually assume some particular evaluation order of a functional
program, which is unspecified in the standard semantics. Also, they are incomplete, as
are all interesting semantics analyses, in the sense that there remains programs which
are single-threaded but not detected by the analyses. In addition, such analyses are
expensive (they may have exponential time complexity with respect to program size)
and not universal (they currently apply to first-order languages only).

1.2 Language Restriction

Instead of using compile-time analysis to detect single-threaded programs, a functional
programming language can be restricted so that only single-threaded programs can be
expressed. These restrictions are usually expressed in terms of type rules. Therefore, for
well-typed programs, no compile-time analysis for detecting destructible updates is ever
needed and all array updates can be done destructively and efficiently. This approach
has been explored by Guzman & Hudak [14] and Wadler [25,26]. The remaining task is
to check, at compile time, whether or not a program is well-typed with respect to the
single-threading type scheme. The type checking algorithms are usually complicated.

A common drawback of the compile-time analysis approach and the language re-
striction approach is that they cannot deal with programs which mostly use arrays in a
multi-threaded manner. In those programs, old versions of an array must be kept around
for possible future accesses, and few destructive updates may be performed.

1.3 Run—Time Data Structure

There also has been much effort to make various data structures persistent such that,
during a series of modifications, the old versions, as well as the newest version, of a data
structure can still be accessed. Following the terminology of Driscoll, Sarnak, Sleator &
Tarjan [13], a data structure is partially persistent if all versions can be read but only
the newest version can be updated. A data structure is fully persistent if every version
can be both read and updated.

112

An array can be easily made fully persistent if it is represented as a balanced search
tree. But then we lose much of an array’s constant—time accessibility because a read or
update operation will take O(logn) time for an array of size n. Dietz [12] proposes a
sophisticated method to achieve O(loglogn) amortized access time when the arrays are
large (say, n = 2!°) and the total number of operations to be performed is n.

Some techniques, which are called reversible difference list or trailer, have been used
to implement fully persistent arrays. They can be found, for examples, in the works of
Holmstrom [15], Hughes [18], Aasa, Holmstrom & Nilsson [6] and Bloss [9,10]. These
techniques seem to be variations of the shallow binding scheme devised by Baker [7,8].
Under these techniques, an access to the newest version will take O(1) time; but an
access to an old version will take time linear to the number of differences between the old
version and the current version. These techniques are good for single-threaded programs
because those programs always access the newest version of an array. However, they are
bad for multi-threaded programs because accesses to old versions are costly.

A common drawback of the run-time data structure approach is the overhead for
maintaining multiple versions of a data structure, even when only the newest version is
needed. The storage occupied by inaccessible versions of a data structure may have to
be reclaimed.

1.4 Motivation and Outline

Previous attempts to make arrays fully persistent do not work well in multi-threaded
cases because they use too little random access memory (RAM) to represent multiple
versions of an arrays. Instead, they depend mostly on indirect reference by pointers. In
fact, previous data structures use only one set of RAM for multiple versions of an array.
An array’s random accessibility is then lost once there have been many updates being
performed to the array.

We propose here a variation of Baker’s shallow binding scheme which holds multiple
sets of RAM. We call this method the fragmented shallow binding scheme. This scheme
employs multiple sets of RAM, which we will later call caches, to improve the efficiency
of those programs which access arrays in a multi-threaded way. Although there is still
a restriction — reads have to be voluminous — it seems that a major portion of multi-
threaded applications do fit the incremental updates/voluminous reads restriction.

The outline of this paper is the following. After a short introduction to the shallow
binding scheme in section 2, we describe in section 3 how to implement fully persistent
arrays by the fragmented shallow binding scheme. Section 4 contains detailed complexity
analysis of the proposed scheme. Empirical results are presented in section 5. Section 6
is a short discussion of related issues.

2 Deep Binding and Shallow Binding

In a higher-order functional language, where functions can be passed as arguments and
returned as results, there may be more than one accessible environment during a pro-
gram’s execution. In an implementation of a higher—order functional language, it is
essentially important to design an efficient data structure to support the following two
operations: variable lookup in the current environment and context switch between en-
vironments.

113

In the deep binding scheme, the environments are represented as a context tree where
each node in the tree introduces a new binding of a value to a variable. An environment
is represented as a path from its most recent binding to the initial binding in the context
tree. The lookup for a variable v in an environment E is performed by searching the
path of E, looking for the most recent value bound to v. Under the deep binding scheme,
a context switch between environments costs constant time but a variable lookup in an
environment may cost time linear to the length of its binding path.

In order to improve the performance of variable lookup, Baker [7] develops the shallow
binding scheme where a cache is introduced to record the bindings of variables in the
current environment. Variable lookup in the current environment is performed by a
constant-time reference to the cache. The current environment is also made the root of
the context tree. However, only one environment, the current environment, possesses the
cache. Other non—current environments are still represented as binding paths leading to
the current environment.

A context switch between environments in the shallow binding scheme will involve a
sequence of rotations in the context tree. The entire process for a sequence of rotations is
called rerooting. A rotation is performed between the current environment (i.e., the root
node in the context tree) and one of its children. Suppose that the current environment
E binds variable v to value a in its cache, and its child node n binds v to . Then a
rotation between node E and node n will make n the current environment and E n’s
child. Node n will inherit node E’s cache and will change variable v’s value to b. Node E
will only record the binding of variable v to value a; it will not possess the cache anymore.
A rerooting is a sequence of rotations to make the desired environment current.

Figure 1 pictures how rotation and rerooting work under the shallow binding scheme.
We will show how to use, and to modify, the shallow binding scheme to implement
functional arrays in the next section.

3 Functional Arrays and Their Implementations

A data structure for functional arrays must support the following operations.
o Create n: Return an array of size n. Each entry of the array is not initialized.

e Update A; i v: Return an array Aj; which is functionally identical to array A;
except A;j(i) = v. Array A; is not destroyed and can be accessed further.

o Read A; i: Return A;(7).

We can use the shallow binding scheme to implement Create, Update, and Read as
the following.

o Create n:
Allocate a cache of size n. Allocate a node of one field and have this field point to
the cache. This node is the root node. Return the address of the root node.

o Updale A; i v:
Allocate a node of three fields and have it store 7,v, and A; (note that A; is an
address). Return the address of this newly allocated node.

114

d X =undefined

Y =undefined

X undefined X 0 X 2

y undefined y undefined y
Initial After After
configuration. rerooting B. rerooting D.

Figure 1: Configurations of a context tree after two rerootings under the shallow
binding scheme. The first rerooting consists of a single rotation, and the second
rerooting consists of three rotations. A, B,C, and D are environments, and black
nodes denote the current environments. Note that only the current environment
points to the cache.

o Read A; i:
Do a rerooting starting from the node pointed to by A;. After the rerooting, A;
points to the root node which again points to a cache. Return the ith entry in the
cache.

For example, the three configurations in figure 1 can be thought as being resulted
from the following three successive sequences of operations,

e A= Create 2; B = Update A i, 0; C = Update A iy 1; D = Update C iz 2;
e Read B i; and
e Read D j.

We now use the term version tree to refer to the context tree in the shallow binding
implementation of functional arrays. It is easy to verify that a Create n operation takes
O(n) time and uses O(n) space. Each Update takes O(1) time and additional O(1) space.
A Read uses no space but takes time proportional to the distance between the new root
node and the old root node, which can be as large as the total number of updates being
performed. However, after a Read A; ¢ operation, each additional read to either array
Aj, or one of A;’s children in the version tree, will cost only additional O(1) time. This
is because, after the Read A;j i operation, A; points to the root node and, in case the
read is directed to one of A;’s children, the rotation between A; and one of its children
only costs O(1) time.

115

It is not difficult to see why we insist on voluminous reads now. Because, after the
initial read of a voluminous sequence, each read of the sequence will cost only additional
O(1) time. However, there is still one problem. The distance between the new root
node and the old root node may be far greater than the volume of the reads, which
makes rerooting expensive. The trick is to allocate caches during a long rerooting and,
at the same time, keep the total numbers of entries in all caches proportional to the
total numbers of updates being performed. By performing this trick, we make sure that
the large cost of a long rerooting can be paid off by the small cost of future shorter
rerooting. By keeping the total number of entries in caches proportional to the total
number of updates, we make sure that only linear space (with respect to the total number
of updates) is used.

Before describing the details of the new implementation scheme for eflicient increment
updates and voluminous reads, let us first define VRead, the voluminous read operation.

o VRead [Ajy, Aj,, ..., Aji_,] [0,%1,...,4-1]: Return a list of [elements, where the
list’s kth element has value Aj, (éz). It is required that { be Q(n) and the path
consisting of Aj,, Aj,, ..., Aj,_, in the version tree be of length O(!). n is the array

e 1
size.

Notice that Read will also be supported by the new data structure. However, as we will
see, an individual Read will cost O(n) amortized time in the worst cases.

We now describe the fragmented shallow binding scheme, which supports Create,
Update, Read, and VRead. The implementation of Create and Update are the same as
before. Read and VRead are implemented in the following way.

e Read A; @
Let d be the distance between the node p pointed to by A; and the root node of
the tree in which p resides.

— If d < 2n, do a rerooting starting from node p and then return the ith entry
in the cache pointed to by p. Note that node p is the root node after the
rerooting.

— If d > 2n, then cut the link between node p and the root node equally into
k = [4] segments such that each segment has at least {£] nodes. Call these
segments sg,51,...,5k~1. Let H; and T; respectively be the first node and
last node of segment s;,0 < ¢ < k — 1. Note that Hp is the root node and
Tk -1 is node p.

Do a rerooting starting from node Tp, duplicate the cache pointed to by Ty,
allocate a new root node and have it point to the new cache. Make H; point
to this newly allocated root node. Repeat the above procedure for T and Hs,
T, and Ha,...,Tp-2 and Hy_1, and Ti..;. When all rerooting is done, we
have cut the tree in which node p originally resides into k disjoint trees such
that each tree has its own root node (which points to its own cache).

After the cutting and rerooting, A; points to root node T;_; which again
points to a cache. Return the ith entry in the cache.

10(f(x)) is defined as the set of all functions g(z) such that there exist positive constants C' and
zo with |g(z)| £ C f(x) for all z > zo. Q(f(z)) is the set of all functions g(z) such that there exist
positive constants C and zg with g(z) > C f(z) for all £ > zo (see [20], for example). In the definition
of V Read, it simply says that the volume of the read sequence is at least the magnitude of the size of
the array, and the length of the path is at most the magnitude of the volume of the read sequence.

116

D G D G
c F C F
B E B E
A A
Initial Aftera After a
configuration. read operation read operation
to array D. to array G.
Figure 2: Configurations of a version tree after two rerootings under the fragmented
shallow binding scheme. The array size is 2. Black nodes denote root nodes and white
nodes denote non-root nodes. Note that each root node points to a cache of size 2,
which is omitted in the picture.

L] VRead [A.io) Aju .. "Ajl—l] [io, i], ey i(._l]:
Perform (in their specified ordering) the following operations: vg = Read Aj, ig; vy =
Read Aj, 11; ...; and vi_; = Read Aj,_, #1—1. Return [vg,v1,...,v-1].

Figure 2 illustrates what a version tree of an array of size 2 will look like after two
rerootings under the fragmented shallow binding scheme. The three configurations in
figure 2 can be thought as resulting from the following three successive sequences of
operations,

o A = Create 2; B = Update A 4 b; C = Update B i, ¢; D = Update C ig d; E =
Update B i. e; F = Update E iy f; G = Update F i, g;

e Read D i; and
e Read G j.

In order to analyze the time and space complexity of the above implementation, let
us first introduce some terminology. Since a rerooting may cut a tree into a set of disjoint
trees, the resulting data structure is more likely to be a forest rather than a tree. Among
the many nodes in a particular tree of the forest, we will use the term backward gate
(b—gate for short) for the node whose link between itself and its parent has been cut.
Similarly, a forward gate (f-gates for short) is a node whose link to one of its children
has been cut.

Suppose that each tree in the forest is viewed as a region and an imaginary bridge is
used to connect those regions that were connected previously. Then it is not difficult to
see that the resulting region graph is also a tree. Let us call it a region tree. Note that

117

the root region in the region tree has no b—gate and the leaf regions have no f-gates.
To simplify the analysis, let us assign the b—gate of the root region to the root node
of the version tree (as if no rerooting had ever occurred). Also note that the locations
of b-gates and f-gates in a region will not change once they are created, regardless of
further operations being performed on the data structure. For example, in the final
configuration in figure 2, the region including nodes A, B, C, and D has A as b~gate and
B as f—gate. The region including nodes E and F has E as b-gate and F as f-gate. The
region including node G has G as b~gate but has no f-gate.

It can be easily shown that once cutting has occurred in the data structure, then each
region contains at least | 2%+1| non-root nodes, where n is the array size.

4 Time and Space Complexity of the Fragmented
Shallow Binding Scheme

We will use the potential method described by Tarjan [24] to analyze the amortized time
complexity of a sequence of Updaie and VRead operations, starting from a single Create
operation. A potential function ® maps any configuration D of a data structure into its
potential ®(D), which can be viewed as the amount of energy stored in the configuration.
The amortized time of an operation is defined to be t+®(D')—®(D), where ¢ is the actual
time needed by the operation, and D and D’ are the configurations of the data structure
before and after the operation, respectively. We can regard amortized time as a fixed
amount of cost. If this fixed amount is larger than the actual need, then the remaining
amount is stored in the data structure for future use. If the fixed amount is less than
the actual need, then the energy released from the data structure will compensate the
difference.

With this definition, the total actual time for a sequence of m operations can be

written as
m m m
dti=) (ai— (B —Bin1)) =D ai — (T — Do),
i=1 i=1 i=1

where ¢; and q; are the actual time and amortized time of the ith operation, respectively.
®; is a shorthand for ®(D;). ®o is the initial configuration of the data structure and ¥,
is the final one. If the difference between ®, and ®, remains positive, then the total
amortized time is an upper bound of the total actual time.

We define the potential of a configuration D in the fragmented shallow binding scheme
as

®(D) = 3(NR(D) — n- R(D)) + >_ W(S)
SeD

where NR(D) is the total number of non-root nodes in D, R(D) is the total number
of root nodes in D, n is the size of array, and W(S) is the weight of a region S. The
weight of a region is defined as the distance between the root node and the b-gate in
the region. It is clear that the minimal weight of a region is 0 and the maximal weight
can be as large as the total number of non-root nodes in the region. Also note that a
region’s weight stores the exact amount of energy to move the root node of the region to
the region’s b—gate.

118

The intuition behind the definition of the potential function is that the more root
nodes (i.e., the more regions, hence, the more caches) a configuration has, the less po-
tential it keeps; and, for each region, the more distant its cache is from its b—gate, the
more potential it has. The constant 3 in the potential function ¢ may vary if we change
the way cutting is performed during a long rerooting. The constant 3 is chosen here
because a link is cut only when its length is roughly 3 times larger than the size of the
array. It also makes the following lemma true.

Lemma 4.1 If areroot operation involves cutting the data structure, then the amortized
time of the rerooting is less than or equal to 0. O

ProoF. If cutting occurs during a rerooting, then the distance d between the old root
node and new root node in the original region must be greater then 2n, where n is the
array size. Let d = (k+3)n —r, where 0 < k and 0 < r < n—1. After the rerooting, the
original region is cut into k + 3 regions, and the difference between the total weight of
the k + 3 regions and the weight of the original region is less than or equal to d. That is,
Ysep' W(S) — 2L sep W(S) < d, where D and D’ are, respectively, the configurations
of the data structure before and after the rerooting.

Let a be the amortized time of the rerooting and ¢ be the actual time. We have
®(D') - ®(D) < =3(k+2)n+d. It is clear that d units of actual time suffices to perform
the rerooting. We then have the amortized time

a=t+ (®(D') ~®(D)) <d+ (-3(k+2)n+d) = —kn—2r < 0.
o

Before establishing the amortized time complexity for other operations, we state
without proof two simple observations. First, we define a walk in a region tree as a
sequence of either rotation between adjacent nodes in a region or, if the walk crosses
several regions, the crossing of bridges between the regions (where each bridge consists
of a b—gate/f-gate pair of nodes). We also define the depth of a region in the region
tree as the number of bridges between itself and the root region. For example, in the
final configuration in figure 2, the region including A, B, C, and D has depth 0, while the
region including E and F has depth 1 and the region including G has depth 2. We then
have the following two observations.

Proposition 4.2

1. If a walk leaves a region s via a b—gate/f~gate g, then the same walk will enter
region s only via gate g during its first return to s (if the walk does return to s).

2. During a walk, if the current position is in a region of depth &, then the walk cannot
lead to another different region also of depth k without first going to a region of
depth & — 1.

0

We can draw the course of a walk on a plane with the time step as the X—axis and
the depth of the current visited region as the Y—axis, as in figure 3. According to the
above proposition, then, in the specific walk illustrated in figure 3, regions S, T, and W
are the same region, but they may differ from region U. Furthermore, the f-gates s and

119

A Depth of the region
- being crossed.

Time step.

Figure 3: A walk in a region tree.

t are the same node because region V has only one b—gate, v, and v is bridged to both s
and t.
Let us give an example. Suppose that the following VRead operation,

VRead [G) E)G)FaG»F: F)A:B)C) D] [iOailai2;i3:i4:i5ai6,i7)i8:i9)i10],

where 0 < 15 < 1 for each index ig, is issued to the final configuration in figure 2. The
length of path formed by the above VRead is 13. (2 for G to E, 2 for E to G, 1 for G
to F,1for FFto G, 1 for Gto F,0for F to F, 3 for F to A, 1 for A to B, 1 for B to
C, and 1 for C to D.) Therefore, the VRead can be accomplished as a walk of 13 steps
in the region tree. Each step of the walk first makes the current visited node the root
node, then performs a Read operation if required. For example, the following 13-step
walk accomplishes the above VRead operation.

G (0 rotation, 1 read), F (0 rotation, 0 read), E (1 rotation, 1 read), F' (1 rotation,
0 read), G (0 rotation, 1 read), F (0 rotation, 1 read), G (0 rotation, 1 read), ¥ (0
rotation, 2 read), £ (1 rotation, 0 read), B (0 rotation, 0 read), A (1 rotation, 1
read), B (1 rotation, 1 read), C (1 rotation, 1 read), D (1 rotation, 1 read).

Each of the above steps performs the operations in the parenthesis on the currently
visited node. The rotations are used to make the current node the root node, and the
reads fetch the required data. The course of the above walk is roughly pictured by figure
3.

However, the implementation of VRead as described in section 3 does not use a walk
to accomplish a VRead operation. It does not move the root node of a region to the
entrance gate whenever the next read operation enters the region from another region.
Neither does it move the root node of a region to the exit gate whenever the next read
operation leaves the region to another region. As a result, it will use less rotations than
the walk sequence described above does. This is because the distance between two nodes
A and B in aregion is always less than the sum of the distance from A to an f-gate/b—gate
g and the distance from g to B. This matters when the read operations to A and B are

120

interrupted by a read operation to a node outside the current region. For example, the
implementation described in section 3 only uses the following operations to accomplish
the same VRead operation.

G (0 rotation, 1 read), F (1 rotation, 1 read), G (0 rotation, 1 read), F (1 rotation,
1 read), G (0 rotation, 1 read), F (0 rotation, 1 read), F (0 rotation, 1 read), A (1
rotation, 1 read), B (1 rotation, 1 read), C (1 rotation, 1 read), D (1 rotation, 1
read).

The concept of a walk is introduced to prove the following crucial lemma.
Lemma 4.3 A VRead operation of volume ! costs O(!) amortized time. O

Proor. By the definition of VRead, the sequence of arrays being read forms a path of
length d = O(l) in the region tree. In the worst cases, the VRead operation must be
accomplished by a walk of d steps in the region tree. For each step during the walk,
two tasks are performed: a rotation between the current root node and the next node in
the path (plus bridge—crossing if the two nodes reside in different regions), and possibly
several reads in the new root node. In the following, we will count the read cost and the
rotation cost in a VRead operation separately.

However, there is one complication: at the beginning of a VRead, a rerooting may be
needed to make the first node in the walk the root node, and, if the walk crosses several
regions, a rerooting may be needed every time the walk crosses a bridge between two
regions (which is to make the walk’s first node in the destined region the root node).

It is clear that a read to a root node costs one unit of time and the operation changes
no potential of the data structure. Therefore, without counting the rotation cost, the
total read cost for a VRead of volume ! is . It remains to count the cost for rotations.

Assume that the walk goes through, in order, regions sg, s1,...,st-1. Also assume
that d; rotations are needed by the walk to cross region s;,0 < j < k — 1. We have

Ef;é d; = d. For region s;,1 < j < k — 2, there are four possible ways for a walk may
cross the region. They are shown in figure 4. The amortized cost for each case will be
analyzed. Let us assume that a region s; has weight W(s;) and potential ®; before the

crossing, and weight W(s;) and potential ®; afterward.

The actual cost for crossing a region s; includes two parts: the cost for rerooting,
which makes the entrance gate of the region the root node, and the cost for d; rotations.
Recall that we have shown in lemma 4.1 that if a rerooting involves cutting then its
amortized cost is less than or equal to 0. Therefore, it suffices to analyze the situation
where the rerooting does not involve any cutting.

The amortized costs for crossing each of the four cases in figure 4 are the following.

e Case 1. The actual cost t; equals W(s;) 4+ d; because the crossing needs W(s;)
time, exactly the weight of region s;, to move the root node to the b-gate, and
needs additional d; time to rotate the root from the b~gate to the f~gate. We then
have amortized cost

a; =1t + (B — ;) = (W(s;) + dj) + (W(s;) — W(s;)) = dj + W(s) < 2d;.

Note that W(s}) < d; because the weight of region s; is 0 when the crossing starts
at its b-gate and each rotation only increases the weight of s; at most by one.

121

f-gate f-gate
| v qz /-
I P2 2 \
1 1w 1
1 1 > 1
: o E !
[1 = i
I I@ _____ 1
b-gate b-gate
Case 1. Case 2. Case 3. Case 4.
Figure 4: 4 ways to cross a region. A dashed box denotes a region. Each black
node represents the root node before the crossing. The direction of each crossing is
depicted by the solid line with an arrow head. The dotted line is used to illustrate
the changing weight of the region.

o Case 2. Assume that, as pictured, the rerooting first reduces the weight of s; from
p+r to r, then increases it to ¢ +r. The actual cost for the rerooting is then p+q.
For the rotations, the actual cost is d;. It can be shown that 0 < p,0<¢,0 < r,
and r 4+ ¢ < d;. Then, we have amortized cost

aj =t; +(®; ~0))=(p+q+dj)+(0—(p+r)) =d; +(¢—r) < 2d;.

e Case 3. Similar to case 1, except that the weight of s; after the crossing is 0. We
then have

aj = tj + (P — ®;) = (W(s;) +d;) + (0 — W(s;)) = d;.

e Case 4. Similar to case 2, except that the weight of s; after the crossing may be as
large as ¢ + r + d;. We then have

aj =t; + (0 ~ ;) < (p+a+d;) +((g+r+d;)— (p+ 7)) = 2d; + 2¢.

Except for case 4, the amortized cost for crossing region s; is bounded by 2d;.

Let w denote the region which has the least depth among the crossed regions. By
proposition 4.2, such a region is unique. Suppose that a region s of depth greater than
w is crossed as in case 4. Let s be s; for some 1 < j < k — 2. Then either region s was
crossed as sj:,j’ < j, by case 1 in order to exit from region w, or s will be crossed as
sjs,J' > j, by case 2 in order to enter region w. Furthermore, by proposition 4.2, the
two crossings s; and s;js will use a same f-gate as the exit/entrance gate. Therefore, no
rerooting is necessary between the transition from s;: to s; (or from s; to s;r).

We can then combine s; and s;/ as they are a single crossing in region s. The combined
crossing will be of case 1 or 2 depending of what case s;: is. The combined amortized
cost is then less than 2(d; + d;:). It is possible that between s; and s;/, there are other

122

case 4 crossings at the same region. If so, we can combine those case 4 crossings and
make them as they are a single case 4 crossing. For example, in figure 3, the crossings
at regions S, T, and W can be combined as a single case 2 crossing. (Note that regions
S, T, and W are the same region.)

In the above, we assume that region s is of depth greater than w, the deepest region
ever crossed. Suppose that s = w is crossed as in case 4. Then the above analysis still
holds except that all the crossing to w may be of case 4. In such a case, we can combine
them into a single case 4 crossing. The combined amortized cost is 2} . ; d; + 2¢, for
some subset J C {1..(k — 2)}. Furthermore, since the rerooting does not involve any
cutting, we have ¢ < 2n

Summarizing the total amortized cost for s;,1 < j <k — 2, we have

k-2 k-2 k-2
a; =2q+22dj §4n+22dj.
j=1 j=1 j=1

It is not difficult to see that sp and si_i each costs at most 4n + 2dg and 4n 4 2d;_;
amortized time, respectively. Therefore, we have the total amortized time

k-1 k-2
Zaj = (ag + ak—-1) + Za,- < 12n 4+ 2d.
j=0 j=1

Adding both the cost for read (which is I) and rotation (which is at most 12n + 2d),
the total amortized time for a VRead of volume ! is at most { + 12n + 2d, which is O(!)
because [is Q(n) and d is O(l). <

We then can show the following main result.

Theorem 4.4 Let a VRead operation of volume [be counted as [individual operations,
a Creale n operation be counted as n individual operations, and an Update operation
be counted as 1 individual operation. Then a sequence of Create, Updale, and VRead
operations can be implemented in O(m) time and O(n + u) space by the fragmented
shallow binding scheme if the sequence has m individual operations, starts from a single
Create n operation, and has u Updaie operations. |

PRrROOF. Let a; and ¢; denote respectively the amortized and actual time for the ith
individual operation in the sequence, and ®;_; and ®; respectively be the potential of
the data structure before and after the ith individual operation. Also recall that the
potential of a configuration D of the data structure is defined as

&(D) = 3(NR(D) —n - R(D)) + > _ W(S).
SeD

The first operation in the sequence is a Creale n operation. It needs n + 1 units of
actual time, and space, to allocate and initialize both a cache of size n and a root node.
Therefore, the total amortized time for the first n individual operations is described by

ia;=zn:ti+(<1>n—<1>o):(n+1)+3(—n)=—-2n+1.

i=1 i=1

123

Suppose that the ¢th individual operation, n < ¢ € m, is an Update operation. It will
need 1 unit of actual time and 1 unit of space to complete the operation. The amortized
time a; is then

a,-:t,-+(<1>,-—<I>,-_1) =143 =4.

Suppose that the sth to (i4+{—1)th individual operations constitute a VRead operation
of volume !. By lemma 4.3, the total amortized time for the VRead is O(l). That is, it
is less than Cj - I for some constant C; > 0.

The total amortized cost for the m individual operations is then

m

Za;_—.zﬂ:ai—i- i a; <(-2n+1)+ C(m —n),

i=1 i=1 i=n+41

for some constant C' = maz{4,C;,,Cs,, ..., Ci;}. Constants Cj,, C,, ..., Cy; are derived
from the 7 VRead operations in the whole sequence.

If the final configuration of the data structure has £ > 1 regions, then it can be shown
that each region has at least [2%#1] nodes. Therefore, we have its potential as

2n+1

<1>mz3(1c[J—n-k)+020,

when the array size n > 1. If the final configuration has only one region, then its potential '
is
®,>3(0-n-1)+0=-3n.

Therefore, the total actual time for the entire m individual operations is

it‘ =ia,~—-(¢>m—-<1>g) <(-2rn+1+4+C(m—-n))+3n.

=1 i=1

The total actual time is O(m) because m > n. It is clear that the data structure use
only O(n + u) space, where u is the total number of Update operations in the sequence.

<

Corollary 4.5 A sequence of m Read and Update operations, which starts from a single
Create n operation and includes u Update operations, can be implemented in O(n + m)
time and O(n + u) space by the fragmented shallow binding scheme if all the Read
operations in the sequence can be partitioned into disjoint voluminous subsequences. It
does not matter if Updaie operations are mixed in the voluminous sequences of Read. O

PRroOF. Since an Update operation does not change the weight of the region to which it
is applied, Update will not change the amortized cost analysis for VRead in the proof of
Lemma 4.3. Except that the amortized cost of the Update operation is now incorporated
in the summarization of the amortized cost for the voluminous Read operations. But this
does not change the total amortized cost of the entire m operations either. The proof
then follows immediately from theorem 4.4. o

Note that disjoint voluminous sequences of reads arise naturally in many functional
array applications due to the dense locality of their accesses to arrays. Compile-time
partition of Read operations into voluminous sequences may not be necessary in most

124

cases to achieve good running time. Also the fragmented data structure resulted from
the fragmented shallow binding scheme is likely to make voluminous sequences of reads
disjoint. The empirical results in section 5 will show that the above observations are
valid.

5 Examples and Empirical Results

Is it practical to use the fragmented shallow binding scheme to implement functional
arrays? DBefore answering this question, we have to argue first that functional arrays
are often used in an incremental updates/voluminous reads style. In single-threaded
accesses to functional arrays, the entire read sequence is voluminous because each read
is applied to the newly updated array and the total number of rotations needed in all
the read operations is bounded by the the total number of updates being performed.
For multi-threaded applications of functional arrays, we observe that many of them will
read every entry of an array if there is ever a need to read the array. If a long sequence
of reads is not directed to a single array, it is usually directed to a sequence of closely
related arrays. Both of these multi-threaded read patterns are voluminous.

We can take the full histogram problem as an example in the multi-threaded case.
The full histogram problem is to classify a sequence of incoming events into a fixed set
of categories, and to query either the distribution of events among the categories in a
certain past time step, or to query the evolution of the events of a particular category in
a certain sequence of past time steps. The queries can occur while events are still coming
in. It is common to represent the fixed set of categories as an array and have each entry
of the array store the number of events which have happened so far in the given category.
To answer the query of distribution of events, all entries of the array have to be read.
Also, the evolution of events of a category can be accessed by straight-line sequence of
reads to the arrays in the version tree. Both the distribution query and the evolution
query are implemented by voluminous reads.

We give empirical results collected from the execution of four sample programs to
support our argument. The programs are for the multiplication of two matrices (each of
size 100 x 100), all the safe positions for 8 queens, the transitive closures of a graph of 100
nodes, and the simulation of a histogram involving 10,000 events in 100 categories. The
Warshall [27] algorithm is used in the transitive closures program, and all intermediate
closures (which are those considering only paths through node 0 to node 7,0 < i < 99)
are preserved.

Except for the matrix multiplication program, all programs are multi-threaded. Af-
ter the results are computed, each program also reads every entry of the resulting arrays.
We do this because otherwise the fragmented shallow binding scheme will have a clear
advantage over other implementation schemes. This is because much of the work in
the fragmented shallow binding scheme only occurs when reads are performed to the
resulted arrays. Also, no effort is spent in partitioning the Read operations into volumi-
nous sequences in the fragmented shallow binding implementation; the ordering of Read
operations is left as it is (specified by the program).

Table 1 shows the total number of Create, Update, and Read operations being per-
formed; the total number of root nodes and non-root nodes in the resulted data structure;

126

root node non-root . R
create | update read . rerooting | rotation
(cache size) node
matrix 202 40200 2070102 202 (100) 40200 20202 40200
queens 1 2056 41018 1 (8) 2056 2056 5020
closures 1 9803 5328354 49 (100) 9803 14851 27415
histogram 2 20101 37625 60 (100) 20001 25070 37713
Table 1: Operation counts of the four programs.
destructive fragmented shallow shallow copying
matrix 43.08 (1.47) 50.38 (5.91) 50.32 (5.09) 84.73 (10.34)
queens not applicable 1.12 (0.07) 1.10 (0.05) 1.10 (0.05)
closures || not applicable 58.99 (2.19) 59.07 (2.22) 66.00 (5.54)
histogram || not applicable 4.23 (1.95) 19.26 (12.06) | 1455.45 (603.03)

Table 2: Execution times of the four programs.

and the total number of rerootings and rotations being performed. We can see that
(the number of non-root nodes) + (the cache size) - (the number of root nodes),

which is the total space used, is about the magnitude of the number of updates. The
number of rotations, which is the total time spent in rerooting nodes, is about the mag-
nitude of the number of read operations too. Also note that the total number of reads
being performed is far greater than the total number of updates being performed in
each of the four programs. These statistics are very likely the result of incremental up-
dates/voluminous reads execution patterns, which make the fragmented shallow binding
scheme very much applicable. Figure 5 and figure 6 show the traces of the four programs’
read sequences. The traces show that most of the entire read sequence in each of the
four programs is voluminous.

Table 2 shows the execution times of the four programs. The programs are imple-
mented in Standard ML of New Jersey, version 0.66, and run on a Sparc workstation
(Sun 4/290, with 32 MB of physical memory) Each entry in the table is of the format
total time (garbage collection time), as provided by the System.Timer module of SML of
New Jersey. Each datum in the table is the average of the data from three runs.

Four sets of timing are shown. In the cases where array updating is done destructively
all the time, where the fragmented shallow binding scheme is used, where the shallow
binding scheme is used, and where the whole array is copied when being updated. The
same program is used in all four sets of experiments; it just calls different implementation
of the array module in each case. Also note that the destructive updating implementation
of functional arrays is not applicable to the 8—queens, transitive closures, and histogram
programs because those programs are multi~threaded.

According to the results in table 2, the fragmented shallow binding scheme performs
well. It is as fast as the shallow binding scheme when arrays are mostly used in single—
threaded ways; and is far better in case when a program uses arrays mostly in a multi-
threaded way, as demonstrated in the histogram example. But it is clear from the
8—queens example that for the fragmented shallow binding scheme to be effective, the
array size had better be large.

node distance

126

matrix
1 O0.0 T I T l T

80.0
60.0
40.0
20.0

0.0 : ' : '
2000000.0 2020000.0 2040000.0 2060000.0 2080000.0

LIN TLON L N I
(OO S WO NI AT

queens
20.0 T] T] T | T I T

15.0
10.0
5.0
.0

T T I‘i"‘”HJ ghL Gk i R
0.0 10000.0 20000.0 30000.0 40000.0 50000.0

closures
5000.0 T T T T T T T I '

4000.0
3000.0
2000.0
1000.0

O'O 2 1 1 | 1 |) I %
4270000.0 4280000.0 4290000.0 4300000.0 4310000.0 4320000.0

LI L LI R
' T TR N A

histogram
4000 .O T | L) I T l T

3000.0
2000.0
1000.0

0.0 Ll .||.|| Lo Lt Lt | N T (I] [1

0.0 10000.0 20000.0 30000.0 40000.0

L L L
"I T BT Y

read sequence

Figure 5: Trace graphs for the read sequences of the four programs. The X-axis is for
the read sequence, and the Y-axis is for the distance between the current root node and
the node to be read. Due to the large number of reads in the matrix and the histogram
programs, only parts of their traces are shown. Note that each graph has its own scale.

127

matrix
100.0 — r ;

80.0
60.0
40.0 |
20.0 |

O'O [L , 1
2069000.0 2069500.0 2070000.0 2070500.0

| L

ueens
20.0 : - ae : :

15.0
10.0
5.0

0.0 ‘ :
40000.0 40500.0 41000.0 41500.0

1

LI NI B R
|

closures

200.0 T r T I T
50.0

L L

100.0
4308500.0 4309000.0 4309500.0 4310000.0

P ISR I

T 1 T 17

] !

histogram
300.0 T l T ' T l

T
I

200.0

100.0

node distance

0.0 2 | 2 | bk | L
36000.0 36500.0 37000.0 37500.0 38000.0

read sequence

Figure 6: Magnified versions of the trace graphs. Only some interesting portions are
shown.

128

6 Future Work

There remains several performance issues to be addressed. For example, does the frag-
mented shallow binding scheme perform well in a lazy functional language? How about
in a parallel system where the voluminous read sequences are not coordinated and may
intervene with one another?

We believe the fragmented shallow binding scheme will perform well in a lazy evalua-
tion setting because the an update operation is in fact carried out lazily. In our scheme,
the result of an Update operation is computed only if there is a need to read the resulting
array afterward. That is, the rerooting operation, which makes the desired version of an
array current, is performed (if necessary) only during a Read operation, not during an
Update operation. On the other hand, however, it remains to be seen if read operations
will typically lead to voluminous sequences in a lazy evaluation setting.

Regarding uncoordinated voluminous Read sequences in a parallel system, it has been
observed that performance will suffer if the sequences intervene with one another. This
is because the cost spent in rerooting may not be paid off by voluminous reads. In the
worst case, each read in a voluminous sequence may have to do a long rerooting. But we
view this as a common problem faced by sharing aggregate data structures in a parallel
system, not a problem caused by the fragmented shallow binding scheme per se. On the
other hand, the fragmented shallow binding scheme also has its advantage because its
data structure is more likely to be fragmented and to be distributed well.

7 Acknowledgment

I am very grateful to Malcolm Harrison for introducing the idea of shallow binding to me,
to Atul Sibal for suggesting that having multiple caches is better than a single caches,
and to Chia-Hsiang Chang for helping me with the proof of lemma 4.3. I am also very
grateful to Benjamin Goldberg, my advisor, for his encourage and support, and for the
time he spent with me to improve the presentation of this paper, to Henry G. Baker
for making several detailed comments on a draft of this paper and sending me related
literature, to Annika Aasa for providing literature, and to the referees for their helpful
cominents.

References

[1] 12th Annual ACM Symposium on Principles of Programming Languages. A.C.M., January
1985. New Orleans, Louisiana, U.S.A.

[2] Functional Programming Languages and Computer Architecture. A.C.M./Addison—Wesley,
September 1989. Imperial College, London, U.K.

[3] Proceedings of the 1990 ACM Conference on Lisp and Functional Programming. A.C.M.,
June 1990. Nice, France.

[4] 18th Annual ACM Symposium on Principles of Programming Languages. A.C.M., January
1991. Orlando, Florida, U.S.A.

[5] Proceedings of the Symposium on Partial Evaluation and and Semantics~Based Program
Manipulation. A.C.M., June 1991. New Haven, Connecticut, U.S.A. Also appears as SIG-
PLAN Notices, 26(9), September 1991.

129

[6] Annika Aasa, Séren Holmstrém, and Christina Nilsson. An efficiency comparison of some
representations of purely functional arrays. BIT, 28(3):490-503, 1988.

[7] Henry G. Baker, Jr. Shallow binding in Lisp 1.5. Communications of the ACM, 21(7):565~
569, July 1978.

[8] Henry G. Baker. Shallow binding makes functional arrays fast. SIGPLAN Notices,
26(8):145-147, August 1991.

[9] Adrienne Gael Bloss. Path Analysis and the Optimization of Non-Strict Functional Lan-
guages. PhD thesis, Department of Computer Science, Yale University, May 1989. Also
appears as report YALEU/DCS/RR-704.

[10] Adrienne Bloss. Update analysis and the cflicient implementation of functional aggregates.
pages 26-38. In [2].

[11} Frank Dehne, Jorg-Ridiger Sack, and Nicola Santoro, editors. Algorithms and Data Struc-
tures. Ottawa, Canada, August 1989. Lecture Notes in Computer Science, Volume 382,
Springer-Verlag.

[12] Paul F. Dietz. Fully persistent arrays. pages 67-74. In [11].

[13] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data
structures persistent. Journal of Computer and System Sciences, 38(1):86-124, February
1989.

[14] Juan C. Guzmdn and Paul Hudak. Single-threaded polymorphic lambda calculus. In
Proceedings of 5th Annual IEEE Symposium on Logic in Computer Science, pages 333-343.
LE.E.E., June 1990.

[15] Soren Holmstrom. How to handle large data structures in functional languages. In Proceed-
ings of the SERC Chalmers Workshop on Declarative Programming Languages. University
College London, 1983.

16] Paul Hudak and Adrienne Bloss. The aggregate update problem in functional programmin,

g g
systems. pages 300-314. In [1].

[17] Paul Hudak, Simon Peyton Jones, and Philip Wadler, editors. Report on the Programming
Language Haskell — A Non-Strict, Purely Functional Language, Version 1.1. August 1991.
Available from Yale University and University of Glasgow.

[18] John Hughes. An efficient implementation of purely functional arrays. Technical report,
Department of Computer Sciences, Chalmers University of Technology, 1985.

[19] Martin Odersky. How to make destructive updates less destructive. pages 25-36. In [4].

[20] Paul Walton Purdom, Jr. and Cynthia A. Brown. The Analysis of Algorithms. Holt,
Rinehart and Winston, 1985.

[21) David A. Schmidt. Detecting global variables in denotational specifications. ACM Trans-
actions on Programming Languages and Systems, 7(2):299-310, April 1985.

[22] J. T. Schwartz. Optimization of very high level languages — i. value transmission and its
corollaries. Computer Languages, 1(2):161-194, June 1975.

[23] J. T. Schwartz. Optimization of very high level languages — ii. deducing relationships of
inclusion and membership. Computer Languages, 1(3):197-218, September 1975.

[24] Robert Endre Tarjan. Amortized computational complexity. SIAM Journal on Algebraic
and Discrete Methods, 6(2):306-318, April 1985. '

[25] Philip Wadler. Comprehending monads. pages 61-78. In [3].
[26] Philip Wadler. Is there a use for linear logic? pages 255-273. In [5].

[27] Stephen Warshall. A theorem on boolean matrices. Journal of the Association for Com-
puting Machinery, 9(1):11-12, January 1962.

