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Abstract  

Speculative execution of instructions is one of the primary means for enhancing program 
performance of superscalar and VLIW machines. One of the pitfalls of such compile-time 
speculative scheduling of instructions is that it may cause run-time exceptions that did not 
exist in the original version of the program. 

As opposed to run-time hardware or software interception of such exceptions, we suggest 
that the compiler will analyze and prove the safety of those instructions that are candidates for 
speculative execution, rejecting the ones that have even a slight chance of causing an exception. 

Load (moving a memory operand to a register) instructions are important candidates for 
speculative execution, since they precondition any follow-on computation on load-store archi- 
tectures. To enable speculative loads, an algorithmic scheme for proving the safety of such 
instructions is presented and analyzed. Given a (novel) memory layout scheme which is spe- 
cially tailored to support safe memory accesses, it has been observed that a significant part of 
load instructions can be proven safe and thus can be made eligible for speculative execution. 

1 I n t r o d u c t i o n  

The recent advent of superscalar and VLIW machines increases the need for aggressive instruction 

scheduling by optimizing compilers. If previously (for pipelined machines) it was sufficient to reorder 

instructions at the basic block level ([HG83], [War90]), it is evident now that for the newer machines, 

instructions have to be moved well beyond basic block boundaries. A few such efforts were described 

in JEll85, EN89, GS90, BR91]. 
It turns out that very often, to further improve the utilization of machine resources, instructions 

have to be scheduled speculatively, i.e., moved ahead of a preceding branch to a place were it is 

not yet determined in the program that such instructions have to be executed at all. Previously, 

speculative execution was considered in the context of moving loop-invariants out of loops [ASU85], 

while recently, due to the evolution toward superscalar and VLIW machine designs, this type of 

transformations is being exploited in a much broader scope of code motions. In case the compiler 

guesses right the direction of the branch over which a speculative instruction is moved, such instruc- 

tion computes useful results; otherwise the compiler must make sure that these results will not be 

used in the subsequent execution of the program. 
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One of the main problems of speculative execution of instructions, which is the focus of this paper, 

is that they may cause program ezceptions which were not supposed to happen if these instructions 

were executed in their original (non-speculative) places. Kennedy first raises the problem of proving 

safety of such instructions [Ken72], with the motivating example of moving a division loop invariant 

instruction out of a loop (which is a special case of speculative code motion). The reasons for program 

exceptions are diverse: arithmetic operations may result in an overflow, memory access instructions 

(loads and stores) may reference an invalid memory address, etc. In most of the previous work it was 

suggested that prevention of such exceptions must be supported by hardware or software in run-time, 

some of them even proposed to disable the exceptions of speculative instructions all together (for 

more details, see Section 8). 

Our proposal is different than all previous work on speculative scheduling and it extends Kennedy's 

technique of [Ken72]. We suggest to determine, at compile-time, which instructions are safe, i.e., 

which instructions will never cause exceptions that would not have occurred in the original version 

of P. Then, only safe instructions will be candidates for speculative execution. Using this approach, 

in the optimized version of the program we have no problem to allow the exceptions to occur, in a 

way similar to the original (non-optimized) program. Thus, the advantage of our approach is that 

it both preserves the debuggability of the program (meaning - exceptions do not have to be masked) 

and does not require any hardware support for speculative execution. In this paper we concentrate 

on proving safety of load instructions (which is one of the most important classes of speculative in- 

structions), even though our techniques can be applied to additional types of instructions as well. In 

particular, this paper does not address the issue of profitability of speculative scheduling which may 

be affected by the underlying architecture (e.g., an increased number of cache misses, page faults, 

and register pressure), neither it deals with guaranteeing correct results for speculative code motions. 

These problems were partially covered in [EI185, BR91]. 

The crucial question is: What fraction of speculative load instructions can be proven safe at 

compile time? Our experience is that, for a set of benchmarks we considered, provided a certain 

model of memory layout is assumed, a significant part of load instructions can be proven safe at 

compile-time. These results are summarized in Section 7. 

In our set-up, the address of a load instruction is defined by (the contents of) a machine register 

plus a displacement. Our first result is a linear-time algorithm for determining the safety of a load in- 

struction whose address is defined by register r, using the information about the existence of different 

memory-access instructions (loads or stores) in different points of the program whose addresses are 

defined by the same register r. This algorithm does not take into account the contents of the rfigis- 

ters, i.e., the assumption is that the value of r is unchanged during the portion of the program under 

inspection. In his original paper [Ken72], Kennedy also describes an iterative backward algorithm 

for proving safety. His algorithm is less accurate than ours, since we also use forward information 

and safety of certain register assignment statements (for a technical comparison see Section 8). 

The second result is an efficient algorithm for proving safety in case the value of r may change 

during the execution of the program by statements like r = r + c, where c is a constant. Here we 

take advantage of the observation that, if accessing location (r) is valid ((r) is the contents of r),  

then the access to location (r) + k, where k is the size of the page in the memory system, is valid as 

well. In Section 5, we describe the requirements on the memory layout that are needed to make this 



58 

assumption legitimate. 

The accuracy of our algorithms depends on two assumptions. The first assumption is that every 

execution path of the program can be taken. The second assumption is that there are no program 

statements, like rl = r2 + c, or rl = r2 + rs. In fact, we show that the problem of proving safety 

in the simple case when only register transfer statements (i.e., statements of the form rl = r~) 

are allowed is CO-NP-hard. For this case we do provide an iterative conservative approximation 

algorithm (see [KilT3, NUT6]). 

The paper is organized as follows. In the next section we start with the definition of the problem. 

Then, in Section 3, the first algorithm is presented. Register transfer statements ave discussed 

in Section 4 (including CO-NP-hardness result). In Section 5 we define our novel memory layout 

scheme. Then, in Section 6, the second algorithmic result is presented. Some experimental results 

are described in Section 7. Section 8 contains a discussion on related work. 

2 D e f i n i t i o n  of  t h e  P r o b l e m  

Here we formally state the problem of proving safety, so as to lay a basis for discussion. In the rest 

of this paper, P is a terminating low level program that uses a set of registers R. We assume that 

references to memory locations are done by load instructions of the form load r', (r). By convention, 

we say that such instruction includes a memory reference to a location whose address is the contents 

of r (denoted by tel(r)). 

Let i be an instruction that includes re]~r) and pt a point in P. We say that the insertion of 

i before pt is safe if it does not cause an exception that would not have occurred in the original 

version of P. The speculative code motion that was presented in the introduction can be viewed as 

consisting of two separate actions, namely, an instruction is deleted from one point in P and inserted 

into another point. In the rest of the paper we will deal only with proving the safety of insertions 

of instructions into new places of the program (as it is reflected in the above definition of safety). 

Notice that deletions of instructions from P cannot create new exceptions, so it is not related to the 

problem of safety. The discussion of the data dependency correctness of deletions and insertions is 

out of the scope of this paper. However, the combination of insertion and deletion, while taking into 

account data dependency, enables instruction motions, an essential element of instruction scheduling. 

The above definition of safety is implicit since the notion of exception was not defined. Let 7r be 

an execution sequence of P and let pt be a point in P along r.  Let h be the value of r at at point 

pt of ~r. Then, the insertion of rej~r) before pt is safe along ~r if one of the following is true: 

1. there is an instruction in r which refers to h as address. 

2. h is a valid address. 

This definition implies that if h is referred as address, the insertion of rej~r) cannot create new 

exceptions; otherwise, it is safe only when h is known to be a valid address. The notion of a valid 

axidress is defined by the programming language and/or the operating system 1. 

We say that the insertion of tel(r) before pt is strongly safe if it is safe at pt along every execution 

sequence of P in which pt appears. In Sections 3 and 4, we consider the algorithmic problem of 

lln languages like C, the storage allocation of heap objects is only defined as part of the operating system support. 
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Figure i: A program control flow graph for a conditional construct 

finding strongly safe references. In Section 5, we extend the class of valid addresses by providing a 

new memory layout scheme, and refine the algorithms accordingly. 

3 A Path Analysis Algorithm 

In the rest of this paper, G = (V, E) is the program control flow graph of the given program fragment 

P; each vertex v C V represents a single instruction in the program, and there is an edge (v, u) E E 

if the program control can flow directly from vertex v to vertex u (e.g., see [WZ85]). Thus, every 

point in P corresponds to a vertex in G. A vertex v can use the contents of register r E R, and 

can assign a new value to r, as the last operation in v, denoted by de][r). For example, Figure 1 

contains the program control flow graph for a program fragment which corresponds to a conditional 

construct. Instruction 7 contains de~r24). 
A path ~r in G which starts at a vertex v E V is r-definition free for r E R if every vertex u 

on 7r other than v does not include de](r). Such a path is maximal if every successor of the last 

vertex in rr contains deJ(r). In the program control flow graph of Figure 1, the paths (1, 2, 4, 5) and 

(3, 4, 6, 7, 8) are rl maximal definition free and the path (1, 2, 4, 6, 7) is not. Since the only definition 

of rl appears in a source vertex 3, all the paths in G are rl-definition free. Figure 2 contains another 

program control flow graph for a loop construct. This loop is a simplified version of a traversal on a 

linked list. Assuming that the next pointer is located in the first field of the list records, instruction 4 

increments rl to the next list element. Instruction 6 contains r3 := tel(r2) but should have contained 

rs := ref(r2 + k) where k the relative place of the data within the record. The path (2, 4, 5) in this 

program control flow graph is not rl-definition free. 

In the rest of this section, we present a simplified algorithm for proving safety by only considering 

definition free paths. An r-definition free path ~r starting at v is tel(r) safe if one of the following 

conditions holds: 
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Figure 2: A control flow graph of a loop construct 

1. v does not include deJ~r) and one of the vertices in 7r includes ref(r). 

2. v contains an instruction which assigns a valid address to r or a vertex in r other than v 

includes re]( r ). 

If a path from v is re]Iv) safe then the insertion of ref(r) is safe before every vertex in r other than 

v along every execution path of P which contains zr. The path (1, 2, 4, 6, 7, 8) in the program control 

flow graph of Figure 1 is ref(rs) safe but (3, 4, 5) is not. 

L e m m a  3.1 Let v C V and r E R. Then, the insertion of reJ[r) before v is strongly safe i f  the 

following conditions are met: 

1. For every source vertex vo of G and for every maximal r-definition free path ~r f rom Vo which 

goes through v, r is reJ[r) safe. 

~. I f  u E V contains a definition of  r then every maximal r-definition free path 7r from u which 

goes through v, ~r is rej~r) safe. 

1:3 

The r3-definition free path (3, 4, 5) in the program control flow graph of Figure i is not ref(rs) safe. 

This indicates that the insertion of ref(rs) is not strongly safe before any vertex in this path. In 

particular, it is not strongly safe before vertex 4 which is a candidate place for speculative execution 

of the instruction r ~  := ref(rs). 

We now construct an algorithm which checks the conditions of Lemma 3.1 for r E R and every 

vertex v E V. Thus, the algorithm can be applied separately for every r E R. 

First,  let us define Gl[r] to be the graph which includes the definition free paths for r in G. 

Technically, let s and t be new vertices. Let Va[r] C V be the vertices which include def(r). Since 

a vertex v EVa can contain both tel[r) and dej~r), v is duplicated in G~[r]; this is done by adding 
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Figure 3: The graph Gt[rt] for the example of Figure 1 

a second copy of v denoted ft. Thus, Gl[r] = (Vt[r], Et[r]),  where Vt[r] = V O {t3lv E V~[r]} O {s, t} 

and (u, v) E Et[r] if one of the following conditions holds: 

1. u = s and v is a source in G. 

2. u = s and v = th where w �9 Vd[r]. 

3. ( , , , , , )  �9 E where ,, r ~ [ r l .  

4. tt = t~, w �9 V~[r] and (w, v) �9 E. 

5. u �9 �89 and v = t. 

6. u is a target in G and v = t. 

Thus, any pa th  from s to t in Ot[r] corresponds to a path  which may s tar t  with a definition of r 

and is subsequently r-definition free. Figure 3 contains Gl[rt]  for the program control flow graph 

of Figure 1. Since only rt is assigned in this program, Ot[r2] = Gt[rs] = Ot[r4] is the graph which 

consists of connecting s to 1 and 3, and connecting 5 and 8 to t. Figure 4 contains Gt [rl] for the 

program control flow graph of Figure 2. 

Now, let G~[r] be the graph obtained from Gilt] by deleting edges which emanate  from vertices 

with an evidence of safety, i.e., Gulf] = (Vt[r], Eu[r]) where E2[r] C Et[r] and (u, v) �9 Et[r] - Eu[r] 
if and only if u �9 V and u contains an instruction which assigns a valid address to r or v �9 V and 

v contains tel(r) .  The graph G2[r] may be used to check the safety of tel(r) based on the following 

lemma. 
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Figure 4: The graph Gl[rt] for the example of Figure 2 
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L e m m a  3.2 For a vertex v C V, there does not exist a path in G2[r] from s to t which goes through 

v if and only i f  the conditions of Lemma 3.1 for v and r are met. 0 

Thick lines in Figure 3 and Figure 4 denote edges in Gl[rl] which do not appear in G2[rl]. Figure 3 

shows that the insertion of rej~rl) in strongly safe before every vertex but 3, since the only path from 

s to t in G2[rl] is (s, 3, t). On the other hand, in Figure 4, the insertion of ref(rt) is not detected 

as strongly safe before any vertex but 4, since there exist paths from s to t either by (s, 1, t), or by 

(s,4, 5, 6, 2, 3, t). 

Lemma 3.2 suggests that an ordered depth first search (DFS) algorithm may be applied to G2[r] 

starting at s so as to detect safety. Initially, all the vertices are marked as allowed to have insertions 

of re]~r) which are (strongly) safe. When the algorithm backtracks from t, it marks its predecessors 

vertices as being unsafe for the insertion of tel(r). 

The correctness of the path analysis algorithm stems from Lemmas 3.1 and 3.2. 

The complexity of the path analysis algorithm for r E R is O(IE2[r]l) = o ( I v I  + IEI) and thus 

linear in the size of the program. 

The conditions in Lemma 3.1 are sufficient, but not necessary to prove that the insertion of 

reJ(r) is strongly safe. Therefore, the path analysis algorithm yields conservative, but not necessarily 

accurate results. For example, as mentioned above, the insertion of tel(r1) is not detected as strongly 

safe before vertex 2 in Figure 2 although it is. This insertion is safe due to the instruction in vertex 

6 and the fact that rl = r2 there. Indeed, the conditions of Lemma 3.1 are syntactical in the sense 

that values are not taken into account. Only for a class of programs in which for every instruction 

i that includes def(r), the validity of the address that is assigned to r is known from the properties 

of i (i.e., there is no case in which, looking on i, we are not sure if the assigned address is valid), the 

path analysis algorithm is exact, i.e., the conditions of Lemma 3.1 are necessary. 

4 Tracking Values 

4.1 The Negat ive Resul t  

T h e o r e m  4.1 The problem of detecting that a reference to a register is safe is CO-NP hard even 

under lhe following assumptions on the analyzed program P: 

I. all the control flow paths in P are executable; 

~. the control flow graph does not contain loops; 

3. the only instructions in P are load instructions and register transfer instructions of  the form 

r 1 1~. r 2 .  

Proof: By reduction from the satisfiability problem. For example, Figure 5 contains a program for 

the satisfiability of an example formula. 1:3 

The reader may notice the similarity between Theorem 4.1 and negative results of solving data flow 

problems in presence of aliasing (e.g., [Mye81, Lar89, SFRW90]). In fact, the essence of all these 

results is that to track alias effects accurately one needs to keep track of all the possible sets of 

address variables which are equal. 
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if . . .  

i f . . .  

i f . . .  

if �9 �9 �9 

i f . . .  

then xl := f 

else x~ := f 

then xz := f 

else x~ := f 

then xs := f 

else x~ := f 

{ code for xl V x2 } 

then r := ref(xl) 
else r := ref(x2) 
{ code for xl v x~ v xs } 

then r := ref(x~t) 
else i f . . -  

then r := ref(x~) 
else r := ref(x3)  

Figure 5: re f ( f )  is safe at the program entry if and only if (xt V z2) A (x~ V x~ V z3) is not satisfiable 

4 . 2  C o n s e r v a t i v e  A p p r o x i m a t i o n s  

We now develop an ~terative algorithm which is more accurate than the path analysis algorithm of 

Section 3. The problem of detecting that the insertion of ref(r) before v is safe along an execution 

path lr can be divided into two problems. In the forward problem the path segment from the 

beginning of r to v is analyzed, while in the backward problem the path segment of r from v to 

the end of r is analyzed. We say that the insertion of tel(r) before v E V is forward safe along an 

execution sequence ~r of P if the value of r at v on r is either referred to as an address or is known 

to be a valid address. Such insertion before v is backward safe along ~r if the value of r at v on 7r is 

referred as address. Notice that in this case the value of r may be assigned prior to v on r.  Thus, to 

determine that the insertion is backward safe along r ,  the path segment of ~r from the beginning of 

the program to v also need to be considered. 

The insertion of re]~r) before v E V is forward (respectively backward) strongly safe if it is forward 

(respectively backward) safe along every execution path which goes through v. We have the following 

simple lemma. 

L e m m a  4.2 An insertion of re](r) before o C V is strongly safe if and only if it is either forward 
strongly safe or it is backward strongly safe. [] 

In the rest of this section we present a forward iterative algorithm to detect that an insertion is 

forward strongly safe. A backward iterative algorithm for detecting that an insertion is backward safe 

can be specified, in a similar fashion. The combination of both algorithms provides an approximation 
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ver tex  

1 1 2 3 4 5 6 

2 1 2 3 4 5 6 

3 1 2 3 4 5 6 

4 1 2 3 4 5 6 

5 1 2 3 4 5 6 

6 1 1 3 4 5 6 

valb vala 

rl r2 r3 ref(rl) tel(r2) ~ a  rl r~ r3 tel(r1) tel(r2) ~ a  

1 2 3 4 5 1 

1 2 3 4 5 6 

I 2 3 4 5 6 

1 2 3 4 5 6 

1 1 3 4 5 6 

1 1 3 4 3 6 

Table 1: Value numbers for the example of Figure 2 

scheme for proving safety which is more accurate than the path analysis algorithm presented in 

Section 3. 

Two expressions in the program el and e2 are equivalent before v E V if their values are equal 

before v at every execution path of P which goes through v. If two expressions et and e~ axe 

equivalent, then any evidence for the safety of el is also an evidence for the safety of e2. Thus, an 

algorithm which finds a conservative approximation of equalities may be useful in proving safety. 

In the sequel, we shall use the information on equivalences which is represented by global value 

numbers, i.e. an association of hash values with symbolic expressions. Thus, el and e~ are equivalent 

before v if vatb[vl(e d = vat~[v](e2) where valb[v](e) is the value number of e before v. The notion of 

equivalence after v (denoted by val~ is similarly defined. Efficient algorithms for computing 

global values numbers are known (e.g., [RL77, AWZ88, RWZ88]). Table 1 contains possible value 

numbers for the example of Figure 2. 

Given value numbers of every v E V, we now sketch an iterative algorithm for computing forward 

strong safety. The algorithm maintains at every v E V and for every value val before v a boolean 

value Sb[V](val) which describes the strong safety of this number before v. For convenience, the 

algorithm also maintains as auxiliary information s,[v](val) which describes the strong safety of this 

number after v. Initially, for every source vertex v of G, s,[vl(val) = t ,ue  and s~[v](vai)) = t , ue  if 

and only if there exists an expression e such that e always holds a valid address and val = valb[v](e). 

For any other v E V, the initialization is sb[v](val) = ..[hi(vat) = t,ue. The algorithm iterates on O 

using a DFS order and stops when no new information is derived. Let v be an assignment statement 

of the form r := e. Let r a , r 2 , . . . , r ,  be the registers referred as addresses in e. Then, sb[v](val) is 

computed in the iteration using the equation: 
/ ,  

~[vlCva0 = 
true 

^{s.[u](val.[ul(e))l(u, v) E E, 3e, val~[vl(e) = vat} t 

3i :  1 < i < n, val = valb[v](r,) 

otherwise 
(1) 

Also, s .[v](val) is  computed by: 

.J" .,b[vlCval.~[v]Ce)) v,a = val,,[vl(,-) 
�9 trvltval~,, '-- [ s,[v](val) otherwise (2) 8 

The treatment of other type of instructions is slmilar. Table 2 exemplifies the application of the 

iterative algorithm to the program of Figure 2, with the value numbers of Table 1. Undefined value 

numbers are denoted by ~b. We see that two iterations are sufficient in this case and that the insertion 

of ref(rl) is detected as strongly safe before vertex 2 of Figure 2. 
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i t e r a t i o n  

0 

0 

1 

1 

1 

1 

1 

1 

Table 2: 

i f . . .  

then rl := r2 

else rl := rs 

load r', (r2) 

load r', (rs) 

vertex I 

i / 

2,3,4,5,6 t 

1 f 

2 t 

3 t 

4 t 

5 f 
6 t 

Sb 

2 3 4  5 6 

f f f f t  
t t t t t  

f f f f t  

f f f f t  

f f f f t  

f f f f t  
f f f f t  
~ f f f t  

1 2 

Sa 

3 4 

t t t t  
t t t t  

t f f f  

t f f f  
t f f f  

f f f f  
f C f f  
f ~ f f  

5 6 

t t 

t t 

f 4  
I t 

f t 
f t 
d t 

4 t 

The safety vectors for the example of Figure 2 

Figure 6: A program which demonstrates the inaccuracy of the conservative algorithm 

L e m m a  4.3 When the forward iterative algorithm terminates, for every r E R and v E V s.t. 

sb[v](valt[v](r)) holds, the insertion of tel(r) before v is forward strongly safe. 13 

The opposite direction of Lemma 4.3 does not hold. The first reason is that value numbers are not 

always exact, i.e., it is p6ssible that two expressions are equivalent and yet they get two different 

value numbers. Moreover, even when the value numbers are accurate, the algorithm may fail to 

detect safety. For example, in the program fragment of Figure 6, the insertion of ref(rt) as the 

last statement in the program is forward strongly safe and yet will not be detected as such by our 

algorithm. The reason is that the algorithm does not use the fact that rt is either r2 or ra, and thus 

since both of these registers are referred, reJ~rl) becomes safe. 

5 M e m o r y  O r g a n i z a t i o n  

In this section, the domain of valid addresses is extended by suggesting a new memory layout or- 

ganization. In Section 6, by taking advantage of this extended memory layout support, we improve 

the algorithms of Sections 3 and 4, so as to allow more instructions to be scheduled speculatively 

without causing memory exceptions. 

The first simple but very important type of memory layout support is to assume that address 

0 is allowed for access by load instructions. This appears to be extremely useful, since the usual 

interpretation of nil  pointers is 0. Thus, a memory access through a nil  pointer references memory 
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at address 0. For example, consider the following piece of code: 

i f  (c # 0) then a =*c ;  (3) 

The insertion of a = *c before the comparison c # 0 is strongly safe under the assumption that zero 

is a valid address. This assumption may have negative impact on the debuggability of programs, 

since memory accesses through nil  pointer will be allowed. The main motivation for this extension 

to our approach is that all the Unix implementations that we have checked allow this kind of read 

access to 0 address. 

It is evident that in practice, many of the memory references are within small distances of other 

memory references. To take advantage of this property in a general context, we suggest to use page 

padding, i.e., to allocate dummy pages on both sides of the data segment(s), as well as on both 

sides of address 0, and allow these pages to be accessed by load instructions. This type of extended 

memory layout support has a minor negative impact on debuggability: only in some rare cases of 

dangling references that happen to access variables that are mapped closed to the end of the data 

segment, exceptions may be lost. 

Intuitively, the above assumption on page padding implies that if we find in a program a memory 

reference to address a, then the accesses to all the addresses in the range [a- k, a + k], for some fixed 

k (e.g., k is the size of the page in the memory system), wili not cause exceptions. Also, by the same 

padding property, the memory accesses in the range of I -k ,  k] are allowed as well. (Notice that to 

support memory accesses to negative virtual addresses, a special type of operating system support 

is required.) 

To put this extended memory layout support in a formal way, we modify the definition of safety 

on an execution path from Section 2. Let r be an execution sequence of P,  and let pt be a point in 

P along rr. Let h be the value of r at r in pt. Then, the insertion of tel(r) before pt is safe along ~r 

if there exists l such that II - hi < k, and one of the following conditions is true: , 

1. there is an instruction in lr which refers to 1 as address. 

2. l is a valid address. 

6 Exploiting the Improved Memory Layout 

The notion of valid addresses has served as a parameter of both the path analysis algorithm presented 

in Section 3 and the conservative algorithms of Section 4.2. Thus, these algorithms can easily handle 

the refinements to valid addresses as those that were presented in Section 5. 

Limited form of condition statement can also be handled. For example, the conditional statement 

in (3) (see Section 5) may be handled by inserting a dummy ref(c) in the empty else clause of this,  

statement. This dummy assignment uses the fact that is legal to refer to c when c = 0. After this 

assignment has been inserted, the path analysis algorithm will find that the insertion of tel(c) is 

strongly safe before the whole conditional statement. 

Supporting page padding is somewhat more complicated than that. A simple conservative ap- 

proximation is obtained by allowing displacements as part of the specification of an address for a 

memory reference. Here, instructions of the form: ref(r + A), where - k  < A _< k, are allowed. The 

path analysis algorithm will interpret such instruction as a reference to address r, and will use this 
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information to prove safety. By the extended definition of safety in Section 5, Lemma 3.1 remains 

true. 

The main problem with this approach is that the assignment instructions of the form rt := r2 + A 

are always interpreted as unsafe. For example, if r~ is referred prior to such an instruction v, then, 

for every I such that - k  - A < l < k - A, the insertion of tel(r1 + l) is strongly safe after v. In the 

rest of this section, the algorithm of Section 4.2 is refined to handle such instructions. 

Since Lemma 4.2 remains true for the extended definition of safety, we now refine the conservative 

forward and backward algorithms of Section 4, so as to handle instructions of the form rl := r2 + A 

where A is an integer literal constant. 

Recall that the data structure in the  algorithm of Section 4.2 is the safety boolean vectors 

sb[v](val) and s,[v](val). To handle page padding, these boolean vectors are replaced by sets of 

integers denoted by capital letters Sb[v](val) where z E Sb[v](valb[v](e)) if the insertion of ref (r  + z) 

before v is strongly safe. The sets S~[v](val) after v are similarly defined. 

For a set of integers S and an integer z, we define S + z as follows: 

s + ~ ~"J {~' + ~1~' e s} .  
Also, let Sk = {z : - k  < z < k} and T be an element which denotes the universe set of integers. 

For every source vertex v of G, the new initialization is S~[v](val) = T and S~[v](val)) = Sk 

if there exists an expression e such that e always holds valid addresses and val = val~[v](e), and 

otherwise S~[v](val) = r For any other v e V, the initialization is Sb[v](val) = S~[bl(ual) = T .  

Let v be an assignment statement of the form r := e0 + z where z is an integer literal. Let 

r~, r~ , . . . ,  r ,  be the registers referred as addresses in e. Then, Sb[v](val) is computed in the iteration 

using the equation: 

S rv' tval '  -- [ fl{S~[u](val'[u](e))l(u' v) E E,  3e, val~[v](e) = vat} U & 3i :  1 < i < n, vat = valb[u](r,) 
~t Jt J -  I n{S"[ul(val"[ul(e))l(u'v) e E'Be'val~[v](e) vat} otherwise 

Also, S,[v](val) is  computed by: 

S &[v](val~[v](eo) - z val = val,[v](r) &[ol(val) [ Sn[vl(val) otherwise 
The treatment of other types of instructions is similar. 

L e m m a  6.1 When the forward iterative algorithms terminates, for  every r E R, v E V and z E 

&[o](valb[v](r)), the insertion of ref(r  + z) before v is strongly safe. D 

Similarly to the forward algorithm, a backward iterative algorithm can be suggested. 

7 E x p e r i m e n t a l  resu l t s  

Here we present experimental results for proving safety of speculative loads in the contexL of a 

prototype for global scheduling for the IBM RS/6000 machine [BR91]. The implemented algorithm 

yields results which are less accurate than the path analysis algorithm of Section 3, but they are 

comparable. Also, for efficiency, the analysis in the implemented algorithm was done locally. For 

example, for proving safety of a load instruction in a loop, only program statements in this loop were 

considered. The implemented algorithm assumes the memory layout organization that was described 

in Section 5. 

We have evaluated this algorithm on a set of benchmarks (written in C) as follows: 
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program total  safe p-unsafe p-safe 
LI 1286 81% 1% 18% 

EQNTOTT 640 43% 6% 51% 

ESPRESSO 2759 41% 2% 57% 
GCC 6865 55% 2% 43% 

Table 3: Experimental results for safety of speculative loads 

1. LI: LISP interpreter, 

2. EQNTOTT: translation of Boolean equations into truth tables, 

3. ESPRESSO: logic minimization, 

4. GCC: the GNU C compiler, 

The results are presented in Table 3 which provides the following information: 

1. total:  the total number of load instructions considered for proving their safety. Notice that 

not all of these instructions will be subsequently scheduled for speculative execution. 

2. safe: a fraction of load instructions thas were proved safe. 

3. p-unsafe (probably unsafe): a fraction of load instructions which refer to addresses loaded 

from unknown memory places. It is in general hard, if not impossible, to prove safety of these 

instructions. 

4. p-safe (potentially safe): a fraction of load instructions that were not proved safe, but are 

not p-unsafe. These instructions are natural candidates for improving the accuracy of the 

algorithms for proving safety. 

It is worthwhile to notice that there is a considerable fraction of load instructions that were not 

proved safe, but usually they do not cause exceptions when scheduled speculatively (p-safe colttmn). 

This means that, by extending the current algorithm in a way similar to the suggestions in Section 

4.2 and using more global information, we should be able to prove safety of even a larger fraction of 

speculative loads than was shown in Table 3. 

8 R e l a t e d  work  

Kennedy's safety algorithm in [Ken72] determines that the insertion of a general expression e is safe 

before a vertex v, i.e., the computation of e before v will not raise new exceptions. This is done by 

scanning the program iteratively in a backward direction. An expression e is detected as safe before 

a Vertex v only if all the paths after v contain a computation of e. Since Kennedy's algorithm does 

not take into account values, it is comparable to the path analysis algorithm of Section 3. In the 

sequel, we explain why our path analysis algorithm is more accurate than Kennedy's. 
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The path analysis algorithm can be also extended to find the safety of a general expression e. The 

graph GI [el for an expression e is defined by connecting every definition of an argument in e into the 

vertex t. The edges in G~[e] - Gu[e] are ones which either contain the usage of e, or a safe definition 

(like an assignment of a valid address). Of course, one needs to reformulate the set of safe definitions, 

according to the particular expression and exception. For example, if one wishes to determine that 

x /y  does not raise a divide by zero exception, then any assignment to V of the form y := e where 

c # 0 may be considered as safe. The path analysis algorithm identifies more safe expressions (and 

in particular expressions of the form reJ[r)) since: 

1. The path analysis algorithm also takes into account forward information. For example, if re]Iv) 
appears in all the paths to a certain vertex, then the path analysis algorithm will determine 

that tel(r) is strongly safe, whereas Kennedy's algorithm will not. 

2. The path analysis algorithm handles safe definitions which are considered unsafe by Kennedy. 

Kennedy's algorithm may be also modified to handle safe definitions. 

Proposing a different direction for handling exceptions, Hennessy [Hen81] suggests to annotate 

the program, telling where exceptions may happen, so as to disable optimization on those parts of 

the program. 

Considering the safety problem of speculative execution, in [CMC+91] it was suggested to have 

special non-interruptible machine opcodes for speculative instructions which will smooth all the 

exceptions resultant by them. The disadvantage of this approach is that we lose the debuggability 

of the program. For example, it may happen that in its original place an instruction was causing 

an exception (say, because of a program bug); then after it was moved speculatively, no exception is 

raised. 

Alternatively, the interrupt handling routine of the operating system can be modified, so as to 

intercept the exceptions at run-time. The compiler is supposed to record the addresses of speculative 

instructions in a place that is accessible from the interrupt routine. Then, this routine can determine 

if the exception was caused by a speculative instruction and handle it respectively. The advantage 

of this approach is that it does not require special opcodes for speculative instructions, but it suffers 

of the same problem of missed exceptions. 

Yet another approach is advocated in [Ebc88]. There, in addition to having non-interruptible 

opcodes for speculative instructions, there is a special bit for every machine register which is set 

when the contents of the register is invalid. When a speculative instruction causes an exception, it is 

not raised, but the result register of the instruction is marked as invalid. This architecture allows to 

proceed with computing arithmetic instructions whose operands are invalid (if one of the operands 

is invalid, the result is also invalid). Only when an instruction that has side-effects (like store to 

memory, branch, etc.) uses an invalid operand, an exception is raised. This approach improves on 

the previous two, since it does not miss program exceptions. However, it does require significant 

hardware support and run-time handling of speculative instructions. 

Finally, in [SLH90] a massive hardware support for speculative instructions was suggested. It 

was proposed there that the hardware will not commit on the results of the speculative instructions 

and will not raise exceptions resultant by them until the direction of the branch over which these 

instructions were moved is known. This approach allows to determine the exact reason and place 
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of the exceptions caused by speculative execution. Being powerful by its nature, this approach is 

expensive in both the real-estate on the chip required to implement the hardware support as well as 

the run-time required to maintain the results of the speculative instructions. 

9 Conclusions 

Safe loads using the extended memory layout approach point to a very ihteresting research direction, 

in which the domain of legal memory accesses is extended beyond the domain which is needed for 

correct execution of the program. By supporting the extended memory layout, new opportunities for 

more efficient code are created. It is not clear whether other elements of a given computing model 

may exhibit the same property, e.g., can their domain be extended so as to allow new optimization 

techniques. 
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