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Abstract 

We present LAZY-PCF-{-SHAR, an extension of PCF, that deals with lazy eval- 
uation and explicit substitutions to model the sharing engendered by the lazy eval- 
uation strategy. We present a natural operational semantics for LAZY-PCFq-SHAR 
and show that it is equivaJent to the standard fixed-point semantics. Sharing is 
modeled by explicit substitutions, which require a great deal of careful attention in 
the proof. 

1 I n t r o d u c t i o n  

In this paper we develop an operational semantics for an extension of PCF, called LAZY- 

PCF+SHAR, that provides a formalism for dealing with the sharing involved in lazy 
evaluation. The language is different from PCF in that explicit substitutions are made 
part of the language. The central part of the paper is a soundness theorem and an 
adequacy theorem which show that the operational semantics developed is equivalent to 
standard fixed-point semantics, as found in the literature. 

The work presented here is aimed at providing the basis (and the tools necessary) 
for developing analyses of sharing in lazy functional languages. Compile-time analysis 
of sharing is fundamental to a number of other compile-time analyses such as garbage 
collection and order of evaluation (and its use in parallelization) [3,6,4]. Hence there is 
a need for a study of sharing. 

In [4] we showed how a compositional compile-time analysis for evaluation order and 
aggregate update of a first-order lazy language can be developed from an operational 
semantics. The technique is to define predicates based on the operational semantics and 
to extend these predicates to the denotational semantics based on the equivalence of the 
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two semantics. Then compositional analysis can be done using abstract interpretation 
with the denotational semantics. The advantage was that we were able to avoid devel- 
opment of complicated continuation based semantics and the development of abstract 
interpretation to deal with such continuations. Of course, the entire development hinged 
on the equivalence theorem between the operational and the fixed-point semantics. The 
work reported here was started as the basis for extending the ideas of [4] to higher-order 
lazy evaluation. The equivalence shown here should also be of independent interest in the 
study of lazy evaluation and in the study of establishing equivalence between semantic 
definitions. 

The characteristics of lazy evaluation have typically been identified from the theo- 
retical perspective as the use of weak-head normal forms in A-calculus, and from the 
implementation perspective as an evaluation strategy that improves on the space-and- 
time requirements of call-by-name evaluation mechanism by explicit sharing of actual 
parameters in function calls. 

Abramsky has formalized lazy evaluation in an untyped A-calculus as the reduction 
of the outermost function to weak-head normal form before applying to an unevaluated 
argument [2]. Howard and Mitchell have similarly considered a lazy version of PCF with 
algebraic datatypes in [7]. The languages (and their semantics) considered in both of 
these papers do not deal explicitly with the sharing engendered in lazy evaluation. 

Recently, there has been lot of research activity on explicit substitutions [1,5,8]. In 
the first two papers the reduction system A~r is considered, while in [8] a calculus, weak- 
A#, with weak-head normal forms has been considered. Our work is more closely related 
to the work of [8] in that we consider weak-head normal forms as the normal form for A- 
abstractions and use explicit substitutions. But each of these papers studies the reduction 
system with emphasis on optimality of reduction strategies, while we fix the reduction 
strategy by the operational semantics and are more interested in the relation between 
the operational (i.e., the reduction system) and the fixed-point approach to semantics. 
As compared to all of these papers our semantics is defined over a typed language. 

In the next section we introduce the language LAZY-PCF-{-SHAR which includes ex- 
plicit substitutions as components of expressions. In Section 3 we present the soundness 
theorem and in Section 4 we prove the adequacy theorem. Both of these theorems, es- 
pecially the adequacy theorem, are complicated, compared to Plotkin's original proof of 
equivalence between operational and fixed-point semantics of PGF [10]. The main diffi- 
culty in extending Plotkin's proof are due to (a) the presence of explicit substitutions, 
and (b) the assumption of a fixed evaluation strategy, i.e., lazy evaluation strategy. For 
example, the soundness theorem, whose proof is very simple in Plotkin's paper, depends 
on properties of a relationship between the environments that arise in the operational 
semantics and those of the fixed-point semantics. The adequacy proof, though similar 
to Plotkin's proof, is complicated because of the presence of the explicit substitutions, 
as opposed to syntactic substitutions. The proof sketches for all the important theorems 
have been presented. A more thorough presentation of the proofs is contained in [11]. 
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Types: 

t = n a t  [ boo l  [ tl ~ t2 
Expressions: 

= o I t ~  l false I 
Az:t .e l el e2 
I if(e~,e~,~s) l~ I 
suec(e) l pred(e) ) 
i ~ , ' o ( e )  I ~'~:t.~ I 
{e, [x : t ~--~ eli) 

FV(~) = {~} 
FV(O) = F V ( t ~ e )  = FV(fal ,  c) = { } 
FV(succ(e))  = FV(pred(e))  = FV(e)  
FY(iszero(e))  --- f V ( e )  
FV(Az: t . e )  = F V ( / ~ x  : t . e )  "- F V ( e )  - {z} 
r V ( e l  ez) - FV(e l )  u FY(e2)  
FV(  (e, Ix :t ~ e,])) -- F V  ( ( Az :t.e) e, ) 
BY( i f ( e l ,  e2, e3)) = f V ( e l  ) U f V ( e 2 )  U f Y ( e 3 )  

Figure 1: Syntax of LAZY-PCF-}-SHAR 

2 T h e  L a n g u a g e  a n d  i t s  S e m a n t i c s  

The language that we use, LAzY-PCF-~SHAR, is a lazy version of P C F  extended to in- 
clude explicit substitutions in order to capture the sharing involved in parameter passing. 
The syntax, along with the rules for free variables, is as given in Figure 1. As usual, an 
expression e such that FV(e)  = 0 is called closed. The only syntactic difference between 
PCF and our language is the explicit use of the substitution Ix : t ~ ell in the closure 
(e, [z :t~--~el]). In such a closure, the substitution is a binding for the free variable ~ in 
e. The purpose of these closures is to model function application according to the rules 
of lazy evaluation, which require that  the argument is not evaluated until needed, and 
then evaluated only once (it is not reevaluated if it is needed more than once). The 
substitution in a closure provides storage for the initially unevaluated argument which 
can be updated if and when it is evaluated. This explains why FV((e ,  [x:t~-+el])) is 
defined in terms of application. Closures could also be used to model the let expression, 
as in {e, [x:t~-~el]) for "let x : t - -  el in e". 

Every valid expression has a unique type. The type t of an expression e is constructed 
with respect to a type environment, which maps the free variables of e to types. Type 
environments are denoted as a list H = [zl : t l , . . . ,  z ,  : tn], where the variables zi are 
unique. As is customary we will use the notation His~z] to denote a perturbed environ- 
ment which respects H on all variables other than z, and binds x to type s. The type 
judgement rules are provided in Figure 2. An expression e has type t in type environment 
H if H ~- e : t can be justified by an inference built up from the type rules. We refer to 
the types n a t  and boo l  as basic types. 

2 . 1  T h e  O p e r a t i o n a l  S e m a n t i c s  

The main task of the operational semantics is to model function application according to 
the lazy evaluation rules. As described above, closures provide the means to model the 
storing of the argument, but the semantics will be responsible for modeling the evaluation 
and updating of the arguments appropriately. Furthermore, since a given expression 
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CO: 

CT: 

CF: 

Var: 

Abs: 

I- 0 : n a t  

F true : b o o l  

F false : boo l  

g [ t / z ]  F z : t 

H [ s / z ]  I- e : t 

H F ~ x : s . e  : s - - .  t 

Cond: 

H F e : n a t  
CS: 

H F suee(e)  : n a t  

H I- e : n a t  
CP: 

H F pred(e)  : n a t  

H I- e : n a t  
CZ: 

H F i s zero(e )  : boo l  

H F e : s - - * t  H F e l  : s  
App: H I- e el : t 

H t - e l : b o o l  H F e 2 : t  H F e z : t  

H F i f ( e l ,  eg., e3) : t 

Rec: H [ t / z ]  F e : t CL: 
H b t tz : t .e  : t 

H ~- el : s H [ s / z ]  ~- e : t 

H t- ( e , [ x : s ~  el]) : t 

Figure 2: Type Rules 

may have several levels or nestings of closures, binding each of the free variables of tha t  
expression, the operational semantics must be able to maintain several bindings at once. 
In order to evaluate an expression, the semantics collects these bindings into a list, called 
the env i ronment  of the expression. An environment will be listed as follows: 

[Zl : t l~-~el , . . . ,  zn  : t ,  ~-~ en] 

and must have the special properties that  each zi is unique and for each expression ei, 
F V ( e i )  E {Zi+ l , . . . ,  z,~}. An expression is paired with an environment in a configuration, 

as in the following: <(e,  [Xl :tl ~ e l , . . . ,  z ,  :t,,~e.]>> with the property that  F V ( e )  E 

{z 1 , . . . ,  zn}. Note that  configurations are more general than closures, since their second 
element is a list of bindings. 

The operational semantics defines a relation between configurations which models 
the evaluation of an expression within an environment. They are actually described 
as a natural  semantics, which is a style of describing semantics where one expression 
(or configuration, in this case) "reduces" to another if an inference or proof tree can be 
demonstrated using the rules and axioms of the semantics to justify the reduction. In fact 
this is the only way one expression reduces to another-- there is no notion of transitive 
closure or many-step reductions in natural semantics. Therefore, an expression reduces 
directly to its normal form, and the intermediate steps of the evaluation can be found 
in each level of the inference. Consequently, in a natural semantics a normal form is an 
expression that  evaluates to itself. Since there are no many-step reductions, this does not 
cause the problem of infinite reductions as is found in the traditional rewriting systems. 

The operational semantics for LAZY-PCF+SHAR are shown in Figure 3. In this 
description, note that  A1 �9 A2 is used to denote concatenation of environments, where 
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the binding [z : t ~-~ e] of a closure is considered a one-element environment. 

The first four rules, CO, CT, CF, and L show that 0, true,false, and expressions of 
the type Az :t.e are normal forms (they reduce to themselves in any environment). The 
first three are as expected, but A-abstractions are also normal forms. This prevents the 
body of a function from being evaluated until it is applied, which is part of the evaluation 
strategy dictated by lazy evaluation. The next five rules simply carry out the evaluation 
of the primary functions pred, succ, and iszero. 

The rules Varl and Var2 manipulate the environment whenever the evaluation calls 
for a variable access. The rule Varl does two things. First it evaluates the expression 
bound to the variable, and then it updates the environment to bind that variable to 
the new normal form. The rule Var2 is used when the variable being looked up in the 
environment is not the leftmost binding in the environment. It searches for the binding 
of that variable in the tail of the environment. 

The rule Appl carries out application of a function to an argument by first evaluating 
the function, el, to a functional normal form, N. Then the function Ap, also defined in 
Figure 3, is used to create the appropriate closure of the body of N with the argument 
e2. The new closure created by the Ap function is evaluated in the updated environment 
A ~ to find the normal form of the original application. 

As an example of how the Ap function works, consider the evaluations of the expres- 
sions fl  and f2 defined as follows: f - Az : s.Ay: t.p z y, f l  = ( f  4) and f2 = (fl 5) in 
an environment P that contains a binding for the function p. From the Appl rule, we 
can infer that <<fl, P>> --* <<(Ay:t.p n y, [n:s~-*4]), P>> (since f evaluates to itself in 
P by rule L and Ap(f, 4) = (Ay :t.p n y, [n :s~-*4]), which also evaluates to itself in P by 
rules CL and L). In the evaluation of f2 in P, the closure (Ay:t .p n y, [n:s ~ 4]) will be 
constructed and then applied to 5. Clearly, the operational semantics should be able to 
deal with the application of a closure to an argument, which the function Ap is defined 
to do. It recursively searches inside the closure for a A-expression to discover the variable 
to which the argument is to be bound. Ap also renames the variable found in the body of 
the A-expression and binds the argument to this new variable at the outermost level. The 
new variable is used in order to maintain the property that all environments will always 
contain unique variable names. This simulates the creation of a new location in storage. 
In this example Ap((Ay: t.p n y, [n: s ~-* 4]), 5) yields ((p n m, In: s ~-~ 4]), [m: t ~ 5]), which 
is then evaluated in P to get the final result. 

Ifrrue and IfFalse operate symmetrically. First the boolean expression el is evaluated 
to true or false, and then either e2 or ez is evaluated in the updated environment to find 
the appropriate result. The rule Rec evaluates the recursive operator /J by creating a 
closure with the body of the /~ expression and a binding of the bound variable to the 
entire/~ expression. Actually, a new variable is used in the binding (and appropriately 
substituted into the body) as described in the Appl rule. The binding of the body of 
the /~-expression with the #-expression itself is in effect one unfolding of the recursive 
expression. Whenever the bound variable is encountered in the body, this unfolding will 
occur again. 
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CO: d(0,A>> --~ (<0, A>> P0: 
<<e, A>> --, <<0, A'>> 

d<pred(e), A ~) ---+ ddO, At>> 

CT: ((~rue, A ~  ---* ( ( l rue ,  A>~ P: 
d(e,A>>--*((suce(e~),A'>> 
d<pred(e),A>>--+(de~,A'>> 

CF: ((false, A>> ~ ((false, A>> ZT: 
(d  iszero(e), A>) --+ d< true, A'>> 

L: ddAz:t.e,A>> -+ d<)~z:t.e,A>) ZF: (<e,A>>~ddsuce(e~),A'>> 
dd iszero(e), A>> --* <<false, A'>> 

S: (<e, A>> ~ d<e~, A'>> 
<<suet(e), A>> -* <<suecCe 0 ,  A'>> 

<<e, A>> ~ (<N, A'>> 
Varl: 

<<x, [~ :~ ~ 4"A>> --. <<N, Ix :t ~ N].A'>> 

Var2: 
tidy, A>> --* <<N, A'>> 

( (y ,  [x :t ~-~ e] . A ~  --~ <~N, [x :t ~ e] .A'~> 
y ~ x  

Apph 
d(el,A>> ~ ( (N ,A '>~ d(Ap(N, e2),A'>>---* (<N',A">> 

(<el e2,A>) ~ d<N', A">> 

d<e1,A>> --* (<~rue, A'>> ((e~.,A'>>--+ (<N,A">> 
Ifrrue: 

If False: 

CL: 

( ( / f ( e l ,  e2, ea), A ) )  --~ ( ( N ,  A " ) )  

d ( e l , A ) )  ~ d<false,A')> (dea, A'>) ~ <<N,A"))  
dd/f(el,  e2, e~), A>~ ---* d(N,  A " ~  

R~c: d((e[-~/~],  [n~:s ~ ,~:t .e]) ,  A>> -~ ddN, A'>> 
dd~x :t.e, A ~ ---* dd N, A i ~  

dale, [z : t~e l ] .B>> ~ ddN, [z :t~--,e~].B'>>, N is NOT basic 

CL': 

d((e,  Ix :b - ,  el]), B ~  ~ ( d ( N ,  [z : t s--,. e~.]), B '~> 

<<e, [z :t ~ elf. B>> -~ dde, [z :t ~ e~]. B'>>, e is basic type 
d<(e, [z :t~-*el]), B>> ~ dd e, B'>~ 

Ap( ~x : t.eo, e) = 
Ap((g,  [z:t ~e l ] ) ,  e) = 

(~o[,,~/~], [-~ :t ,--, 4 )  
((K, [z :t ~---~ el]), [n: s~--,e]) 
where ApCN, e) - (K, [n:s~-*e]) 

Note: nz denotes a new variable. 

Figure 3: The Operational Semantics of LAZY-PCFnUSHAR 
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The rules CL and CL I evaluate closures. They do so by evaluating the expression 

inside the closure in an environment formed by concatenating its original closure binding 

with the enclosing environment.  Their  difference is in whether or not the resulting normal 
form is a closure or not. If the expression evaluates to a normal form of basic type ( n a t  
or boo l )  then CL I is used and the binding is no longer included in the normal form. 
In this way, every constant of basic type has only one normal form so that  a constant  
contained in a closure with a binding is not a normal form. On the other hand, if the 

resulting normal form is not basic type, then it is a function type and we must  include 
the bindings in the normal form because the function body may contain a free occurrence 
of that  variable. 

There are some special properties of the operational semantics tha t  should be noted. 

Recall that all of the variables bound by an environment must be unique. A special 

property of the semantic rules is that  if all of the variables in an initial configuration 
that  are bound either in a closure or in the environment are distinct from each other (we 
call such a configuration strict), then every environment in the inference for the reduction 

of that  configuration will also define unique variables. This property, is captured in the 

following lemma: 

L e m m a  2.1 Let <<e,A>> ~ <<N,A~>> be a reduction. Then if  < < e , A ~  is strict then 
all environments that arise in the proof'tree of <<e, A>> ~ <<N, A~>> will not contain 
more than one binding of a given variable. 

In working with the operational semantics, it will be beneficial to know what the 
struciure of the normal forms is. We will consider an expression e to be a normal form 
if it reduces to itself in any environment (<<e, A>> --~ <<e, A>>). The normal forms are 

the set NF, described as follows: 

NF = 0 I true l false I succn(O) I F 
F = •z:t.e I ( r , [ x : t ~ e l ] )  

It is easy to see that  0, true, false, and Ax :t.e are normal forms, succn(O) denotes n 
applications of succ to 0, and represents the natural  number n. It is easy to show that  
suec n (0) is a normal form by induction on n using the rule for succ. The subset F of N F  
describes lambda expressions nested in zero or more closures. Those nested in closures 
are lambda expressions having free variables which are bound in the closures. These 
expressions can be shown to be normal forms by structural  induction on the set F using 

the rules L and CL. All other well-typed expressions that  reduce to some expression 
according to the operational semantic rules will reduce to an expression in NF. This can 

be shown by induction on the height of the inference tree justifying the reduction, and 

can be seen easily by examining the operational semantics rules. 

2 . 2  T h e  F i x e d - P o i n t  S e m a n t i c s  

In this section we provide the standard fixed-point semantics for LAZY-PCF+SHAR. The  
biggest difference between the operational semantics and the fixed-point semantics is the 
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E~O]a - 0 
E~pred(e)]a 

0 if E[e]~ = 0 
= 1 if E~e]cr = A. 

E [ e ] ~ -  1 otherwise 

E~ true]a -- true 

E[false]a - false 
E~[ succC e ) ) a  

{ E[[elz + 1 i f  E[e]e r A_ 
= 2. otherwise 

E[iszero(e) )a  
true i f E [ e ] r  

= .L if E~ela = _L 
false otherwise 

E~Ax :t.e]a = Av.E~e]~[v/x] 

E [ p z  :t.el~r = f ix(Ad.Eb]a[d/x])  El(e ,  [x :t ~ ell)In = E~(Ax :t.e) e l l a  

E[[e2]o" 
E[i f (e l ,  e2, ea)]a = E[[e3]a 

.1_ 

if E[[el]]~ = true 
if E~el]~r = false 
if E~el]r = .1. 

Figure 4: Fixed-point semantics of LAZY-PCF-~SHAR 

type of environments used. While the environment A used in a configuration <<e, A>> 
binds arbitrary expressions to variables, the environments used here bind variables to 
denotable values of natural numbers, booleans, and functions over them. More concretely, 
we have: 

D = N j . + B j . - b ( D - - 4 D )  
FEnv = Var  ~ D 

where N denotes the set of natural numbers and B the set of Boolean values. 

The fixed-point semantics provided by the function E : exp ~ FEuv ---* D is presented 
in Figure 4. What is notable in this semantics is the absolute lack of details regarding 
sharing and memory management. Note how the semantics of closures is defined in terms 
of A-expressions and applications. This corresponds to the observation that the difference 
between call-by-name and lazy evaluation is sharing of arguments. 

2 . 3  P r o p e r t i e s  o f  A p  

In the fixed-point semantics, application is carried out by evaluating the function body in 
an environment that contains the fixed-point value of the argument. In the operational 
semantics, the function Ap creates a closure containing the argument so that it is not 
evaluated until it is needed. It is essential that this function be consistent with the 
fixed-point semantics, as the following lemma states. 
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L e m m a  2.2 Let M be an 
form. 

expression of non-basic type (i.e., function type) in normal 

YaVaEl[Ap( M, a)]cr -- EI[Ma]o" 

P r o o f  By induction on the structure of M. 

The next lemma characterizes the normal forms of a string of applications as being 
either a normal form of basic type or a nesting of closures containing a binding corre- 
sponding to each of the arguments. This characterization will be useful in later proofs. 

L e m m a  2.3 <<e el . . .  e , ,A>> -* <<M,A'>> where either M is of basic type or 
M - ((N, [zz~--~e~]),...[r ~-+e']) for some normal form N.  

P r o o f  The proof is by induction on n and uses the Appl, CL, and CL' rules. �9 

3 T h e  S o u n d n e s s  T h e o r e m  

The two parts of the equivalence theorem are the soundness and adequacy theorems. In 
this section we will deal with the soundness theorem which shows that the fixed-point 
semantics respects the operational semantics. More formally, 

T h e o r e m  3.1 (Soundness)  Ire is a closed expression such that <<e, []>> --* <<N, []>> 
then E[e]_l_ = E [ N ] . I . .  

Here and throughout the rest of the paper we will use .L to signify the fixed-point 
environment that maps all variables to .1_. We will also use the term inference induction to 
denote induction on the height of the proof tree engendered by the operational semantics 
rules. 

In showing that expressions yield equal values we will want to use inference induction 
on the reduction <<e, []>> ~ <<N, []>>, but in doing so, environments will inevitably 
arise in the proof trees. Thus we will need a more general statement of the theorem that 
includes environments, and we will need a way of relating operational environments to 
fixed-point environments. We will do the latter through the definition of the function 
p. This function maps an operational environment A to a corresponding fixed-point 
environment p(A). More specifically, p(A) is a fixed-point environment which binds each 
variable z of A to the fixed-point value of the expression e, where z is bound to e in A. 
Formally, we have the following definition: 

Defini t ion 3.1 p(A): 

p ( [ ] )  = • 

= 
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A consequence of such a definition is the following lemma. It shows that the fixed- 
point semantics can simulate the closure rules of the operational semantics and is neces- 
sary in the closure case of the inference induction proof. 

L e m m a  3.1 Eli(e, [z :s ~-~ ell)]P(A) = E[[e]p([x:s ~-+ el].A). 

P r o o f  The proof simply uses the rules of the fixed-point semantics and the definition 
of p([z : s ~ e 11" A). �9 

With this definition and lemma, we are now ready to state and prove the more general 
statement of the Soundness Theorem (Theorem 3.1). The proof depends upon the fact 
that reduction preserves the fixed-point interpretation of environments (part (a)). The 
Soundness Theorem is a direct corollary of this theorem (the case where A = []). 

T h e o r e m  3.2 (Genera l ized  Soundness  T h e o r e m )  

<<e,A>> --+ <<N,A'>> '=~ (a)p(A) = p(A') and 
(b)Z[[el]p(A) = E[g]p(g ' )  

P r o o f  Sketch: The proof is by inference induction. The harder cases are Varl, Vat2, 
Appl, and CL, of which three are shown below (Vat2 is similar to Varl). The type 
annotations are left out for readability. Let A = Ix ~-+e I].A1 for Varl and Vat2. 

1. Varl: <<x, Ix ~-* e']-A1 >> ---* <<g, [x ~-~ N].A~>> because <<e', A1))  ~ <<N, At)>.  

p(A) = p(m,)[El[e']lp(A,)/x] by definition. By induction, p(A,)  = p(A~) and 
E[e']]p(m,) = E[N]p(A'I) so p(A) = p(A~)[EI[N]]p(A'I)/x ] which is p(A') by defini- 
tion. 

For part (b), E[x]p(m) = p(A)(x) = E[[e']]p(A1) by definition of p(A). But this 
equals E[N]p(A'I) by induction. Now since x • F V ( N ) ,  this is equal to E[N]p(A') .  

2. Appl: <<el e2,A>> -* <<N,A'>> because (I)<<el,A;>> ---* <<M, AI>> and 
( I I)<< Ap( M, e2 ), A'>> ---* <<N, A">>. 

For (a), p(A) = p(A') and p(A') = p(A") by induction. Thus p(A) = p(A"). 

For part(b), by induction E[[el]p(A) = E[[M]p(A') and E[[Ap(M,e~)]p(A') = 
E~NlP(A" ). By lemma 2.2, this is equivalent to E l M  e2~p(A') = E[N]p(A").  
Using the fixed-point rules and induction on (I), this equals E[[el]p(A) E[[e2]]p(A'). 
Since p(A) = p(A') (also by induction), the environments of both terms are the 
same, so they can be combined to get El[el e2]]p(A). 

3. CL: <<(e, [ z~e , ] ) ,  A>> ~ <<(N, [ z ~ e ' ] ) ,  A'>> because 
<<e, [x e,l.A>> <<e, [z e'].A'>>. 
For part (a), p([x~-*ea].A) = p([z~-*e~].A') by induction. It is easy to see that this 
implies that p(A) = p(A'). 

For part(h), El(e, [=~e,])]p(A) = El[e]p([z ~ a] .A) by lemma 3.1. This equals 
E [ g ] p ( [ z ~  e'].A'), which, by lemma 3.1, equals EI[(g, [z~e'~])]p(A'). 
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4 A d e q u a c y  T h e o r e m  

The adequacy theorem establishes that  the operational semantics respects the fixed-point 
semantics. We will treat  values of the base type (boo l  and n a t )  as the "observables" in 

the following. 

T h e o r e m  4.1 ( A d e q u a c y )  1re is a closed expression of basic type and c is an expres- 
sion of basic type in normal form then E~e]l  = E~c]• implies <<e, []>>--* <<:c, []>>. 

The proof of this theorem will be by structural  induction on e, and thus will require 
induction on expressions that  are not of basic type. Therefore we (again) must  prove 
something stronger than Theorem 4.1 that  is able to deal with functional types and 

non-closed expressions. Specifically, we will prove that  all expressions are computable, a 
characterization that  extends the notion of adequacy to t reat  higher types and environ- 
ments. Our definition of computabil i ty is based on the definition used by Plotkin [10], but  

is revised to suit our semantics better. It differs from Plotkin's  in that  it does not t reat  

closed expressions separately from those with free variables and it uses environments in 

the place of syntactic substitutions to close expressions. 

D e f i n i t i o n  4.1 C o m p u t a b i l i t y  o f  E x p r e s s i o n s  

If xl : Sl . . . .  , xn : sn F e : s, and A = [zl : sl ~ e l , . . . ,  xra : s n ~ era] for any computable 
ei satisfying Xi+l : S / + l , . . . ,  xra : sn 1- ei : si then e is computable if one of the following 
is met: 

1. s is a basic type and E~e]p(A) : E~c]p(A) =r ( ( e ,  A>> --* (<c, AC>>, 

2. s -- tt  ~ t2 and ee ~ is computable for all computable e ~ satisfying xl : s l , . . . ,  xra : 

Sn }- e ~ : t l 

If closed terms of basic type are computable, then for any environment A that  meets 

the criteria listed above we know E~e]p(A) - E~c]p(A) =r <<e,A>> ---, <<c,A'>). 
Since the environment [] meets the criteria when e is closed, the implication is also true 

when A = [], which is precisely the adequacy theorem. 

Plotkin's definition uses what we will refer to as syntactic substi tutions to close ex- 
pressions and then determine their computability. These syntactic substitutions are the 
common, syntactically defined substitutions mapping variables to expressions as are used 
in lambda calculus, usually denoted as e[el /x]  or e[z := el]. This  definition works well in 
Plotkin's proof that all terms are computable because his operational (as well as fixed- 

point) semantics defines application in terms of syntactic substitutions. Our semantics, 

on the other hand, defines application in terms of closures, which become part  of the en- 
vironment in the process of evaluation. Thus we define computabil i ty  using environments 

to close expressions. 

Plotkin's proof that  all terms are computable is by structural  induction on expressions, 

and depends on inherent properties of syntactic substitutions, such as the fact tha t  



446 

they distribute over application ((et e2)[a/x] = el[alx] e2[a/x]). Thus, a significant 
part of our proof amounts to showing that semantically environments have these same 
properties that syntactic substitutions have. We begin with several lemmas that establish 
these properties. The first states that the order of certain bindings may be changed 
under the right conditions. It imitates the following property of syntactic substitutions: 
eo[elxl[a/y] = eo[aly][elz] if y ~ FV(e) .  

In the statements and proofs of the following lemmas and theorems, the type anno- 
tations will be left out to make the expressions more readable. 

L e m m a  4.1 I f  y ~ FV(e)  then 

<<e0, B.[z~-~el.[y~-*al.A>> --* <<N, B'.[z~-*e'l.[y~-*a'l.A'>> 
:=~ <<e0, B.[y~-*a].[x~--*e].A>> --* <<g, B'.[y~--,a'].[xv-~e'].A'>> 

P r o o f  The proof of this lemma is fairly simple by inference induction. The only inter- 
esting cases are Varl and Var2 when B = []. �9 

The next lemma shows that a binding may be moved into an arbitrary level of nestings 
of closures. It is an extension of the previous lemma. 

L e m m a  4.2 l f  x ~ UiFV(ei)  then 

where 

<<{(e, [Xl~-*el]),... [zn ~-* ea]), [x ~-*a].A>> ---* <<M, [z ~--~ a'].A'>> 
::r <<(((e, [x~-*a]), [zxt-*el]),...[zn~--*en]),A~> ---* <<M',A'>> 

I. M -- M',  if M is of basic type OR 

. M = ((N, [zt~-*e~]),...[Xn~-'~dn]) and 
M' = (((N, Ix ~--~ a']), [xt~--~e~]),... [x, ~-* e~]) 
if M is N O T  of basic type for some normal form N. 

P r o o f  The proof is by induction on n, using CL, CU, and lemma 4.1. �9 

The next lemma shows that bindings in environments can be distributed to the subex- 
pressions of an application. It is restricted to bindings of variables that are not free in 
arguments of the application, and thus the substitution is not applied to the arguments. 
This lemma imitates the syntactic substitution rule (e el)[a/x] = e[a/x] el if x t~ FV(e l ) .  
An additional property characterized by this lemma is that the closure {e, [xv-.a]) can 
be replaced by the corresponding lambda expression and application (Ax.e) a with the 
same results. 
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Lemraa  4.3 I f  x r OiFV(ei )  then 

I. ~ e  e l  . . .  en, [X~*a].A>> "--* <<M, [xr--,a'].At>> =r 
<<(e, [x~-*a]) el . . .  en,A>> ~ <<M',A'>> and 

1I. <<eet . . .  en,[Z~--~a].A>>--*<<M,[z~-'.a'].A'>> :*. 
<<(Ax.e) a el . . .  en,A>> ~ <<M t,At>>. 

where 

1. M -  M' ,  if  M is of basic type OR 

. M = ((N, [Xl ~-+el]),... [zn ~-+ tin]) and 
M' - (((N, [x ~-* at]), [xl ~ el]),... [xn ~-* e~]) 
if  M is N O T  of basic type. 

P r o o f  By induction on n, using CL, CU, Appl, and lemmas 2.3 and 4.2. 

T h e o r e m  4.2 All  expressions are computable. 

The proof is similar to Plotkin's original proof, and is carried out by structural in- 
duction on e. As in Plotkin's proof, the hardest case is #x.e, which relies on a notion 
of syntactic approximation and unwindings of the u-expression. For this proof, the un- 
windings Unz.e are defined as follows: 

U~ -- ~2a =-- UX.X 
un+lx.e -- (e[,,z/z],[,,~,-,unz.e]) 

In order for the proof to work correctly, these syntactic approximations must satisfy 
the following lemma: 

L e m m a  4.4 E [ u x . e ] l  = U i E [ u % . e ] l  

P r o o f  From the fixed-point rules, El[gz.e].l- - fiz(Ad.E[e].J_[d/x]). From fixed-point 
theory, we know that this is equal to Llidl where do = .l. and d,+l  = E[e] l [dn /x] .  To 
complete the proof we need only show that dn = E[unx.e]-L which is easy using induction 
on n and the fixed-point rules. �9 

The syntactic approximation relation <, given in Figure 5, allows one to relate the 
syntactic notion of unwindings of # expressions to the semantic use of Kleene sequences in 
providing the semantics of u-expressions. The significant intermediate step in completing 
the adequacy proof for the case of # is the following theorem which establishes that the 
operational semantics (i.e., --+) is monotonic with respect to the relation _<. It will allow 
us to relate #x.e to p~x.e in the operational semantics. 
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H I- 0 < 0 : n a t  

H F true <_ true : b o o l  

H F- false < false : b o o l  

HIs / z ]  F z < z : s 

H I-- e < e' : n a t  

H e s . c e ( e )  < s . c e ( e ' ) :  n a t  
H I- e S e' : n a t  

g F pred(e)  < pred (e ' ) :  n a t  
H t- e < e' : n a t  

g F iszero(e)  < i s z e ro (e ' ) :  b o o l  

H F e l < e l l : S - - - * t  H F e 2 < _ e ~ : s  

H t- el  e2 < e'l e'2 : t 

H , z : s t -  e < e' : t  

H ~- Az : s . e  < Az :s.e' : s ~ t  

H I - e l  < e ~ : b o o l  H b e 2 < e l : t  H b e s < e ~ : t  
�9 I ! I n b i f (e l ,  e2, e3) < i f ( e l ,  %, %) : t 

' H [ s / x ]  I- e <_ e' : t  H ~ - e ~  < % : s  

H I- (e, [z :s  ~ e,,]) < (e', [z:s,--~e~]) : t 
H i t ~ = ]  F e < e' : t 

H F t tz : t . e  < # z : t . e '  : t  

H F f ~ ,  < _ e : s  
H [ s / = ]  ~ e < e' : s 

H F p n z : s . e  < # z : s . e '  

Figure 5: Ordering Rules 

T h e o r e m  4.3 I f  H b e < e' : s then 

<<e,A>> ---* <<N,A'>> =r <<e',A>> ~ <<N' ,A">> 

where H b N < N '  : s 

Though Plotkin's proof uses a similar theorem, our proof of this theorem differs 
significantly from Plotkin's proof as we again have to deal with explicit substitutions. 

In order to prove this inductively, a relation on environments must be established, and 
a more general s ta tement  of the theorem must be made, in a manner  similar to the 

soundness theorem. The relation on environments is simply an extension of < (defined 
on expressions) to environments. 

D e f i n i t i o n  4.2 < extended to environments is as follows: H I- A < B if either: 

1. A = B = [ ] .  

2. A = [z:s~-*ea].A1, B = [z:s~--~eb].B1 and 

(a) H I- A1 < B1, and 

(b) H t - e , < e b : s  

[] 
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Now we can state the generalized version of theorem 4.3 ( theorem 4.3 is the case 

where S = A). 

T h e o r e m  4.4 I f  H ~- e <_ e ~ : s, H b A < S then 

<<e, A>> ~ <<N, A~>> =r <<e ~, S>> ---, <<N ~, S ~ >  

where H I- N < N ~ : s and H I- A ~ < S ~ 

P r o o f  The proof of this theorem is by inference induction on the operational semantic 
rules, but  the proof proceeds on a case by case consideration for H l- e < e ~ : s. Most of 

the cases are simple induction, but the more interesting cases are H 1- el eu _< e~ e~ : s 
and H l- I~nx.e < I~x.e ~ : s. The application case is basic once it is shown tha t  H l- 
A p ( M ,  e~) < A p ( M ' ,  e l )  where <<e~, A>> ~ <<M, A'>>. The recursive case is done by 

induction on n and depends on the rules CL, CL',  and Rec. �9 

Now we are ready to prove theorem 4.2, that  all terms are computable.  

P r o o f  The proof is by structural  induction on the term e. Some representative cases 
will be shown here. 

e _-- x Then H[s / x ]  t- x : s  and A -" A1 .[x~--*ex].A~. Only the case where s is basic is 
considered here. Then E~x]p (A)  = p ( A ) ( x )  = E~e~]p(A2) .  Since e~ is computable 
and of type s, by definition E~e , ]p (A2)  = El[c]p(A2) =~ <<e~, A2>> ---* <~c, 'A~>).  

By Varl,  we get from this ( ( x ,  [ x ~ e , ] . A 2 ) )  ~ <<c, [x~--,c].A~>). Now we can 

get the final result by induction on the s tructure of A1. If it is empty,  we al- 

ready have the result. If A1 = [y ~ ey].A~ then by induction on A~ we get 
<<x,A~.[x~--~e~].A2))  ---* (<c,A~.[x~---~c].A~>>. Then from this by Vat2 we get 

(~ x, [y ~ ey]. A t �9 [X ~-* ex]. As ~ ---, ~< c, [y ~-* e~]. A~. [x ~ c].A t ~ .  

e =_ Ax.a Then H ~- ,~x : s.a : s --~ t. For this expression, we need consider only the 

non basic case, so we star t  with E~(,~x.a) ex . . .  en]]p(A) -- E [ c ] p ( A ) .  Using the 
fixed point rules, we can show E[(,~x.a)  e l ] p ( A )  = E ~ a ] p ( A ) [ E [ e l ] p ( A ) / x ] .  We 

can then rename x so that  it does not interfere with any x occurring free in any 

other e,, and then we have the following: Z [ a [ n x / x ] e 2 . . .  e n ] p ( A ) [ E [ e x ] p ( A ) / n x ] -  

E[[c]p(A). By induction, a is computable, so we can claim the following reduc- 

tion: <~a[nx/x]  e2 . . .en,  [ n x ~ e x ] . A > )  ~ <~c, [ n x ~ e ~ ] . A ' > ) .  But according to 

lemma 4.3 this implies (~()~x.a) el . . .  en, A ) >  ~ ( ( c ,  A ~ ) ) .  

e - I~x:s .a For this case, Plotkin's proof is imitated. 

First we show i ~ x  : s . a  is computable for all k. For k = 0, E[ l~~  "- 

3. which implies Z[[l~~ r E[[c]p(A) for any basic c. By theorem 3.1, 
then, < < # ~  74 <<c,A~) ) ,  so the case is vacuous. For k > 0, I ~ x . a  =- 

(a, [x~--*#k-~x.a]). By structural induction, a is computable,  and by induction on 
k, ~k-lx.a is computable, and since closures are computable when their subparts  

are (from the closure case), i ~ x . a  is computable.  
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Now for #x.a: By lemma 4.4, E~,px.a]p(A) = E[[pkx.a]p(A) for some k. Since pkz.a  
is computable, this implies <<#kz.ael . . .  en,A>> ~ <<c,A~>>. Since p~z.a _< 
px.a, by theorem 4.3 we have <<px.a el . . .  on, A~>~> ---* ~<d, A"~>> where c _< d. 
Since c and d are normal forms of basic type, it must  be that  c _= d.  

5 Conclusion 

In this paper we have proposed a natural operational semantics for lazy evaluation which 
takes into account the sharing involved in evaluation of actual parameters. We have 
also shown it equivalent to the standard fixed-point semantics. The proof was fairly 
complicated due to the presence of semantically defined explicit substitutions. We can 
now hope to base our compile-time sharing analyses of higher-order lazy languages on 
operational semantics and show the semantic soundness of such schemes easily. 
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