
S I G N A L as a m o d e l for R e a l - T i m e and
H y b r i d S y s t e m s

Albert BENVENISTE, Michel LE BORGNE, Paul LE GUERNIC*

Abstract

Hybrid Systems axe models of systems operating in real-time and handling events
as well as "continuous" computations. The SIGNAL formalism for Hybrid Systems is
presented in this extended abstract. Its expressive power is discussed, and a general
method to associate various formal systems with it is presented and illustrated on
deriving the present SmNAL compiler.

1 I n t r o d u c t i o n : R e a l - T i m e and H y b r i d S y s t e m s

It is commonly accepted to call real-time a program or system that receives external
interrupts or reads sensors connected to physical world and outputs commands to it.
As an example, let us discuss the case of an aircraft control system. Measurements
are received from sensors and processed by the control loops to produces commands
as outputs for the actuators: this involves various kinds of numerical computations.
Switching from one operating mode to another one can be performed automatically or
by the pilot: in both cases, events are received that control the various computations
in some discrete event mode. For safety purposes, on-line failure detectidn and recon-
figuration is performed by taking advantage of the redundancies in the aircraft system:
actuators and sensor failure detection procedures are numerical computations that pro-
duce alarms and various detections which in turn result in reconfiguring the operating
mode. From this follows that discrete events and computations are tightly coupled in a
fairly symmetric way. Also, in aircraft systems, response times are often critical. They
depend on the particular tasks being performed at the considered instant. On the other
hand, timeouts due to timing constraints can influence the task being performed. To
summarize, in real-time systems, both aspects of "what" should be implemented and
"how fast" it should run must be considered. Similarly, aspects of "discrete control"
and "continuous computations" deeply interact, and both interact also with response
times via the mechanism of timeouts. The term of Hybrid System (I-IS) recently emerged

*A.B and P. L.G. are with INRIA-IRISA, M. L.B. is with IRISA-University, Campus Beaulieu, 35042
RENNES Cedex, FRANCE, name@irisa.fr. Keywords: real-time, semantics of programming lan-
guages, theory of parallel computation.

21

[3, 14] to refer to formalisms providing an a t tempt to cover the above mentioned issues
in some unified way.

For instance, various kinds of transition systems are proposed in [10, 11] to combine
qualitative and quantitative aspects of real-time. Similarly, [14] proposes to generalize
a similar approach to Hybrid Systems. In both cases, the expressive power of the
models is explicitly described in the axioms and inference rules of the semantics, so tha t
expanding this expressive power is achieved by making the model more complicated. In
this paper, we analyze an alternative formalism for HS that has beeen firstly proposed
in [3, 2]. The main features of this formalism are:

. it is both simple and "universal" as fax as expressive power for specification is
concerned: discrete events and computations are encompassed, and t iming con-
straints can be specified; it does not rely on the notion of transition system, but
handles "traces" or "behaviours", see [2];

2. it has various formal systems associated with it that can be used to verify or even
synthesize some properties related to the above mentioned issues.

While "universal" expressive power is achieved realtively easily as we shall see later, only
limited reasoning capability can be expected in turn, due to problems of undecidability.
A major objective of this paper is to present a systematic approach to derive formal
systems associated with our universal formalism, which concentrate on some particular
property, e.g., discrete event features, t iming constraints, etc...

2 Hybrid Systems and the SIGNAL language

A first major issue is that of the very nature of time for Hybrid Systems. Complex ap-
plications such as the one mentioned above axe inherently distributed in nature. Hence
every subsystem possesses its own time reference, namely the ordered collection of all
the communications or actions this subsystem performs: in sensory based control sys-
tems, each sensor posses its own digital processing with proper sampling rate, actuators
generally have a slower sampling rate than sensors, and moreover the software devoted
to monitoring only reacts to various kinds of alarms that are triggered internally or
externally. Hence the nature of time in Hybrid Systems is by no means universal, but
rather local to each subsystem, and consequently multiform. This very fundamental
remark justifies the kind of model for Hybrid System we use in this paper.

Our model handles infinite sequences of da ta with a certain kind of restricted asyn-
chronism. Assume that each sequence, in addition to the normal values it takes in its
range, can also take a special value representing the absence of da ta at that instant.
The symbol used for absence is • Therefore, an infinite time sequence of da ta (we shall
refer to informally as a signal in this discussion) may look like

I,-4, • • 2, I, ... (1)

which is interpreted as the signal being absent at the instants n = 3, 4, 7,... etc. Systems
specified via constraints on signals of the form (1) will be termed Hybrid Systems (HS).

22

A typical way of specifying such constraints will be to write equations relating different
signals. The following questions are immediate from this definition:

(1) I f a single signal is observed, should we dist inguish the following s a m p l e s
f r o m each other?

{1,-4,•177177 {•177177177177 {1,-4,4,2,...}

Consider an "observer ''1 who monitors this single signal and does nothing else. Since he
is assumed to observe only present values, there is no reason to distinguish the samples
above. In fact, the symbol _1_ is simply a tool to specify the relative presence or absence of
a signal, given an environment , i.e. other signals that are also observed. Jointly observed
signals taking the value • simultaneously for any environment will be said to possess

the same clock, and they will be said to possess different clocks otherwise. Hence clocks
may be considered as equivalence classes of signals that are present simultaneously. This
notion of time makes no reference to any "physical" universal clock: time is rather local
to each particular subset of signals in consideration.

(2) H o w to interconnect two H y b r i d S y s t e m s ?
brid Systems specified via equations:

yn = if x~ > 0 then x~ else _l_

and the usual addition on sequences, namely

Zn = Yn + Un

Consider the following two Hy-

(2)

(3)

In combining these HS, it is certainly preferable to match the successive occurrences
yl ,y2 , . . , in (3) with the corresponding present occurrences in (2) so that the usual
meaning of addition be met. But this is in contradiction with the bruteforce conjunction
of equations (2,3)

Yn = if x,~ > 0 then xn else •

Zn = Yn -b Un

which yields zn = • + u,~ whenever xn < 0. In appendix A a denotational model for HS
firstly introduced in [3] and improved in [2] is reported as a complementary information,
it provides an adequate answer to the question of how to properly interconnect equations
(2,3). This model is then used to establish the semantics of the SIGNAL language we
introduce informally in the following section. To summarize, our formalism will provide
a mul t i form but coherent notion of time. Other formalisms using the same approach to
handle time are the so-called synchronous languages [1, 8, 9].

1in the common sense, no mathematical definition is referred to here

23

2 . 1 S I G N A L - k e r n e l

We shall introduce only the primitives of the SIGNAL language, and drop any reference
to typing, modular structure, and various declarations; the interested reader is referred
to [13]. SIGNAL handles (possibly infinite) sequences of da ta with t ime implicit: such
sequences will be referred to as signals. At a given instant, signals may have the s tatus
absent (denoted by _l_) and present. If x is a signal, we denote by {x,~},~>l the sequence
of its values when it is present. Signals that are always present simultaneously are said
to have the same clock, so that clocks are equivalence classes of simultaneously present
signals. Instructions of SIGNAL are intended to relate clocks as well as values of the
various signals involved in a given system. We term a system of such relations program;
programs may be used as modules and fur ther combined as indicated later.

A basic principle in SIGNAL is that a single name is assigned to every signal, so that
in the sequel, identical names refer to identical signals. The kernel-language SIGNAL
possesses 5 instructions, the first of them being a generic one.

(i) R(x1 xp)
(i i) y := x $1 i n i t xO

(i i i) y := x when b
(i v) y := u d e f a u l t v

(v) P I Q
(v i) P !! x l xp

(i) direct extension of instantaneous relations into relations acting on signals:

R(xl , . . . ,xp) r Vn: R (x l , , . . . , x p ~) holds

where R(...) denotes a relation and the index n enumerates the instants at which the
signals x i are present. Examples are functions such as z := x+y (Vn : zn = x , + y ,) . A
byproduct of this instruction is that all referred signals must be present simultaneously,
i.e. they must have the same clock. This is a generic instruction, i.e. we assume a
family of relations is available. If R (. . .) is the universal relation, i.e., it contains all
the p-tuples of the relevant domains, the resulting SIGNAL instruction only constrains
the involved signals to have the same clock: the so obtained instruct ion will be wri t ten
x "= y and only forces the listed signals to have the same clock.

(ii) shift register.

y := x $I init xO r ~n > 1 : y. = x.-1,yl = xO

Here the index n refers to the values of the signals when they are present. Again this
instruction forces the input and output signals to have the same clock.

(ill) condition (b is boolean): y equals x when the signal x and the boolean b are
available and b is true; otherwise, y is absent; the result is an event-based undersampling

24

of signals. Here follows a d iagram summariz ing this instruction:

x : 1 2 _1_ 1 3 4 1 1 5 6 9 . . .

b: t f t 1 f t f 1 _1_ f t . . .
y : I I I 2_ / 4 I I / 2_ 9 . . .

(iv) y merges u and v, with priori ty to u when bo th signals are s imultaneously present;
this instruct ion is the key to oversampling as we shall see later. Here follows a table
summar iz ing this instruction:

u : 1 2 .1_ 1 3 4 1 I 5 1 9 . . .
v : .L 1 1 3 4 10 1 8 9 2 1 . . .
y : 1 2 1 3 3 4 1 8 5 2 9 . . .

Instruct ions (i-iv) specify the e lementary programs.

(v)
are considered as identical. For example

combinat ion of a l ready defined programs: signals with common names in P and Q

(I y : = z y + a
I z y := y $1 x 0 I)

denotes the sys tem of recurrent equations:

Yn = z y n q - a n

z y n = Y n - 1 , Z y l = xO

On the other hand, the p rogram

(1 y := x when x>O

I z := y+u I)

yields
f

then ~ Yn = Xn

t Z n ~ y n ~ U n

else Yn = Un = Zn = I

if x~ > 0

(4)

(5)

x : - 2 , + l , - 6 , - 4 , -t-3, -I-8, - 2 1 , - 7 , - 2 , +5, - 9 , . - .

for any finite amount of "_l_"s inserted between successive occurrences of u. Assuming
all signals of integer type, suppose the following sequence of values is observed for x:

U : _L, U l , [, _ L , u 2 , u 3 , _ l _ , l , . J _ , ~ 4 , J _ , . . . ,

where (x ,) denotes the sequence of present values of x. Hence the communicat ion I
causes I to be inserted whenever needed in the second system z :=y+u. This is what we
wanted for the example (2,3). Let us explain this mechanism more precisely. Denote
by ul, u2, u3, u4 , . . , the sequence of the present values of u (recall tha t y , z are present
s imultaneously with u). Then, according to point (1) of the discussion at the beginning
of this section, ul , u2, u3, u4 , . . , is equivalent to its following expanded version:

25

Then the amount of inserted "_l_"s for the above expanded version of u turns out to fit
exactly the negative occurrences of x: this flexibility in defining u allows us to match the
present occurrences of u with the present occurrences of y, i.e., the positive occurrences
of x. This mechanism is formalized in the model of the appendix.

(vi) restriction of program P to the mentioned list of signals: other signals involved
in P are local and are not visible when communication is considered.

2.2 S o m e m a c r o s r e l a t e d to t i m i n g

An event type signal T (or "pure" signal) is an always t rue boolean signal. Hence "not
T" denotes the boolean signal with clock T which always carries the value false. Givdn
any signal X,

T := event X

defines the event type signal T whose occurrences are simultaneous with those of X: it
represents the clock of X. The variation

T := when B

of the when operator defines the event type signal T which is present whenever the
boolean signal B is present and has the value true and delivers nothing otherwise; it is
equivalent to "T : = B when B". Constraints may be defined on the clocks of signals; in
this paper, the following notations are used:

X "= Y X and Y have the same clock;

X "< Y X is no more frequent than Y, which is equivalent to X "= (X when even t Y).

Finally, various kinds of timers will be useful, and some of them are listed below:

Y := X in]S,T] (i)
N := #X in]S ,T] (i i)

The expression (i) delivers those present X's which occur within the left-open and right-
closed interval] S,T], where S and T are both pure signals. Here follows a diagram
showing the behaviour of this macro, we added the boolean signal "in] S ,T]" which
is delivered when X,S, or T is present, and is true within intervals]S,T] and false
otherwise (this boolean is called BELONGS_T0_INTERVAL in the expansion of this macro
we show below):

X:

S:

T:

in]S,T] :
Y:

1 2 • • 3 4 1 • 5 6 9

• • t t • • • • • t •

t • • • • t • • • • t

f f f t t t f •
• • • • 3 4 • • • • 9

. ~

�9 �9 O

26

Expression (i i) counts the occurrences of X within the mentioned interval and is reset
to zero every S; this signed is delivered exactly when equation (i) delivers its output.
Expanding these macros and their variations on the shape of the considered intervals
([S,T [, [S ,T], etc...) into the primitive SIGNAL statements is easily done. For instance,
(i) is defined via the following SIGNAL module:

([([IN_S_T "ffi (S default T default (event X))

[([HITTING_S_T := (not T) default S default IN_S_T

[IN_S_T := HITTING_S_T $1 init false [) [)
[Y := X when IN_S_T [)

The hierarchy of submodules is depicted by the amount of [. This program is composed
of two blocks. The meaning of the second one (last equation) is immediate, thus we con-
centrate on the first one which purpose is to produce the boolean IN_S_T (corresponding
to "in] S ,T]" discussed above). The first equation indicates when this signals has to
be delivered. The block composed of the equations 2 and 3 delivers the value of IN_S_T:
the boolean signal HITTING_S_T corresponds to "in [S,T[".

2 . 3 A f e w e x a m p l e s

The little programs implementing the formulae (4,5) illustrated how SIGNAL can be
used to specify flows of computations and the emission of events that can result. In this
subsection, we discuss other aspects of the language.

Specifying logical t empora l properties: a single token buffer

Consider a memory with content M, which can be written (signal WRITE) and read (signa/
READ):

(I) ([M :ffi WRITE default (M $I init any)
(2) [READ :ffi M when (event READ) I)

The first instruction expresses that the memory M is refreshed when WRITE is received,
otherwise the previous value (MS1) is kept. Note that the clock of M is not entirely
determined, it only has to be more frequent than that of WRITE. The second equation
expresses that, when reading is wanted (event READ), it actually occurs and provides
us with a READ signal carrying the value of M. Consequently, the clock of M has to be
more frequent that that of READ. To proceed further on, let us encode the status (being
written or being read) of the memory as follows:

(3) FULL := (event WRITE) default (not (event READ))

Now suppose that writing in the memory is a/lowed only when the previous value of the

memory has been read. This constraint is expressed by the following equation:

(4) WRITE "ffi when (not (FULL $1))

Conversely, if we want any written value to be read at most once, we have to write:

(5) READ ~ffi when (FULL $i)

Finally, putting these three additional equations together specifies a single token buffer.

27

Specifying timing constraints

Assume now that the single token buffer is being used as a mailbox by some other module
and it is desired that, when stored, a message must be read within some specified delay.
A corresponding SIGNAL specification is as follows:

(l event READ "< TICK

i N := #TICK in]WRITE,READ]

I N < MAX_TIME i)

The first statement expresses that the mailbox can be checked at any TICK instant. The
second equation counts the delay between writing and reading the message in terms of
TICKs. Finally, the last statement expresses that the constraint (N < MAX_TIME) must
be satisfied.

Basic problems

As the two above examples show, SIGNAL programs generally express constraints on the
behaviors of their involved signals. This makes the composition of SIGNAL programs
fairly obvious 2. On the other hand, SIGNAL programs will generally attempt to specify
real-time systems that are transducers, i.e., possess inputs that drive them and produce
outputs. Hence implementing a SIGNAL specification consists in constructing a trans-
ducer producing all solutions to the considered system of SIGNAL equations. Getting a
transducer form out of a SIGNAL specification written as constraints on signals requires
a powerful compiler. This compiler must be able to "solve" the SIGNAL systems of
equations in some way to transform them into some input/output map. So it has to be
a sort of a "formal calculus system". One of the objectives of this paper is to explain
informally how such formal calculi can be derived. By the way, other services are im-
mediately provided such as proofs, since there is no d~stinction between properties to
be checked (these are constraints) and programs on which properties must be checked
(these are also constraints).

Discussion: expressive power and formal reasoning capability

As illustrated by the examples above, SIGNAL carl be used to specify all key features
we mentioned as being relevant to Hybrid Systems: computations, events and logic,
timing constraints, and their mutual interaction. As far as the current SIGNAL compiler
is concerned, the followingshould be noticed:

�9 the single token buffer specification involves only synchronization and logic and
is thus fully handled by the SIGNAL compiler in the very same way as temporal
logic does;

~this claim is also supported by the formal definition of the communication operator I in the appendix
A which is very simple.

28

in contrast, expressions such as "X := Y+Z" are handled via rewriting (each oc-
currence of the left hand-side can be replaced by the expression in the right hand-
side), no formal property is handled about real signals, nor about their associated
operations;

finally, no formal calculus about quantitative time is performed by the current
SIGNAL formal system, in particular it cannot be proved that performing two
successive responses in less than 10ps results in an overall response time of less
than 20ps.

Hence the distinction between specifying and verifying must be emphasized: while the
SIGNAL formalism has general expressive power [2], the SIGNAL formal system has
limited (although quite powerful) capabilities. In [2, 3] we present a mathematical
model for Hybrid Systems and use it to establish the semantics of SIGNAL. In particular
it is shown in [2] that SIGNAL has maximum expressive power for Hybrid Systems
description. In the next section we show ho to derive formal systems for reasoning
about Hybrid Systems defined by SIGNAL.

3 D e r i v i n g formal calcul i for H y b r i d S y s t e m s

We first discuss the simple case of "pure" SIGNAL, i.e., of programs involving only
synchronization and logic, i.e., event and l o g i c a l data types. Then we discuss how
this simple case can be generalized.

3.1 "Pure" SIGNAL: programs involving only synchronization
and logic

Three labels are required to encode the status absent, true, false. The finite field ~'3 of
integers modulo 3 is used for this purpose 3 via the coding:

absent r 0, true ~ +1, false ~-*-1

Using this coding, we define a mapping from syntactic SIGNAL expressions to equations
in ~'s (recall that all signals are of type event , log ica l) . This mapping is shown in
table 1. In this table, the first instruction is a sample of a SIGNAL instruction of type
(• other ones are encoded similarly. In the coding of the second instruction, a denotes
the current value of the internal state of the delay. Here and in the sequel, the generic
notation x r denotes the next value of x. In particular, the coding of the instruction
B := AS1 involves two successive values of the state a; this equation expresses that,
when a is received (a 2 = 1) it is fed into the next value a ~ of the state otherwise it is
unchanged; then b receives the current state when a is received. Finally, clock(P) is the
clock calculus of P and O denotes conjunction.

Selements of ~'3 are written {0, +1, -1)

29

SIGNAL equation ~'3 coding (or "clock calculus")

A or B ffi event A

B :ffi AS1

a 2 = b 2 , a b (a - 1) (b - 1) = O

a ' = (1 - a 2) a + a , b = a 2 ~
y := x w h e n b y = x(-b- b 2)

y := u d e f a u l t v y = u W (1 - - u 2) v

P[Q clock(P) u clock(Q)

Table 1: Encoding "pure" SIGNAL programs

Let us apply this technique to the mailbox example. To simplify the notations, we
denote the various signals by their first letter, e.g., w for WRITE, etc... Applying the
rules of table 1 to each successive instruction yields

(FULL

(1) #' = (1 - m 2) p + m , z m = m 2 p

(1) m = ,1, + (1 - w~)zm
(2) r = r nr 2

(3) f = w 2 - (l - w 2) r 2

$1) ~' = (1 - f 2) ~ + f , z f = f 2 ~

(4) w 2 = ~ f - f~
(5) r 2 = --z f - - f 2

A little algebra allows
equation):

m 2 = f2 = 1

f ' = - /
% rt2 t = Tt2

w 2 = f 1

r ~ = f - 1
r = m r 2

m = w + (1 - w 2) z m

(6)

us to rewrite (6) as follows (comments are written for each

fastest clock, always present by convention
FULL is a flip-flop

WRITE ~ box full (7)
READ ~=~ box empty.

M stores the written value

While (6) was given as a flxpoint equation, i.e., in an implicit form, (7) is in explicit
form: reading the equations from top to down yields an execution mode. This explicit
form reveals that the single-token is n o t a transducer: we cannot consider that WRITE
acts as an input and READ is the output. Instead, FULL acting as a flip-flop drives the
synchronization, and the additional input is the v a l u e carried by WRITE, not its clock.
We say that (7) is a ~ot, e a / o , ~ of (6). Deriving (7) from (6) amounts to applying
elimination techniques to polynomial functions over ~'3. When the specified system
actually was equivalent to a transducer, calculating the solved form provides us with
this equivalent transducer. A very efficient version of this technique has been developed
for the SIGNAL compiler [13, 7].

3 . 2 D e v e l o p i n g f o r m a l c a l c u l i f o r g e n e r a l H y b r i d S y s t e m s

Consider the following SIGNAL program:

30

input R: 3 _1_ • 4 • • • 1 5 • • • • etc...
ou tput N: 3 2 1 4 3 2 1 1 5 4 3 2 1 etc...

Table 2: UPSAMPLING in SIGNAL

(~ N := R default (ZN-I)

I zN := N$I

R "= when (ZN=I) I)

In this program, R is assumed to be a strictly positive integer signal, and ZN has initial
value 1. The behaviour of this program is depicted in table 2. This program serves as a
basic mechanism for da ta dependent upsampling of the input signal R. It is a part icular
and powerful feature of the SIGNAL formalism that programs with upsampling can
be specified, see [2] for an extensive discussion about this aspect. Two domains are
encountered, namely the positive integers R, N, ZN, and the boolean (ZN=I).

Hence for general HS or SIGNAL programs the situation is drastically more difficult:
infinite domains are involved such as integers, reals, etc... So the systems of equa-
tions corresponding to general SIGNAL programs will be approximately solved using a
technique we shall describe now informally. We describe now how the above UPSAM-
PLING program is actually handled by the current SIGNAL compiler. While most of
the formalisms for real-time or Hybrid Systems hide computat ions inside actions that
are viewed as black-boxes [14, 10, 11], we refuse to do so, since such actions turn out
to influence the real-time behaviour (comparing a real signal to a threshold can be a
mechanism to produce interruptions). The following general procedure is proposed to
overcome this difficulty:

1. Select the domains for which you want to provide a formal system; we already
discussed this issue in the two preceding sections.

2. Equations involving other domains can be handled in the weakest way, namely
via syntax-based rewriting; syntax-based rewriting algorithms amount to handling
directed graphs; but these graphs vary dynamically according to the clock of the
considered instant, we call them dynamical graphs.

The interested reader is referred to [3, 4] for details and formal definitions of dynamical
graphs, we concentrate here on an informal discussion of the UPSAMPLING example. The
coding of the three instructions of this program is given in table 3 (again we denote by B
the boolean expression (ZN=I)). The notat ion x --> y means that y depends on x when

bo th are present, i.e., x2y 2 = 1. Similarly, the notat ion x h2 > y means that y depends
on x when x2y2h 2 = 1 holds; this lat ter notat ion is for instance used in the coding of
the d e f a u l t instruction. Some comments follow. Capitals are used (e.g., N) to refer to
values of present signals, while variables of the clock calculus are wri t ten in lower cases.
Values of present signals depend on their clock (e.g., n 2 --> N). The second line of the
conditional dependency graph is the coding of the d e f a u l t : the double dependency
R ---> N < 1-r2 ZN is tha t between values, and the second one n=r 2 --> N expresses that ,

31

clock calculus conditional dependency graph

n2_- r2q- (1 _ r 2) z n 2

z n 2 ~ n 2

b 2 = z n 2

r 2 = - b - b 2

n 2 --@ N , r 2 ~ I ~ , z n 2 --~ ZN,

R --> N < 1-r~ ZN, n 2 r 2 ---> N

b 2 --4 b, ZN ---> b

Table 3: Encoding the UPSAMPLING program

to compute the output N it is needed to know the clock deciding which dependency will
be in force at the considered instant.

This coding is hybrid in nature: two different algebras are involved, namely the
algebra of polynomial expressions in ~'3 variables, and labelled directed graphs. These
graphs specify evaluation schemes for run time. Based on the actual syntactic form
of the clock calculus, it is also possible to associate a graph with the clock calculus.
Performing this for the UPSAMPLING program yields

r 2 ---> n 2 < l - r 2 z n 2 (= n 2 = b 2)

b ---> r 2

Combining this graph with the preceding one yields for instance the circuit b ----> r ~
---> n 2 = b 2 ~ b which has a clock equal to b2r 2 = r 2 # 0. Thus combining these two

graphs does not provide a partial order, so no evaluation scheme is derived at this point.
To overcome this we use the calculus o f g:3 to replace the p r e s e n t equat ions o f the

clock calculus by o ther ones that are equivalent , in such a w a y that the c o m b i n e d resul t ing

graphs be gobally circuit free. For instance, we can replace the clock calculus of the
UPSAMPLING program by its solved form

z n 2 = n 2 = b ~ , r 2 = - b - b 2

which yields the graph with a single branch b --4 r 2. The resulting global graph is finally
(arrows without input nodes denote inputs of the evaluation scheme):

(input clock)

(input: memory content)

(input: value of R)

--~ b 2 = n 2 = z n 2 ----> b , b 2 --4 ZN

ZN ---> b --> r 2

r2 ---> R , -->R

ZN 1-~2> N, b2-->N, r2-->N, R--~N

No circuit is exhibited, so that a partial order can be associated with this graph. It is
interesting to note that the input clock is that of the output N, and that only the value
carried by R is an input: UPSAMPLING runs according to the demand driven mode.

Again, the method we presented here informally can be extended to other algebras.
The current SIGNAL compiler is powered with a very fast implementation of the above
procedure, see [13, 7]. Finally, the reader is referred to [4] for a formal presentation of
t h e SIGNAL formal system in its present form.

32

3.3 E x t e n s i o n t o o t h e r d o m a i n s : q u a n t i t a t i v e r e a l - t i m e

We consider again the UPSAMPLING program, but we assume now that its input l~ is a
positive b o u n d e d integer signal. Since all signals have now finite domains nothing really
new happens compared to the elementary case of "pure" SIGNAL, for instance we may
translate bounded integers into vectors of booleans. However we find it more convenient
to use codings that are tightly tailored to each of these domains, since the resulting
coding will generally be more compact, thus memory saving and efficient calculations
should result; in particular, the very efficient formal calculi developed for ~'3 [13, 7]
generalize to any .T" v.

Thus the boolean signal (ZN=I) is encoded using ~'3 as before. Similarly, the finite
field ~'p of integers modulo p can be used with p large enough to encode the integer
signals K, N, ZN with the following mapping:

absent ~..~ 0 , l ~--* l , . . . , p - l ~--* p - 1

In this coding, clocks of integer signals are recovered as follows

tt absent ~ r v -1 = 0 , l~present ~ r p-1 = 1

From these remarks, the coding of the UPSAMPLING program follows (we denote by B
the boolean signal (ZN=I):

n = r + (1 - r P - 1) (z n - 1) (i) first instruction

v' = (1 - n P - 1) v + n
z n = n P - l v (ii) second instruction (8)

b = z n " - l (l + (z n - 1) ' - *) (iii) B a s a f u n c t i o n o f Z N
r p-1 -~ --r -- r 2 (iv) last instruction

However in doing this, a new difficulty appears. Equations (i,ii) are polynomial equa-
tions within 9vp and thus can be handled in a way similar to that of pure SIGNAL
programs. Unfortunately, equation (iii) is a function mapping some 9Vp-expression into
~'3; similarly, equation (iv) is a function mapping some ~'3-expression into 2-p. This is
again a hybrid coding similar to that of the preceding subsection. We can handle it in
two different ways.

1. Since B,ZN,R only are involved in the "hybrid" equations (iii,iv), we may first
eliminate t~ and N from equations (i,ii). This is equivalent to projecting the dy-
namical system (i,ii) onto the components (z n , r) only, and is generally performed
using elimination techniques in ~'p via efficient algorithms as mentioned before.
In our case this yields the unique equation

z . ' = r + (1 - r p - ') (z . - 1)

which we handle in combination with (iii,iv) via exhaustive scanning. In this
way of doing, efficient algorithms can be called for to project each homogeneous

33

subsystem (here (i,ii)) onto its interfaces to other homogeneous ones (here B, ZN, R).
Then the problem reduces to that of standard model checking techniques on the
joint behaviour of the set of all such interfaces.

. Perform first as before the reduction to the interfaces of the homogeneous sub-
systems. The remaining "hybrid" equations are then app.i'oximately solved using
the graph method of the preceding subsection. This is a less powerful but likely
faster method of compilation.

As sketched on this example, formal calculi can be developed for properties relevant to
synchronization, logic, and quantitative timing. In particular, (qualitative and quanti-
tative) real-time specifications for discrete event systems can be synthesized.

4 C o n c l u s i o n

We have presented the SIGNAL formalism to specify Hybrid Systems. SIGNAL is cur-
rently used to specify and program real-time systems [13] according to the principles of
synchrony [1].

SIGNAL is currently available under two different versions that were developed with
different objectives. The INRIA H2 SIGNAL system provides the interface used in this
article, and produces the intermediate level hierarchical code we have discussed. Sequen-
tial FORTRAN or C code is currently produced. Developments on distributed implemen-
tation are in progress based on this version. Tools for proving dynamical properties will
be integrated in a short time. The CNET-TNI V3 version is commercially available
from TNI Inc., Brest, France. SILDEX 4, a X-windows based graphical environment is
provided for both program editing and on-line monitoring and supervision of the execu-
tion. C, FORTRAN, or ADA code is produced. Experiments have been performed based
on this version to produce distributed OCCAM code for a multi-Transputer system. The
SIGNAL environment has been experimented on significant applications in the area of
signal processing and dontrol: a speech recognition system, a radar system, a digital
watch, a rail road crossing, an aircraft control system, were the major ones.

We have discussed the expressive power of SIGNAL and have illustrated its generality,
formal studies are also available in [2] to support this claim.

We have presented an original and general method for deriving formal calculi for
Hybrid Systems. The central notion of this method is'that of dynamical graph and is used
in the current SIGNAL compiler to handle synchronization, logic, and data dependencies.

Several directions for future research are currently pursued. Improving the efficiency
and power of the formal system that handles ~'3-based dynamical graphs is a key is-
sue to fast and efficient compilation [12]. Deriving efficient systems to handle bounded
integers will open the route to quantitative real-time: a major issue is to handle the
tradeoff efficiency/generality of such formal calculi. Finally, as lengthly discussed in [2],
the SIGNAL formalism is already very close to models of stochastic processes: adding
a single instruction to SIGNAL provided us with the SIGNalea extension [5]. SIGNalea

4SILDEX is a TradeMark of TNI.

34

is able to specify and handle various probabilistic real-time systems such as queuing
networks or uncertain real-time information processing systems.

A p p e n d i x

A A trace m o d e l for H S a n d a s e m a n t i c s o f SIGNAL

In this appendix, a mathematical model for HS is presented, and used to formally
define SIGNAL. The reader is referred to Section 2 for the motivation of the following
definitions.

A.1 Histories, signals, clocks

Consider an alphabet (finite set) A of typed variables cMled ports. For each a 6 A, T)a
is the domain of values (integers, reals, booleans. . .) that may be carried by a at every
instant. Introduce

~ = U (~o u {•
aEA

where the additional symbol _1_ denotes the absence of the value associated with a port
at a given instant. For two sets A and B, the notation A --* B will denote the set of all
maps defined from A into B. Using this notation, we introduce the following objects.

E v e n t s . Events specify the values carried by a set of ports at a considered instant.
The set of the A-events (or "events" for short when no confusion is likely to occur) is
defined as

EA = A---~ :DA

Events will be generally denoted by e and their domain by :D(e). We shall denote by _l_
the "silent" event e such that e(a) = _l_ Va 6 l)(e).

Traces . Traces are infinite sequences of events. Let N+ = {1, 2, ...} denote the set of
integers, then the set of A-traces (or simply "traces") is defined as

0.4 = N+ ~ CA

C o m p r e s s i o n s . The compression of an A-trace T (deleting the silent events) is defined
as the (unique) A-trace S such that:

Sn =Tk.

where
k0 = m i n { m > 0 : Tr~ # .1_), k,~ = min{m > k,,_, : T m # A_)

where rain 0 = +oo by convention. The compression of a trace T will be denoted by
T L

35

Histories and signals. The condition

Tl = T '$

defines an equivalence relation on traces we shall denote by T ,,, T'. The corresponding
equivalence classes are called histories. The set of all possible histories on A will be
denoted by ~tA, so that we have 5

a A = (cA)/.
Elements of ~'~A will be generically denoted by toA or simply w when no confusion can
occur. While the notion of trace refers to a part icular environment (since the _L's are
explicitly listed), the notion of history does not. Since

s = IN+ ~ (A ~ DA)]/~

any toA E ~A may be writ ten as
= (9)

and the wa's are termed signals. Hence a signal is a component of a history specified by
selecting a part icular port in the alphabet A. The notion of "signal" has been informally
discussed in section 2-(1), where we motivated the definition of signals and histories as
equivalence classes with respect to the relation ,,,.

C locks . Extend the domains ~D~ with another distinguished value $, intended to
encode the status "present" regardless of any part icular value. Consider the map
chronos~ E 23A ~ { / , T} defined by

chronosv(_J_) = _J_, chronosv(x) = T for x # _1_

For each event e E s there is a unique map in CA --* s making the following diagram
commutat ive, denote it by chronose:

A
~/ "x~ chronose(~)

chronosD
DA ~ DA

Similarly, there is a unique map in OA ~ OA, we denote by chronoso, making the
following diagram commutat ive

N+
T r "~ chronoso(T)

chronosz
sa ~ Ea

This map satisfies the condition 7"1 ".. 7"2 :=~ chronoso(T~) ... chronoso(T2), so that it
induces a map in flA --* ftA we shall now denote by chronos: the chronos of a history
is another history which summarizes the status {present/absent} of each of its signals
(i.e. components).

Now, given to E f~A and a E A, consider the signal of port a of the history chronos(to):
this signal summarizes the relative status present /absent of the signal toa given the other
signals involved in the history w. We shall call this signal the clock of wa, or the clock of
a for short when no confusion is likely to occur, and denote it by clock(too) or clock(a).

5.1~ denotes here the quotient space by the relation ,,~

36

A . 2 H S

D e f i n i t i o n o f H S . A HS is simply a subset

f~ C f~A

of the set of all histories on A. In other words, we consider a SIGNAL program, as a way
to specify "legal" histories.

R e s t r i c t i n g H S . Consider a subset A' of the alphabet A. The inclusion A' C A
induces a projection from s onto s we denote by e -* e!!A,. Following the same
argument as for the definition of clocks, we derive the following family of restrict ions

we generically denote by "HA,. First, the following commutat ive diagram

N+
T r "~ T.,!A,

uniquely defines the restriction T * T.,!A, on traces. Since T] ,,~ T2 ~ (T1)!!A, "~
(T2)t!A, holds, a restriction on histories w ~ w!!a, may be defined, which finally yields
a restriction on HS we denote by

This restriction maps the set of HS defined over the alphabet A onto the set of HS defined
over the alphabet A'. The HS ~'l,.!a, is called the restrict ion of [2 to (the subalphabet)
A': only the signals with ports in A' are visible from outside and may be used for HS
communicat ion we shall define next.

H S c o m m u n i c a t i o n . Consider two HS f~l, [22 respectively defined over the alphabets
A1 and A2. Set A = A1 tJ A2. Then [21 [[22 will denote the maximal s HS [2 defined over
the alphabet A satisfying the following conditions:

f~!!A1 C_ [21

f~!!A2 C_ f~2

In other words, the communication constrains the signals in f~x and [22 of shared port
to be identical (i.e. to be present simultaneously and then carry the same value). This
is exactly what we wanted while discussing the example of eqns (2,3).

A . 3 T h e d e f i n i t i o n o f SIGNAL

According to the preceding section, in order to specify an HS over a given alphabet, we
have to describe a subset of all histories that can be built upon this alphabet. Since
histories are defined as equivalence classes of traces with respect to the relation ,,~, this
may be done by listing a fami ly of constraints on the set of all traces tha t can be built
on this alphabet. The equivalence classes of the so specified traces are the specified
histories. This is what we shall do next.

6with respect to the order by inclusion f~' C_ f~ defined on HS

37

I n s t r u c t i o n (i): R(xl xp)

V n E N + , Vi : x i , ~ . l _

Vn E N+ : R (x l , , . . . , x p ,) holds

Here, the notation x i , denotes the value carried by the port with name x i at the n-th
instant of the considered trace. This notation will be further used in the sequel of this
subsection.

I n s t r u c t i o n (i i) : y := x $1 x0

Vn E N+

V n > l

: x~#•

: Yn ~ X n - 1

Yl = x0

I n s t r u c t i o n (i i i) : y := x when b

Vn E N+, yn = ~ i f xn # _L and b~ = true then x~

t else _L

I n s t r u c t i o n (i v) : y := u d e f a u l t v

V n E N + , yn = {
if u , ~t _L then u,
else if u , = _l_ and v , ~ _L then vn
else .L

I n s t r u c t i o n (v) : P I 0
We already defined the operator I on HS.

I n s t r u c t i o n (vi): P !! x l xp
We already defined the restriction on HS.

ACKNOWLEDGEMENT: the authors gratefully acknowledge Oded Maler and an anony-
mus reviewer for constructive criticism and fruitful remarks on preliminary versions of
this paper.

R e f e r e n c e s

[1] A. BENVENISTE, G. BEltltY, "Real-Time systems design and programming", Another look
at real-time programming, special section of Proc. of the IEEE, to appear Sept. 1991.

[2] A. BENVENISTE, P. LE GUEItNIC, Y. SOREL, M. SORINE, "A denotational theory of
synchronous communicating systems", INRIA Research Report 685, Rennes, France, 1987,
to appear in Information and Computation.

[3] A. BENVENISTE, P. LE GUEItNIC, "Hybrid Dynamical Systems Theory and the SIGNAL
Language", IEEE transactions on Automatic Control, 35(5), May 1990, pp. 535-546.

38

[4] A. BENVENISTE, P. LE GUERNIC, C. JACQUEMOT, Synchronous programming with events
and relations: the SIGNAL language and its semantics, IRISA Research Report 459, Rennes,
France, 1989, to appear in Science o/Computer Programming.

[5] A. BENVENISTE, "Constructive probability and the SIGNalea language", IRISA res. rep.,
1991.

[6] B. BUCHBERGER, "GrSbner Bases: An Algorithmic Method in Polynomial Ideal Theory"
N.K. Bose (ed.), Multidimensional Systems Theory, 184-232, D. Reidel Publishing Com-
pany.

[7] L. BESNARD, Thesis, IFSIC-IRISA, 1991.

[8] F. BOUSSINOT, R. DE SIMONE, "The ESTEREL language", Another look at real-time pro-
gramming, special section of Proc. o/the IEEE, to appear Sept. 1991.

[9] N. HALBWACHS, P. CASPI, D. PILAUD, "The synchronous dataflow programming language
LUSTRE", Another look at real-time programming, special section of Proc. of the IEEE, to
appear Sept. 1991.

[10] T.A. HENZINGER, Z. MANNA, A. PNUELI, "An Interleaving Model for Real-time', Jet-
salem Conf. on Information Technology 1990, IEEE Computer Society Press.

[11] T.A. HENZINGER, Z. MANNA, A. PNUELI, "Temporal proof methodologies for Real-time
systems", POPL'91.

[12] M. LE BORGNE, A. BENVENISTE, P. LE GUERNIC, "Polynomial Ideal Theory Methods
in Discrete Event, and Hybrid Dynamical Systems", in Proceedings o/the 28th IEEE Con-
ference on Decision and Control, IEEE Control Systems Society, Volume 3 of 3, 1989, pp.
2695-2700.

[13] P. LE GUERNIC, T. GAUTIER, M. LE BOItGNE, C. LE MAIRE, "Programming real-time
applications with SIGNAL", Another look at real-time programming, special section of Proc.
of the IEEE, to appear Sept. 1991.

[14] X. NICOLLIN, J. SIFAKIS, S. YOVINV., "From ATP to Timed Graphs and Hybrid Systems",
REX workshop "Real-Time, theory in practice", Mook, The Netherlands, June 3-7, 1991.

