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A b s t r a c t  

One can at tempt to solve the problem of establishing the correctness of some 
software w.r.t, a formal specification at the semantical level. For this purpose, the 
semantics of an algebraic specification should be the class of all algebras which cor- 
respond to the correct realizations of the specification. We approach this goal by 
defining an observational satisfaction relation which is less restrictive than the 
usual satisfaction relation. The idea is that  the validity of an equational axiom 
should depend on an observational equality,  instead of the usual equality. We 
show that it is not reasonable to expect an observational equality to be a congru- 
ence, hence we define an observational algebra as an algebra equipped with an 
observational equality which is an equivalence relation but not necessarily a congru- 
ence. Since terms may represent computations, our notion of observation depends 
on a set of observable terms. From a careful case study it follows that  this requires 
to take into account the continuations of suspended evaluations of observable terms. 
The bridge between observations and observational equality is provided by an in- 
distinguishability relation defined on the carriers of an algebra according to the 
observations. In the general case, this relation is neither transitive nor a congruence. 

1 I n t r o d u c t i o n  

A fundamenta l  a im of formal specifications is to provide a rigorous basis to  establish 
software correctness. Intuitively, a p rogram P is a correct  realization of a specification 
SP if P satisfies all properties required by SP. On  the other  hand  SP should be some 
descript ion of all its correct realizations. These notions can be, p robab ly  in the  best  

*This work is partially supported by ESPRIT Working Group COMPASS and C.N.R.S. GDR de 
Programmation. 
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way, handled within an observational framework. Consequently, the aim of this paper 
is to provide an observational semantics of algebraic specifications so that  the class of 
observational models of SP matches as well as possible the class of its correct realizations. 

We may follow one of at least two directions in the development of an observational 
approach. The first of them was opened by Sannella and Tarlecki [16] (but also indepen- 
dently by Pepper [14]) and further generalized in [17]. The authors of these papers define 
the class of observational models (behaviours in their terminology) as an extension of 
the class of the usual models by an equivalence relation (called observational equivalence) 
between algebras, according to some observations Obs. This leads to a somewhat hetero- 
geneous framework where the observational features are dir~ectly based on the usual ones. 
In particular the "observational consistency" always coincides with the usual one. These 
shortcomings can be avoided in an observational approach developed according to the 
second direction which mainly aims at defining a true observational satisfaction relation 
as in [8], [13] or [15]. Consequently, our paper follows this direction. 

spec : SWE 
use : LIST, NAT 

sort  : Set 
g e n e r a t e d  by : 

O :  --*Set 
ins: Nat Set --, Set 

o p e r a t i o n s  : 
-E- : Nat Set --~ Bool 
del : Nat Set ~ Set 
enum : Set --* List 

a x i o m s  *, 

r  ins(x,ins(x,s)) ----ins(x,s) 
~b2: ins(x,insCY, s)) ---ins(y, insCx,s)) 
r : del(x, O) = E) 
r  del(x, ins(x, s)) = del(x, s) 
r  x ~: y =~ del(x, ins(y, s)) = ins(y, del(x, s)) 
r  x E O = f a l s e  
r : x E ins(x,s) = true 
r  x ~ y ~ x E i n s ( y , s ) = x E s  
r : enum(Q) = nil 

Czo: enumCins(x,s)) = cons(x, enumCs)) 

Figure 1.1: Specification of sets with enum 

In our approach, an equation t = t ~ is observationally satisfied by an algebra if for any 
assignment v of variables, the results of the evaluations of both tv and t~v are observa- 
tionally equal. Unlike in similar approaches, we do not require an observational equality 
to be a congruence. This allows to better capture the correct realizations of specifications 
with some "loose" (underspecified) operations such as choose : Set -* Nat: this operation, 
when applied to a nonempty set, should return an element of the set. For instance the 
realization of sets by lists such that choose returns the head of a list, should be considered 
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as a correct realization of this specification. In this realization the lists (n, m) and (m, n) 
are observationally equal, since they are viewed as the same set. However choose((tt, m)) 
and choose((m, n)) produces two Nat values which should not be observationally equal. 
The use of an observational equality being non necessarily a congruence allows to have an 
observational consistency which does not coincide with the usual one. For instance, the 
inconsistent specification 5Wt: of sets with enum (see Figure 1.1) can be declared observa- 
tionally consistent, provided that the inconsistencies are not observed. This is impossible 
within the approach of [17] since 5WE has no behaviours whatever observations are. An 
observational model of this specification will be described in the following sections. This 
example points out that  in our approach, some data types can be specified in a more 
straightforward way with less risk of introducing unexpected inconsistencies. 

Our main contribution is to provide a suitable notion of observation. We claim that  
this notion should reflect at the specification level the following paradigm: a user observes 
the results of some specific computations. Since computations may be represented as 
evaluations of terms, the part of a specification devoted to observations should be some 
description of a set of (observable) terms. As soon as only some computations can be 
observed, it is impossible to distinguish some values from some others. For this reason 
our approach fully agrees with the following Indistinguishability Assumption: 

Two values are indistinguishable with respect to some observations when it is 
impossible to establish they are different using these observations. 

The bridge between observations and the observational equality is provided by an indis- 
tinguishability relation which is defined further according to the above assumption. From 
a careful case study it follows that this requires to take into account the continuations 
of suspended evaluations of observable terms. Even if very reasonable, we show that  this 
assumption has some surprising consequences. 

2 B a s i c  D e f i n i t i o n s  

We assume that  the reader is familiar with algebraic specifications (see e.g. [9] and 
[5]). A signature ]B consists of a finite set of sort  symbols Sorts[]B] and a finite set 
of operation names with arities Ops[~] (also denoted by ~). We assume that  each 
signature E is provided with an S-sorted set of variables X such that  Xs is countable for 
each s E S. We use the following conventions. Given a signature E (resp. E'), S (resp. S') 
denotes Sorts[E] (resp. Sorts[E']) and X (resp. X') denotes the variables of E (resp. of E'). 
A signature morphism a : E + E~ maps each sort of S to a sort of S I, each operation 
(f:  s l . . .  s= + s) e E to an operation a(f) of E' with the arity a ( s l ) . . ,  a(sn) + a(s) and 
each variable of Xs to a variable of X~(s). Moreover, we assume that  a signature morphism 

is always injective on variables 1. The signatures with the signature morphisms form the 
usual category of signatures, written Sig. 

The definition of (total) ]B-algebras and ]B-morphisms is the standard one. The 
category of all ]B-algebras is denoted by Alg[~]. Given an S-sorted set E, we denote by 
T~g(g) the free E-algebra over E. For instance T~g (resp. T~.(x)) denotes the ]B-algebra 
of ground terms (resp. terms with variables), T~(A) (resp. T~(AuX)) denotes the ~- 
algebra of ground terms (resp. terms with variables) over the carriers of  a ]B-algebra 

1Without this assumption, which in a stronger form appears in [7] (page 36, Definition 55), it would 
be impossible to establish the satisfaction condition for most institutions. 
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A. Given a signature morphism a : E ~ E' the a - reduc t  of a E'-algebra A', written Alia 

is defined in the usual way and extending it on E'-morphisms we obtain the forgetful 
functor - la  : Alg[E'] ~ Alg[E]. In the particular case of an inclusion E C E', the 

corresponding forgetful functor is written -I~:" 

From T~.(x), the "="  symbol and connectives (-% V, h, =~, etc.) we construct the set 
Wff[]B] of well formed ]B-formulae. The satisfaction relation " ~ "  between E-algebras 
and E-formulae is the standard one. 

A valuation is a morphism u : X --* A which maps each x E Xs to a value xg E As. The 
set of all valuations from X to A is written VaI[X,A]. A partial valuation is a valuation 
preceded by an inclusion X0 C X. From the freeness of T~(x) any valuation (resp. partial 
valuation) u followed by the inclusion A C_ T~(A) (resp. A C__ T~.(AuX)) extends to a 
unique morphism (written ambiguously u) from T~(x) to T~(A) (resp. T~.(AuX)) which 
maps each term t E (T~(x))s to a valued t e rm tu E (Tz(A))s (resp. partially valued 
term tu E (T~(AUX))s). The evaluation morphism from T~(A) to A is defined as the 
unique E-morphism which maps each element of (T~(A))s n As to itself. This morphism 
maps a valued term ~- to its evaluation result written Y. 

A position p in a term t is a sequence of integers which describe the path from the 
topmost position of t (denoted by the empty sequence) to the sub te rm of  t at position p 
written tip. The set of all the positions of t is denoted by Pos(t). The replacement of tip 
by a term r in t is written t[r]p. The multiple replacement at parallel positions P l , . . . ,  Pn 
is written t [ r l . . ,  rn]pl...pn. 

Definit ion 2.1 An (S- indexed) set of contextual variables is wri t ten ~>, where each <~s 
is a singleton {os}. A multicontext (resp. context) over a E-algebra A is a partially valued 
term ~ with only one (resp. only one occurrence of  a) contextual  variable. Consequently, 
the set of  all mul t icontex ts  over A,  writ ten MC~(Aur ( the set of  all contexts over A is 
wri t ten C~.(Auo)) is detlned as follows: 

MCE(Aur = U T~(Au{r 
sES 

Given 7 I E MC~(Aur (resp. 71 E C~(AuO)) we can write 71 : s --* s' instead of ~/ E 
(T~(Au{o~}))s,. Applicat ion of  7 I on a E As is writ ten ~/[a]. 

3 H o w  to  Observe  and  H o w  to C o m p a r e  

As mentioned in the introduction we need to define an indistinguishability relation 
on the carriers of an algebra in order to relax the satisfaction relation. Usually this is 
done using the concept of observable contexts. Since this concept was given only for sort 
([8], [10], [13]) or signature 1 ([1], [4]) observation, we should start by defining it in the 
situation when we observe an arbitrary set of terms. 

In the most usual framework one considers a set of observable sorts SObs which is a 
subset of the sorts of a specification. Then an observable context is any context ~/: s --* s' 
with s I E Sobs. Given an element a E As we can observe it via 7/by evaluating ~/[a]. Hence 
we have the following trivial fact: 

1In fact these approaches combine signature and sort observations. 
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Fac t  3.1 All the elements of a carrier of an algebra have the same observable contexts 
w.r.t, a set of observable sorts. 

Notice that  it is unreasonable to hope that this fact could be extended to term observation. 
This affirmation is motivated by the specification THREE (c.f. Figure 3.1). Let A be a 
Sig[THREE]-algebra. It is clear that  g(a A) does not produce an observable value, since 
g(a) is not an observable term. Consequently, we should consider g(o) as an observable 
context of b A and c A only and, for a similar reason, f(o) as an observable context of a A 
and b A (but not of cA). It follows from the above that  observable contexts cannot be 
taken into account independently of the elements on which they apply. Therefore, we 
need to define the observable contexts of a given e lement  of  an algebra. Notice that  
such a definition is superfluous for observable sorts. 

spee : THREE 
sort : Three, Visible 
generated by : 

a, b, c : --, Three 
operat ions  : 

f, g: Three ~ Visible 
axioms : 

a = b  
b = c  

observations: f(a), f(b), g(b), g(c) 

spec : AD-HOC 
use : Bool 

sort : Hoc 
generated by : 

a , b , c :  ~ H o c  
operations : 

f : Hoc Hoc ~ Bool 
g:  H o c - ~ H o c  

observations: f(a, c), f(b, g(c)) 

Figure 3.1: Two exotic specifications 

Since Fact 3.1 cannot be extended to term observation we have a little trouble to 
declare some a, b E A8 indistinguishable. It seems reasonable to compare a and b with 
the same observable contexts. Thus in the previous example we compare a A and b A 
(resp. b A and c A) only via context f(o) (resp. g(o)). We also notice that a A and c A have 
no common observable context. Consequently, these two values cannot be compared. 
However, according to our Indistinguishability Assumption, we do not consider that  two 
elements can either be indistinguishable, distinguishable or incomparable. Our point of 
view is close to final semantics ([31, [11], [18]): we consider indistinguishable these pairs 
of elements, for which we do not observe the contrary. This is stated in the definition 
below (for a while assume already defined the notion of observable contexts): 

D e f i n i t i o n  ( c o m p a r a t o r ,  vers ion  1) We call W - c o m p a r a t o r  (or shortly comparator) 
of elements a and b of a E-algebra, an observable context of  a and b w.r.t, a set W of  
E-terms. We say that a W-comparator ~1 distinguishes a and b iff ~/[a] # 7/[b] 

We can now state the following definition of indistinguishability: 

D e f i n i t i o n  3.2 We say that two elements a and b of  a given carrier of a E-algebra are 
indist inguishable  w.r.t, a set of terms W E Tr.(x) (or W-indis t inguishable)  written 
a " w  b, i f  there is no W-comparator  which distinguishes them. 
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~ Hoc 

Figure 3.2: A model of the specification AD-HOC 

Now, the crucial point is to define the observable contexts of an element of an algebra. 
Below we make a first attempt of such a definition. Next, this definition will be progres- 
sively refined. In this way we are going to introduce the concept of continuations which 
is one of the originalities of our approach. 

Defini t ion (observable  contex ts  version 1) Let W C_ T~()x be a set. of terms and 
a E A be an element, of. a ~-algebra. We say. that a .c~ ~ E C~(Auo) is an observable 
context of a, f f  there is a term w E W,  with valuation u : X ~ A such that wu has a leaf 
1 verifying 7/[1] = wu and such that 1 is either the constant of E interpreted in A as a or 
1 is already a itsels 

The underlying intuition of this definition is that an instantiated observable term wu 
denotes an "observable calculus" i.e. a calculus whose result can be directly observed. 
Consequently, an observable context ~ of a, instantiated by a represents an observable 
calculus with input a. Unfortunately, it is not adequate enough to only rely on input 
values. For instance consider the specification AD-HOC (c.f. Figure 3.1). According to 
the definition, the unique observable context of a A (resp. b A) is f(o, c) (resp. f(% g(c))) 
independently of the Sig[AD-HOC]-algebra A under consideration. Consequently, a A and 
b A are indistinguishable (no comparator) in any algebra A. Consider now the algebra B 
given in Figure 3.2 and try to partially evaluate in b the observable contexts of a B and 

B B b . Since g(c) evaluates to c , the evaluations of both f(% c) and f(o, g(c)) yield f(o, cB). 
Then the question whether it is not preferable to consider f(o, c B) as a comparator of a B 
and b B clearly arises. Notice that this comparator distinguishes these two values. 
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This first version of the definition of observable contexts has also another drawback: 
the entire carriers of some sorts can be, in an unreasonable way, devoid of observable 
context, as in the case of the specification PASS-BY (c.f. Figure 3.3). Here the elements of 

spec  : PASS-BY 
sort  : Nat, Hidden, Visible 
generated  by : 

O: -~ Nat 
succ: Nat --~ Nat 

operat ions  : 
stage-one: Nat --~ Hidden 
stage-two: Hidden --* Visible 

a x i o m s  ,* 

0 # succ(x) 
x # s.ccCx) succ(x) # succ(succ(x)) 

observations : stage-two(stage-one(x)) 

spec  : SYM 
use  : BOOL 

sort  : Sym 
g e n e r a t e d  by : 

a, b : ~ Sym 
opera t ions  : 

f : Sym Sym --* Bool 
o b s e r v a t i o n s :  f(a, a), f(b, b) 

Figure 3.3: Yet other exotic specifications 

AHidden have no observable contexts in any algebra A. Thus they are all indistinguishable. 
Consequently, the algebras with the carrier of Hidden reduced to a singleton should be 
present among the observational models of PASS-BY. However, this could prevent from 
preserving the observable properties of Nat. In fact, the specification PASS-BY requires 
all reachable elements of Nat to be distinguishable i.e. 

stage-two(stage-one(succi(O))) ~ stage-two(stage-one(succi(O))) for i ~ j 

should hold in any  observational model. Of course, this is impossible when the carrier 
of Hidden is a singleton. We conclude that in the above example we should consider 
stage-two(o) as an observable context of any element which is reachable by the evaluation 
of stage-one(x) properly instantiated. 

The examples PASS-BY and AD-HOC suggest that  a better version of the definition 
of observable contexts should somehow take into account the super-terms of observable 
terms as well as their partial evaluations. Before to state this version, we need some 
reminders about partial evaluation. 

D e f i n i t i o n  3.3 Let A be a E-algebra. We define the partial  eva luat ion  relat ion,  written 
p-~,, on Tg(A) as follows. We say that a term r2 E Tg(A) is the result of the partial 

evaluation of rl E T~(A), written rl ~-~,r2, i f  there is a position p in rl such that r~[r~[p]p = 
r2. 

Fact  3.4 The reflexive-transitive closure of --*, written -L is an order. 
pER per 

[] 

D e f i n i t i o n  3.5 Let W C T~.(x ) be a set of terms and A be a E-algebra. The c losure  by 

partial  eva luat ions  of W in A, written ~rA, is defined as follows: 

W A = { r E T ~ , ( A )  I 3 w E W  3 v : X ~ A  w v 4 r }  
pEr 
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The last notion can be used to state a better definition of observable contexts: 

Defini t ion (observable  contexts ,  version 2) Let W �9 T~(x) be a set of observable 
terms and A be a ~-algebra. We say that 71 �9 C~(Auo) is an observable context of  
a e As ifr/[a] �9 ~ A .  

According to this definition an observable context T/ of a �9 As is obtained from some 
valued observable term wv (v : X --~ A), if a is an intermediate result of its evaluation. 
In fact, the above definition requires the term 7/[a] to be obtained from wv as a result of 
its partial evaluation. Thus the context 7/ represents a calculus waiting for an input. If 
the value a is given as input, then the carrying out of this calculus corresponds exactly 
to a "continuation" of the evaluation of wv. However, the case of the specification SYM 
(c.f. Figure 3.3) shows that this approach is not yet satisfactory. For instance, let A be 
a Sig[SYM]-algebra such that  fA(aA,  a A) ---- true A and fA(bA,  b A) = false A. Applying the 
last definition we obtain: 

observable contexts of a A : f(o, a), f(a, o) 
observable contexts of b A : f(o, b),f(b,o) 

Since the elements a A and b A have no comparator, they are declared indistinguishable. 
Nevertheless, the evaluation of the terms f(a, a) and f(b, b) allows to distinguish a A and 
b A. This motivates to consider f(o, o) as a comparator of a A and b A. Consequently, 
an adequate definition of  continuation should he based on multieontexts instead of 
contexts. 

4 The  Indist inguishabi l i ty  Relat ion  

According to the previous discussion, we define continuations as follows: 

Def in i t i on  4.1 Let W C_ T~.(x ) be a set of observable terms and a be an element of a 
Z-algebra A. We say that a multicontext 71 E MC~.(~4uo) is a W-continuation via a (a 

continuation via a, for short) i f  7/[a] E ~ A .  The set of W-continuations via a is written 
eontw(a ). (If there is no ambiguity we omit the index W in this notation.) 

The definition of indistinguishability (c.f. 3.2) from the last section remains unchanged 
provided that  we modify the definition of comparator which must be based on the notion 
of continuation. 

Definit ion 4.2 A W-comparator (compazator, for short) of elements a and b of a given 
carrier of a Z-algebra, is any W-continuation via a and b. The set of all comparators of 
a and b is denoted by cmpw(a ,  b). (If  there is no ambiguity we omit the index W in this 
notation.) We say that a W-comparator ~1 distinguishes a and b iff T/[a] ~ T/[b]. 

We illustrate these concepts by means of the specification 5WE (see Figure 1.1). 

E x a m p l e  4.3 We equip the specification SWE with the following set of observable terms 

Obssw E = {X E X} LI (Tsig[LISTI(X))Bool U (Tsig[LISTI(X))Na t 

The algebra L which we would like to consider as a correct realization of 5WE admits two 
copies of the carrier of the usual realization of lists: one for lists and the other for sets. 
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Consequently, enum L is the bijection between these two copies preserving axioms r and 
r In other words L[Sig[LIST] and LlSig[SEI_] axe equal up to some appropriate renaming 

of operations. The continuations of I E LList are the following ones: 

cont(/) = {car(q),member(n,~/) [ n E LNat, y E (MCsls[LtS'r](Luo))List} 

Therefore, "%b,SWE is the set theoretical equality on LList. The continuations of s E LSet 
axe the following ones: 

cont(s) = {nE<>s~t [ n E LNat} 

Thus s, st E LSet are indistinguishable i f  they contain the same elements. 

We give below the first important theorem which will be useful in establishing some 
results about observational specifications w.r.t, the specification-building primitives. 

T h e o r e m  4.4 Let a : ~ --~ E ~ be a signature morphism, W C_ T~(x) and W I C_ T~,(x, ) 
be sets of terms such that a(W) _C W' and A' be a E'-algebra. For all elements a E ( Ai~,)s 

and any multicontext q E MC~(A]ou o) we have: 

~/E contw(a)  =~ cr(~/) E contw,(a)  

The proof (omitted here) may be found in [12]. Notice that the converse of the above 
theorem does not hold even if a (W) = W'. 

The definition 3.2 express in which situation two elements of a E-algebra are indis- 
tinguishable. By the way, it defines an S-sorted relation ~ w  = ( 'w ) sE s  on an algebra, 
called indist inguishabil i ty relation. Since this relation is a step toward our observa- 
tional semantics, we must study its properties w.r.t, at least the forgetful functor and 
the translation of observable terms in order to be able to cope with specification-building 
primitives. 

P r o p o s i t i o n  4.5 Let a : E ~ E' be a signature morphism, let W C_ T~(x) and W' C_ 
T~.,(x,) be sets of terms such that a(W)  C_ W' and A' be a ELalgebra. For all a, b E (Ai~)s 

we have that i f  a and b are W'-indistinguishable (in ' A,(s) ) then a and b are also W- 
indistinguishable (in ( Ai~)s). 

The proof (omitted here) may be found in [12]. Again, the converse result does not hold 
even if a (W)  = W'. The following fact is obvious from the definition of the indistin- 
guishability relation. 

Fac t  4.6 The indistinguishability relation is reflexive and symmetric. 

The next fact fully agrees with our claims: 

I7 

Fac t  4.7 The indistinguishability relation is not a congruence in general. 

P r o o f  It is enough to go back to Example 4.3. Recall that in the algebra L, sets are represented 
by lists. Let then (n, m) and (m, n) be two representations of the set {n, m} in this algebra. 
On one hand we have (n, m) ~ObsswE (m, n) but on the other hand enumL((n, m)) #Ob,sw~ 
enumL( (m, n) ) because of the comparator car(o) which distinguishes them. o 
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s p e e  : TRANS 
u s e  : BOOL 

s o r t  : Trans 
g e n e r a t e d  b y  : 

a, b, c : - *  Trans 
o p e r a t i o n s  : 

f, g, h : Trans -~ Bool 
o b s e r v a t i o n s  : 

f(a), f(b), g(b), g(c), h(c), h(a) 

(i c 

mle 

Bool ~ 
Figure 4.1: Specification TRAN5 and one of its models 

We have also an unexpected negative result: 

Fact 4.8 The indistinguishability relation is not transitive in genera/. 

Consider the model A (see Figure 4.1) of the specification TRANS. In this algebra we 
have aA " w  bA and b A ~'w cA, but not aa ~w  cA. The reason is that we did not 
impose any restriction on the set of observable terms. Consequently, nothing ensures 
that all the elements of a given data type can be observed in the same way. In the 
algebra A each of the elements a A, b A, cAis observed differently, each pair among these 
elements is compared in some proper way, different from the others. This is the reason 
why the indistinguishability relation is not transitive. In fact, this surprising property 
results directly from our Indistinguishability Assumption according to which we have built 
definitions 3.2, 4.1 and 4.2 but in certain cases this could be explained by an "inconsistent" 
choice of observations and sometimes should be avoided. The next fact gives a sufficient 
condition to avoid this problem. 

Fact 4.9 Let A be a E-algebra and W be a set of E-terms. / fcontw(a) = contw(b) for 
all a, b E As then the relation ~w  is transitive on A. 

P r o o f  Obvious. D 

Fact 4.10 The relation ~O~sw E from Example 4.3 is transitive. 

P r o o f  Follows directly from the above proposition, since in Example 4.3 we have shown that 
the elements of the same carrier set of L have the same continuations. [:3 
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It is possible to have a definition of ""~w" which is always transitive. One may state 
that  a and b are W-indistinguishable if they do in the sense of Definition 3.2 and if 
additionally contw(a) = contw(b). In our opinion, such a definition will distinguish 
too much. For instance, if in a specification we observe only some ground  terms then, 
according to Definition 3.2, a non reachable value will never be distinguished from any 
other value, whereas with the modified version of this definition, a non reachable value will 
always be distinguished from any reachable vaiue. Consequently we are not enthusiastic 
about such a modification. 

Since the problem of software correctness is the main motivation of our work, we 
want to provide a semantical framework which could be further extended with adequate 
theorem proving features. Incontestably, proving software correctness w.r.t, an algebraic 
specification requires at least equational reasoning. For this reason, an observational 
satisfaction relation cannot be directly based on the indistinguishability relation in con- 
trast with the usual satisfaction relation based on the usual set-theoretic equality (of 
the elements of an algebra). Its non-transitive character would eliminate all possibility 
of equational reasoning. On the contrary, the non-congruence property does not disallow 
this possibility, subject to beware on some exotic operations such as enum (see Figure 1.1). 
For instance we can replace in some term t of SWE its subterm tip = ins(s(0), ins(0, O)) 
by ins(0, ins(s(0), O)) except when there is some occurrence of en.m in t over the position 
pl. In addition we believe that  there is no reason to expect an "observational equality" 
to be a congruence (as in [4]). This holds only in the particular case of sort observation 
(see [8], [13]). 

5 Observational Algebras 
At this moment we have a little trouble with the non-transitive character of the 

indistinguishability relation. Since this aspect seems to be crucial for establishing some 
proof methods, we introduce in this section a flexible concept of observational algebras. 

Def in i t ion  5.1 Given a signature ~, an observational ~-algebra is a pair (A, ~) where 
A is a ~-algebra and ~ is an S-sorted equivalence relation on A, called observational 
equality on A. We note OAlg[~] the c/ass of all observational ~-algebras. 

Notice that  any ~-algebra A can be considered in a straightforward way as an observa- 
tional ~-algebra (A, =). The reader certainly realizes that  our definition of observational 
algebras is similar to the one of structures in First Order Logic where each predicate 
symbol is interpreted by a relation. We consider the equality symbol "="  in the axioms 
as a particular predicate symbol. This symbol is explicitly interpreted in an algebra by a 
particular relation, namely an observational equality. 

E x a m p l e  5.2 Consider L and ObsswF both defined in Example 4.3. Since "~ObsswF is an 
equivalence relation (c.f. 4.10), the pair ( L, .,.Ob.swE ) is an observational Sig[SWE]-algebra. 

Def in i t ion  5.3 An observational ~ -morphism p : (A, ~A) _., (B, ~B)  is any (usual) 
~-morphism from A to B which preserves observational equalities i.e: 

Va, b r  a b g(a) g(b) 

1 More precisely, this replacement is impossible only if each node on the path from p to the closest 
enum over p (if there is one) is of sort Set. 
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Obviously OAlg[E] provided with the observational ~-morphisms forms a category. 

Def in i t ion  5.4 Let a : E --+ ~ be a signature morphism. The a-reduct  of an observa- 
tional E'-algebra (A', ~-') is the observational E-aJgebra 

A' "~" A' "~' I,,, 

where Ai~ is the usual a-reduct of the EI-aigebra A' and (-~ia)s -=a(s)-'~l for all s E S. 

The mapping -la extends on observational morphisms as in the usual framework. Conse- 

quently, it defines the corresponding forgetful  functor  from OAlg[E'] to OAlg[~]. 

Def in i t i on  5.5 A solution of an equ__ation 1 = r in ah observationai E-algebra (A, ~ )  
is a valuation t, : X ~ A such that h/~- ~-~. The set of all the solutions of an equation 
is written [l=r](A ~). The set of solutions of a formula ~o is defined recursively w.r.t, the 
connectives -~ and A: 

�9 i f ~  = -,r then [~](A,~_) = Val[X, A] \ [r 

�9 i f ~  = r ACt then [~](A,_~) : [•](A,-) N [~)t](A,~) 
where r  r are E-formulae. 

Since all the connectives of the classical logic can be expressed by means of the connec- 
tives -~ and A, the solutions of an arbitrary formula without quantifiers (i.e. implicitly 
universally quantified) are well defined by the above definition. 

The following theorem relates solutions of a formula and its translation, on an obser- 
vational algebra and on its a-reduct: 

Theorem 5.6 Let a : ~ ---* E I be a signature morphism, (A I, ~_l) be an observational 
El-algebra and ~ be a E-formula. Let t~ : X --~ Aia and t~ : X I ~ Aia be valuations such 

that xt, = a(x)v I for all x E X. Then 

t, E [~,](A,,~,)l ~ iff v' E [a@)]O,t,,~, ) 

A slightly different version of this theorem as well as its proof may be found in [12]. 

6 Observational  Specifications 

Def in i t ion  6.1 An observational  ~-formula  is a pair (~, W I where ~ E Wff[E] is a 
~-formula and W E T~.(X ) is a set of terms. We note OWff[~] the set of all observational 
E-formulae. 

In a straightforward way we consider a set �9 = {~1 , . . . ,  ~n} of formulae as a conjunction 
of formulae r = ~OlA. �9 .A~n. Thus any pair (r W) can be viewed as a single observational 
formula and consequently, any observational specification can be viewed as composed by 
a single observational formula: 

Def in i t ion  6.2 An observational specification OSP is a triple (~, 0 , W ) ,  where E is 
the signature of OSP and (O,W) e OWff[E]. 
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One may also define an observational specification as a pair (~, OAx) with OAx = 
{(01, W l ) , . . . ,  (0i, Wi) , . . .} .  The possibility to associate observations separately to each 
axiom would increase the expressive power. (In particular, it allows an infinite set OAx.) 
However, in all examples it seems preferable to attach a unique set of observable terms 
to the whole specification. 

We have now all the elements necessary to define an observational satisfaction rela- 
tion: 

Def in i t ion  6.3 We say that an observational Z-algebra (A, ~)  satisfies an observational 
formula (~b, W ) ,  written (A,~--) Oi = (~b,W), iff: 

[~b]<A,_~ ) = Val[X,A] (i) 

C_ " w  (ii) 

Models are defined as in the usual approach except that  we use the observational satis- 
faction instead of the usual one: 

Def in i t ion  6.4 Let OSP = (E, O, W) be an observationM specification. We say that an 
observational Z-algebra (A, ~-) is a model of OSP iff." 

(A, (o, w) 

We note OAlg[OSP] the class of all observational models of  OSP. 

Notice that  OAlg[OSP] with observational E-morphisms is a full subcategory of OAlg[E]. 

Fac t  6.5 The observational algebra (L, ~ObsswE ) described in Example  5.2, is a model  of  
the observational specification 5WE. 

Proof  sketch Since the observational equality on (L, ~ob.swE) is just the indistinguishability 
relation, we only need to prove that for any axiom O of 5WE we have 

[0](L,~o~.~WE) = V~[X, L] 

This is obvious for the axioms of klST since LlSig[LIST] is the usual realization of lists and since 

from Example 4.3 we know that "%b,swE is the usual equality on Llsig[usv ]. 

Since the elements observationally equal o n  Lset are different representations of the same 
set, it is clear that for the "standard" axioms ~bx, ~2 , . . . ,  ~bs of sets (c.f. Figure 1.1), we have 

[~bi](L,~Ob.swE) ---- Val[X, L] 

In matters o fr  and ~1o, it is not dittlcult to show that [~9](L,--) = [~bl0](L,_-) = Val[X, L] 
Then we can conclude that 

[r = [r = Val[X, L] 

This last step is justified by the fact that the axioms ~b9 and ~bl0 are  equations and that 
= C_ ,,%b,swE. Obviously, for any E-equation t = V, any ~ algebra A and observational equalities 

~"  C_ ~-~ on A, we have [t = t'](A,_~o ) C [t = t'](A,~a ) [] 
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In the above example we have considered a model of the form (A, ~w)" Of course, this 
is possible only when ~w is transitive. Moreover this model has a particular status: 
it is a terminal object in the category of all observational models formed with a given 
algebra A. This is quite analogous to the final data type of [11]. Notice that when " w  
is not transitive this category has often no terminal object. For instance, the category of 
observational models of TRAN$ based on the algebra A (see Figure 4.1) has no terminal 
object. 

We examine now how our satisfaction relation behaves w.r.t, the variance of observa- 
tional formulae (translation) and the covariance of algebras (a-reduct). We start by the 
first requirement of Definition 6.3: 

Proposit ion 6.6 Let a : P. --+ E' be a signature morphism. For any set of terms W C 
Tp.(x), any observational P/-algebra (A', ~ ')  and any E-formula ~o we have: 

[a@)l<a,,_~,) = val[X', A'] iff M(A,,~_,)I" = Val[X, A]a ] 

The proof (omitted here) mainly uses Theorem 5.6 and may be found in [12]. The next 
step is to study the second condition of Definition 6.3 w.r.t, term translation and the 
forgetful functor. We examine first the if part of this condition. 

Proposit ion 6.7 Let a : E ~ E' be a signature morphism. For all sets of terms W C _ 
Tp.(x), W' C_ Tp/(x, ) such that a(W) C_ W' and/'or any observational P/-algebra (A', ~=') 
we have: 

~lC_~w, =~ ~io C_~w 

where " w ,  and " w  are the indistinguishability relations respectively on A' and Aia. 

The proof may be found in [12]. 
The next step should be to prove the converse of the above proposition restricted to 

W' = a(W). Unfortunately this does not hold in general 1. Consequently the satisfaction 
condition (see [6] or [7]) does not hold in our approach without additional assumptions. 
Nevertheless an institution can be defined within this framework, under some restrictions 
on either signature morphisms or the set of observable terms (see [12]). 

Up to now, we have not been studying modularity issues. We have only defined 
the semantics of "flat" specifications. In fact, as in [1], our observational semantics easily 
extends to a stratified loose observational semantics without additional assumptions. The 
next theorem shows that our observational semantics is compatible w.r.t, enrichment and 
renaming: 

Theorem 6.8 Let a : P, --+ E' be a signature morphism. For all observational specifica- 
tions OSP = (E, O, W) and OSP' = (P/, 0' ,  W') such that a(O) C_ O' and a(W) C W' we 
have: 

OAlg[OSP']I a c_ OAlg[OSP] 

P r o o f  

and 

From definitions 6.4 and 6.3 it is enough to prove: 

V (A', ~') G OAlg[~/] [O'](A,,u,) = Val[X', A'] =~ 

V (A',---') G OAIg[E'] ~' C_ ~w, ~ 
[O](A, ~_,)l = ValiX, Ai~ ] (i) 
~' (ii) =l~ C-~w 

1An example illustrating this fact may be found in [12]. 
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�9 P r o o f  o f  ( i )  
Let (A', ~-') G OAlg[~'] such that 

= Aq 

Since a(O) C_ O t, by definition of solution of a conjunction of formulae (c.f. 5.5) we have 
a(e)(a,,~_,) ~ O~A,,_~, ). Hence [a(O)](A,,~_, ) = VaJ[X', A t] which according to Proposition 
6.6 implies that 

= v [x, Ai.] 

�9 P r o o f  o f  (il) follows directly from Proposition 6.7. 

1:3 

This last result deserves some comments. Indeed, it is somehow surprising that  we obtain 
such a strong result, without any further hypotheses w.r.t, the axioms of the specifica- 
tion, while similar results hold for other observational approaches only when axioms are 
restricted to equations. It is quite important to note that,  in our approach, observational 
algebras are algebras equipped with some observational equality. To obtain a model of 
a given observational specification, this observational equality should be "compatible" 
with the given axioms and observations. The point is that  this observational equality is 
preserved by forgetful functors. In other approaches, one could define as well an obser- 
vational equality, but this equality is deduced from the specified observations. Hence, 
when we apply some forgetful functor, the set of observations is modified (and so is the 
corresponding observational equality), and the result of Theorem 6.8 cannot be obtained 
without very strong restrictions on the axioms and on the observations. 

7 C o n c l u d i n g  R e m a r k s  

We have provided a suitable notion of observation based on terms. First, we have 
investigated how the elements of a carrier of an algebra should be observed through terms. 
We have pointed out that an adequate notion of observation in this framework requires 
to take into account multicontexts and partial evaluations of observable terms. In this 
way, we have introduced the concept of continuations which underlies our definition of 
the indistinguishability relation. We have shown that  this relation is neither a congruence 
nor an equivalence relation. These both results fully agree with our Indistinguishability 
Assumption. Notice that  when we restrict to sort observation, our indistinguishability 
relation becomes a congruence similar to the Nerode congruence [8]. However, unlike 
in [13], in our approach, two observational algebras differing on non observable junk do 
not necessarily satisfy the same observational formulae. We do not privilege reachable 
elements, since this is most suitable for defining the observational semantics of parame- 
terized specifications in a loose framework (which is the topic of our current research). 
Moreover, one could think that  our indistinguishability relation coincide with Reichel's 
I-indistinguishability [15] when we restrict our approach to sort observation and Reichel's 
one to total algebras. This is not true, since we use multicontexts from MCE(Auo} in- 
stead of MCI:(o). Consequently, in our approach non observable junk can influence the 
indistinguishability of two elements of a carrier of an algebra while it cannot in other 
works. Thus the roles of reachable and non reachable values are symmetric w.r.t, our 
indistinguishability relation. 
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Being convinced of the necessity of equational reasoning in proving abstract imple- 
mentation correctness, we have introduced in our semantics an additional stage over the 
indistinguishability relation, namely the observational equality. Then we have defined ob- 
servational algebras, observational formulae and the corresponding satisfaction relation. 
In this way we have developed an observational approach which has all properties required 
to define the semantics of an algebraic specification language, even if it does not provide 
an institution. 

The main disadvantage of our approach is that the logical formulae we use are al- 
ways implicitly universally quantified. Consequently, the first improvement is to redefine 
our satisfaction relation and to prove once again some results in order to take into ac- 
count existential quantifiers. Finally, the most important area of further research is the 
development of proof methods on top of our approach. 
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