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Abstract 

Hybrid Systems axe models of systems operating in real-time and handling events 
as well as "continuous" computations. The SIGNAL formalism for Hybrid Systems is 
presented in this extended abstract. Its expressive power is discussed, and a general 
method to associate various formal systems with it is presented and illustrated on 
deriving the present SmNAL compiler. 

1 I n t r o d u c t i o n :  R e a l - T i m e  and  H y b r i d  S y s t e m s  

It is commonly accepted to call real-time a program or system that receives external 
interrupts or reads sensors connected to physical world and outputs commands to it. 
As an example, let us discuss the case of an aircraft control system. Measurements 
are received from sensors and processed by the control loops to produces commands 
as outputs for the actuators: this involves various kinds of numerical computations. 
Switching from one operating mode to another one can be performed automatically or 
by the pilot: in both cases, events are received that control the various computations 
in some discrete event mode. For safety purposes, on-line failure detectidn and recon- 
figuration is performed by taking advantage of the redundancies in the aircraft system: 
actuators and sensor failure detection procedures are numerical computations that pro- 
duce alarms and various detections which in turn result in reconfiguring the operating 
mode. From this follows that discrete events and computations are tightly coupled in a 
fairly symmetric way. Also, in aircraft systems, response times are often critical. They 
depend on the particular tasks being performed at the considered instant. On the other 
hand, timeouts due to timing constraints can influence the task being performed. To 
summarize, in real-time systems, both aspects of "what" should be implemented and 
"how fast" it should run must be considered. Similarly, aspects of "discrete control" 
and "continuous computations" deeply interact, and both interact also with response 
times via the mechanism of timeouts. The term of Hybrid System (I-IS) recently emerged 
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[3, 14] to refer to formalisms providing an a t tempt  to cover the above mentioned issues 
in some unified way. 

For instance, various kinds of transition systems are proposed in [10, 11] to combine 
qualitative and quantitative aspects of real-time. Similarly, [14] proposes to generalize 
a similar approach to Hybrid Systems. In both cases, the expressive power of the 
models is explicitly described in the axioms and inference rules of the semantics, so tha t  
expanding this expressive power is achieved by making the model more complicated. In 
this paper, we analyze an alternative formalism for HS that  has beeen firstly proposed 
in [3, 2]. The main features of this formalism are: 

. it is both simple and "universal" as fax as expressive power for specification is 
concerned: discrete events and computations are encompassed, and t iming con- 
straints can be specified; it does not rely on the notion of transition system, but 
handles "traces" or "behaviours", see [2]; 

2. it has various formal systems associated with it that  can be used to verify or even 
synthesize some properties related to the above mentioned issues. 

While "universal" expressive power is achieved realtively easily as we shall see later, only 
limited reasoning capability can be expected in turn,  due to problems of undecidability. 
A major  objective of this paper is to present a systematic approach to derive formal 
systems associated with our universal formalism, which concentrate on some particular 
property, e.g., discrete event features, t iming constraints, etc... 

2 Hybrid Systems and the SIGNAL language 

A first major issue is that  of the very nature of time for Hybrid Systems. Complex ap- 
plications such as the one mentioned above axe inherently distributed in nature. Hence 
every subsystem possesses its own time reference, namely the ordered collection of all 
the communications or actions this subsystem performs: in sensory based control sys- 
tems, each sensor posses its own digital processing with proper sampling rate, actuators 
generally have a slower sampling rate than sensors, and moreover the software devoted 
to monitoring only reacts to various kinds of alarms that  are triggered internally or 
externally. Hence the nature of time in Hybrid Systems is by no means universal, but  
rather local to each subsystem, and consequently multiform. This very fundamental  
remark justifies the kind of model for Hybrid System we use in this paper. 

Our model handles infinite sequences of da ta  with a certain kind of restricted asyn- 
chronism. Assume that  each sequence, in addition to the normal values it takes in its 
range, can also take a special value representing the absence of da ta  at that  instant.  
The symbol used for absence is •  Therefore, an infinite time sequence of da ta  (we shall 
refer to informally as a signal in this discussion) may look like 

I,-4, • • 2, I, ... (1) 

which is interpreted as the signal being absent at the instants n = 3, 4, 7,... etc. Systems 
specified via constraints on signals of the form (1) will be termed Hybrid Systems (HS). 
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A typical way of specifying such constraints will be to write equations relating different 
signals. The following questions are immediate from this definition: 

(1) I f  a single signal is observed, should we dist inguish the following s a m p l e s  
f r o m  each  other? 

{1,-4,•177177 {•177177177177 {1,-4,4,2,...} 

Consider an "observer ''1 who monitors this single signal and does nothing else. Since he 
is assumed to observe only present  values, there is no reason to distinguish the samples 
above. In fact, the symbol _1_ is simply a tool to specify the relative presence or absence of 
a signal, given an environment ,  i.e. other signals that  are also observed. Jointly observed 
signals taking the value • simultaneously for any environment will be said to possess 

the same clock, and they will be said to possess different clocks otherwise. Hence clocks 
may be considered as equivalence classes of signals that  are present simultaneously. This 
notion of time makes no reference to any "physical" universal clock: time is rather local 
to each particular subset of signals in consideration. 

(2) H o w  to interconnect two H y b r i d  S y s t e m s ?  
brid Systems specified via equations: 

yn = if x~ > 0 then x~ else _l_ 

and the usual addition on sequences, namely 

Zn = Yn + Un 

Consider the following two Hy- 

(2) 

(3) 

In combining these HS, it is certainly preferable to match the successive occurrences 
yl ,y2 , . . ,  in (3) with the corresponding present  occurrences in (2) so that  the usual 
meaning of addition be met. But this is in contradiction with the bruteforce conjunction 
of equations (2,3) 

Yn = if x,~ > 0 then xn else • 

Zn = Yn -b Un 

which yields zn = • + u,~ whenever xn < 0. In appendix A a denotational model for HS 
firstly introduced in [3] and improved in [2] is reported as a complementary information, 
it provides an adequate answer to the question of how to properly interconnect equations 
(2,3). This model is then used to establish the semantics of the SIGNAL language we 
introduce informally in the following section. To summarize, our formalism will provide 
a mul t i form but coherent notion of time. Other formalisms using the same approach to 
handle time are the so-called synchronous languages [1, 8, 9]. 

1in the common sense, no mathematical definition is referred to here 



23 

2 . 1  S I G N A L - k e r n e l  

We shall introduce only the primitives of the SIGNAL language, and drop any reference 
to typing, modular  structure,  and various declarations; the interested reader  is referred 
to [13]. SIGNAL handles (possibly infinite) sequences of da ta  with t ime implicit: such 
sequences will be referred to as signals. At a given instant,  signals may have the s tatus 
absent (denoted by _l_) and present. If x is a signal, we denote by {x,~},~>l the sequence 
of its values when it is present. Signals that  are always present simultaneously are said 
to have the same clock, so that  clocks are equivalence classes of simultaneously present 
signals. Instructions of SIGNAL are intended to relate clocks as well as values of the 
various signals involved in a given system. We term a system of such relations program; 
programs may be used as modules and fur ther  combined as indicated later. 

A basic principle in SIGNAL is that  a single name is assigned to every signal, so that  
in the sequel, identical names refer to identical signals. The  kernel-language SIGNAL 
possesses 5 instructions, the first of them being a generic one. 

( i )  R(x1 . . . . .  xp) 
( i i )  y := x $1 i n i t  xO 

( i i i )  y := x when b 
( i v )  y := u d e f a u l t  v 

(v) P I Q 
( v i )  P !! x l  . . . . .  xp 

(i) direct extension of instantaneous relations into relations acting on signals: 

R(xl , . . . ,xp)  r Vn:  R ( x l , , . . . , x p ~ )  holds 

where R(...) denotes a relation and the index n enumerates  the instants at which the 
signals x i  are present. Examples are functions such as z := x+y (Vn : zn = x ,  + y , ) .  A 
byproduct  of this instruction is that  all referred signals must be present simultaneously, 
i.e. they must have the same clock. This is a generic instruction, i.e. we assume a 
family of relations is available. If R ( . . .  ) is the universal relation, i.e., it contains all 
the p-tuples of the relevant domains, the resulting SIGNAL instruction only constrains 
the involved signals to have the same clock: the so obtained instruct ion will be wri t ten 
x "= y and only forces the listed signals to have the same clock. 

(ii) shift register. 

y := x $I init xO r ~n > 1 : y. = x.-1,yl = xO 

Here the index n refers to the values of the signals when they are present. Again this 
instruction forces the input and output  signals to have the same clock. 

(ill) condition (b is boolean): y equals x when the signal x and the boolean b are 
available and b is true; otherwise, y is absent; the result is an event-based undersampling 
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of signals. Here follows a d iagram summariz ing  this instruction: 

x :  1 2 _1_ 1 3 4 1 1 5 6 9 . . .  

b:  t f t 1 f t f 1 _1_ f t . . .  
y :  I I I 2_ / 4 I I / 2_ 9 . . .  

( iv)  y merges u and v, with priori ty to u when bo th  signals are s imultaneously present; 
this instruct ion is the key to oversampling as we shall see later. Here follows a table 
summar iz ing  this instruction: 

u :  1 2 .1_ 1 3 4 1 I 5 1 9 . . .  
v :  .L 1 1 3 4 10 1 8 9 2 1 . . .  
y :  1 2 1 3 3 4 1 8 5 2 9 . . .  

Instruct ions (i-iv) specify the e lementary  programs.  

(v) 
are considered as identical. For example  

combinat ion of a l ready defined programs:  signals with common names  in P and Q 

(I y : = z y + a  
I z y  :=  y $1 x 0  I) 

denotes the sys tem of recurrent  equations: 

Yn = z y n  q - a n  

z y n  = Y n - 1 ,  Z y l  = xO 

On the other  hand,  the p rogram 

(1 y := x when x>O 

I z := y+u I) 

yields 
f 

then ~ Yn = Xn 

t Z n ~ y n ~ U n  

else Yn = Un = Zn = I 

if x~ > 0 

(4) 

(5) 

x : - 2 ,  + l ,  - 6 ,  - 4 ,  -t-3, -I-8, - 2 1 ,  - 7 ,  - 2 ,  +5,  - 9 , . - .  

for any finite amount  of "_l_"s inserted between successive occurrences of u. Assuming 
all signals of integer type,  suppose the following sequence of values is observed for x: 

U : _L, U l , [ , _ L ,  u 2 , u 3 , _ l _ , l , . J _ , ~ 4 ,  J _ , . . .  , 

where (x , )  denotes the sequence of present  values of x. Hence the communicat ion  I 
causes I to be  inserted whenever needed in the second system z :=y+u. This  is what  we 
wanted for the example  (2,3). Let us explain this mechanism more  precisely. Denote 
by ul,  u2, u3, u4 , . . ,  the sequence of the present values of u (recall tha t  y , z  are present 
s imultaneously with u). Then,  according to point (1) of the discussion at the beginning 
of this section, ul ,  u2, u3, u4 , . . ,  is equivalent to its following expanded version: 
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Then the amount  of inserted "_l_"s for the above expanded version of u turns out to fit 
exactly the negative occurrences of x: this flexibility in defining u allows us to match the 
present occurrences of u with the present occurrences of y, i.e., the positive occurrences 
of x. This mechanism is formalized in the model of the appendix. 

(vi) restriction of program P to the mentioned list of signals: other signals involved 
in P are local and are not visible when communication is considered. 

2.2 S o m e  m a c r o s  r e l a t e d  to  t i m i n g  

An event  type signal T (or "pure" signal) is an always t rue boolean signal. Hence "not  
T" denotes the boolean signal with clock T which always carries the value false. Givdn 
any signal X, 

T := event X 

defines the event  type signal T whose occurrences are simultaneous with those of X: it 
represents the clock of X. The variation 

T := when B 

of the when operator defines the event  type signal T which is present whenever the 
boolean signal B is present and has the value true and delivers nothing otherwise; it is 
equivalent to "T : = B when B". Constraints may be defined on the clocks of signals; in 
this paper, the following notations are used: 

X "= Y X and Y have the same clock; 

X "< Y X is no more frequent than Y, which is equivalent to X "= (X when even t  Y). 

Finally, various kinds of timers will be useful, and some of them are listed below: 

Y := X in  ]S,T]  ( i )  
N := #X in  ]S ,T]  ( i i )  

The expression ( i )  delivers those present X's which occur within the left-open and right- 
closed interval ] S,T],  where S and T are both pure signals. Here follows a diagram 
showing the behaviour of this macro, we added the boolean signal "in ] S ,T]"  which 
is delivered when X,S, or T is present, and is true within intervals ]S,T]  and false 
otherwise (this boolean is called BELONGS_T0_INTERVAL in the expansion of this macro 
we show below): 

X: 

S: 

T: 

in  ]S,T] : 
Y: 

1 2 • • 3 4 1 • 5 6 9 

• • t t • • • • • t • 

t • • • • t • • • • t 

f f f t t t f •  
• • • • 3 4 • • • • 9 

. ~  

�9 �9 O 
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Expression ( i i )  counts the occurrences of X within the mentioned interval and is reset 
to zero every S; this signed is delivered exactly when equation ( i )  delivers its output. 
Expanding these macros and their variations on the shape of the considered intervals 
( [S,T [, [S ,T], etc...) into the primitive SIGNAL statements is easily done. For instance, 
( i )  is defined via the following SIGNAL module: 

([([ IN_S_T "ffi (S default T default (event X)) 

[([ HITTING_S_T := (not T) default S default IN_S_T 

[ IN_S_T := HITTING_S_T $1 init false [ ) [ )  
[ Y := X when IN_S_T [) 

The hierarchy of submodules is depicted by the amount of [. This program is composed 
of two blocks. The meaning of the second one (last equation) is immediate, thus we con- 
centrate on the first one which purpose is to produce the boolean IN_S_T (corresponding 
to "in ] S ,T]" discussed above). The first equation indicates when this signals has to 
be delivered. The block composed of the equations 2 and 3 delivers the value of IN_S_T: 
the boolean signal HITTING_S_T corresponds to "in [S,T[". 

2 . 3  A f e w  e x a m p l e s  

The little programs implementing the formulae (4,5) illustrated how SIGNAL can be 
used to specify flows of computations and the emission of events that can result. In this 
subsection, we discuss other aspects of the language. 

Specifying logical t empora l  properties: a single token buffer 

Consider a memory with content M, which can be written (signal WRITE) and read (signa/ 
READ): 

(I) ([ M :ffi WRITE default (M $I init any) 
(2) [ READ :ffi M when (event READ) I) 

The first instruction expresses that the memory M is refreshed when WRITE is received, 
otherwise the previous value (MS1) is kept. Note that the clock of M is not entirely 
determined, it only has to be more frequent than that of WRITE. The second equation 
expresses that, when reading is wanted (event READ), it actually occurs and provides 
us with a READ signal carrying the value of M. Consequently, the clock of M has to be 
more frequent that that of READ. To proceed further on, let us encode the status (being 
written or being read) of the memory as follows: 

(3) FULL := (event WRITE) default (not (event READ)) 

Now suppose that writing in the memory is a/lowed only when the previous value of the 

memory has been read. This constraint is expressed by the following equation: 

(4) WRITE "ffi when (not (FULL $1)) 

Conversely, if we want any written value to be read at most once, we have to write: 

(5) READ ~ffi when (FULL $i) 

Finally, putting these three additional equations together specifies a single token buffer. 
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Specifying timing constraints 

Assume now that the single token buffer is being used as a mailbox by some other module 
and it is desired that, when stored, a message must be read within some specified delay. 
A corresponding SIGNAL specification is as follows: 

(l event READ "< TICK 

i N := #TICK in ]WRITE,READ] 

I N < MAX_TIME i) 

The first statement expresses that the mailbox can be checked at any TICK instant. The 
second equation counts the delay between writing and reading the message in terms of 
TICKs. Finally, the last statement expresses that the constraint (N < MAX_TIME) must 
be satisfied. 

Basic problems 

As the two above examples show, SIGNAL programs generally express constraints on the 
behaviors of their involved signals. This makes the composition of SIGNAL programs 
fairly obvious 2. On the other hand, SIGNAL programs will generally attempt to specify 
real-time systems that are transducers, i.e., possess inputs that drive them and produce 
outputs. Hence implementing a SIGNAL specification consists in constructing a trans- 
ducer producing all solutions to the considered system of SIGNAL equations. Getting a 
transducer form out of a SIGNAL specification written as constraints on signals requires 
a powerful compiler. This compiler must be able to "solve" the SIGNAL systems of 
equations in some way to transform them into some input/output  map. So it has to be 
a sort of a "formal calculus system". One of the objectives of this paper is to explain 
informally how such formal calculi can be derived. By the way, other services are im- 
mediately provided such as proofs, since there is no d~stinction between properties to 
be checked (these are constraints) and programs on which properties must be checked 
(these are also constraints). 

Discussion: expressive power and formal reasoning capability 

As illustrated by the examples above, SIGNAL carl be used to specify all key features 
we mentioned as being relevant to Hybrid Systems: computations, events and logic, 
timing constraints, and their mutual interaction. As far as the current SIGNAL compiler 
is concerned, the followingshould be noticed: 

�9 the single token buffer specification involves only synchronization and logic and 
is thus fully handled by the SIGNAL compiler in the very same way as temporal 
logic does; 

~this claim is also supported by the formal definition of the communication operator I in the appendix 
A which is very simple. 
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in contrast, expressions such as "X := Y+Z" are handled via rewriting (each oc- 
currence of the left hand-side can be replaced by the expression in the right hand- 
side), no formal property is handled about real signals, nor about their associated 
operations; 

finally, no formal calculus about quantitative time is performed by the current 
SIGNAL formal system, in particular it cannot be proved that performing two 
successive responses in less than 10ps results in an overall response time of less 
than 20ps. 

Hence the distinction between specifying and verifying must be emphasized: while the 
SIGNAL formalism has general expressive power [2], the SIGNAL formal system has 
limited (although quite powerful) capabilities. In [2, 3] we present a mathematical 
model for Hybrid Systems and use it to establish the semantics of SIGNAL. In particular 
it is shown in [2] that SIGNAL has maximum expressive power for Hybrid Systems 
description. In the next section we show ho to derive formal systems for reasoning 
about Hybrid Systems defined by SIGNAL. 

3 D e r i v i n g  formal  calcul i  for H y b r i d  S y s t e m s  

We first discuss the simple case of "pure" SIGNAL, i.e., of programs involving only 
synchronization and logic, i.e., event and l o g i c a l  data types. Then we discuss how 
this simple case can be generalized. 

3.1 "Pure" SIGNAL: programs involving only synchronization 
and logic 

Three labels are required to encode the status absent, true, false. The finite field ~'3 of 
integers modulo 3 is used for this purpose 3 via the coding: 

absent r 0, true ~ +1, false ~-*-1 

Using this coding, we define a mapping from syntactic SIGNAL expressions to equations 
in ~'s (recall that all signals are of type event ,  log ica l ) .  This mapping is shown in 
table 1. In this table, the first instruction is a sample of a SIGNAL instruction of type 
(• other ones are encoded similarly. In the coding of the second instruction, a denotes 
the current value of the internal state of the delay. Here and in the sequel, the generic 
notation x r denotes the next value of x. In particular, the coding of the instruction 
B := AS1 involves two successive values of the state a; this equation expresses that, 
when a is received (a 2 = 1) it is fed into the next value a ~ of the state otherwise it is 
unchanged; then b receives the current state when a is received. Finally, clock(P) is the 
clock calculus of P and O denotes conjunction. 

Selements of ~'3 are written {0, +1, -1 )  
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SIGNAL equation ~'3 coding (or "clock calculus") 

A or B ffi event A 

B :ffi AS1 

a 2 = b  2 ,  a b ( a - 1 ) ( b - 1 ) = O  

a ' = ( 1 - a 2 ) a + a ,  b = a 2 ~  
y :=  x w h e n  b y = x(-b- b 2) 

y := u d e f a u l t  v y = u W ( 1 - - u 2 ) v  

P[ Q clock(P) u clock(Q) 

Table 1: Encoding "pure" SIGNAL programs 

Let us apply this technique to the mailbox example. To simplify the notations, we 
denote the various signals by their first letter, e.g., w for WRITE, etc... Applying the 
rules of table 1 to each successive instruction yields 

(FULL 

(1) #' = ( 1 - m 2 ) p + m ,  z m  = m 2 p  

(1) m = ,1, + (1 - w~)zm 
(2) r = r nr  2 

(3) f = w 2 - ( l - w 2 ) r  2 

$1) ~' = ( 1 - f 2 ) ~ + f ,  z f = f 2 ~  

(4) w 2 = ~ f -  f~  
(5) r 2 = --z f - - f 2  

A little algebra allows 
equation): 

m 2 = f2 = 1 

f ' =  - /  
% rt2 t = Tt2 

w 2 = f 1 

r ~ = f - 1  
r = m r  2 

m = w + ( 1 - w 2 ) z m  

(6) 

us to rewrite (6) as follows (comments are written for each 

fastest clock, always present by convention 
FULL is a flip-flop 

WRITE ~ box full (7) 
READ ~=~ box empty. 

M stores the written value 

While (6) was given as a flxpoint equation, i.e., in an implicit form, (7) is in explicit 
form: reading the equations from top to down yields an execution mode. This explicit 
form reveals that the single-token is n o t  a transducer: we cannot consider that WRITE 
acts as an input and READ is the output. Instead, FULL acting as a flip-flop drives the 
synchronization, and the additional input is the v a l u e  carried by WRITE, not its clock. 
We say that  (7) is a ~ot, e a / o , ~  of (6). Deriving (7) from (6) amounts to applying 
elimination techniques to polynomial functions over ~'3. When the specified system 
actually was equivalent to a transducer, calculating the solved form provides us with 
this equivalent transducer. A very efficient version of this technique has been developed 
for the SIGNAL compiler [13, 7]. 

3 . 2  D e v e l o p i n g  f o r m a l  c a l c u l i  f o r  g e n e r a l  H y b r i d  S y s t e m s  

Consider the following SIGNAL program: 
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input R: 3 _1_ • 4 • • • 1 5 • • • • etc... 
ou tput  N: 3 2 1 4 3 2 1 1 5 4 3 2 1 etc... 

Table 2: UPSAMPLING in SIGNAL 

(~ N := R default (ZN-I) 

I zN := N$I 

R "= when (ZN=I) I) 

In this program, R is assumed to be a strictly positive integer signal, and ZN has initial 
value 1. The  behaviour of this program is depicted in table 2. This program serves as a 
basic mechanism for da ta  dependent  upsampling of the input signal R. It is a part icular  
and powerful feature of the SIGNAL formalism that  programs with upsampling can 
be specified, see [2] for an extensive discussion about  this aspect. Two domains are 
encountered,  namely the positive integers R, N, ZN, and the boolean (ZN=I). 

Hence for general HS or SIGNAL programs the situation is drastically more difficult: 
infinite domains are involved such as integers, reals, etc... So the systems of equa- 
tions corresponding to general SIGNAL programs will be approximately solved using a 
technique we shall describe now informally. We describe now how the above UPSAM- 
PLING program is actually handled by the current SIGNAL compiler. While most of 
the formalisms for real-time or Hybrid Systems hide computat ions inside actions that  
are viewed as black-boxes [14, 10, 11], we refuse to do so, since such actions turn  out 
to influence the real-time behaviour (comparing a real signal to a threshold can be a 
mechanism to produce interruptions).  The  following general procedure is proposed to 
overcome this difficulty: 

1. Select the domains for which you want to provide a formal system; we already 
discussed this issue in the two preceding sections. 

2. Equations involving other  domains can be handled in the weakest way, namely 
via syntax-based rewriting; syntax-based rewriting algorithms amount  to handling 
directed graphs; but  these graphs vary dynamically according to the clock of the 
considered instant,  we call them dynamical graphs. 

The  interested reader is referred to [3, 4] for details and formal definitions of dynamical  
graphs, we concentrate here on an informal discussion of the UPSAMPLING example. The 
coding of the three instructions of this program is given in table 3 (again we denote by B 
the boolean expression (ZN=I)). The  notat ion x --> y means that  y depends on x when 

bo th  are present, i.e., x2y 2 = 1. Similarly, the notat ion x h2 > y means that  y depends 
on x when x2y2h 2 = 1 holds; this lat ter  notat ion is for instance used in the coding of 
the d e f a u l t  instruction. Some comments follow. Capitals are used (e.g., N) to refer to 
values of present signals, while variables of the clock calculus are wri t ten in lower cases. 
Values of present signals depend on their  clock (e.g., n 2 --> N). The  second line of the 
conditional dependency graph is the coding of the d e f a u l t :  the double dependency 
R ---> N < 1-r2 ZN is tha t  between values, and the second one n=r 2 --> N expresses that ,  
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clock calculus conditional dependency graph 

n2_- r2q- (1  _ r 2 ) z n  2 

z n  2 ~ n 2 

b 2 = z n  2 

r 2 = - b  - b 2 

n 2 --@ N , r  2 ~ I ~ , z n  2 --~ ZN, 

R --> N < 1-r~ ZN, n 2 r  2 ---> N 

b 2 --4 b, ZN ---> b 

Table 3: Encoding the UPSAMPLING program 

to compute the output  N it is needed to know the clock deciding which dependency will 
be in force at the considered instant. 

This coding is hybrid in nature: two different algebras are involved, namely the 
algebra of polynomial expressions in ~'3 variables, and labelled directed graphs. These 
graphs specify evaluation schemes for run time. Based on the actual syntactic form 
of the clock calculus, it is also possible to associate a graph with the clock calculus. 
Performing this for the UPSAMPLING program yields 

r 2 ---> n 2 < l - r  2 z n  2 ( = n  2 = b  2) 

b ---> r 2 

Combining this graph with the preceding one yields for instance the circuit b ----> r ~ 
---> n 2 = b 2 ~ b which has a clock equal to b2r 2 = r 2 # 0. Thus combining these two 

graphs does not provide a partial order, so no evaluation scheme is derived at this point. 
To overcome this we use the calculus  o f  g:3 to replace the p r e s e n t  equat ions  o f  the 

clock calculus  by o ther  ones  that  are equivalent ,  in  such  a w a y  that  the c o m b i n e d  resul t ing  

graphs be gobally circuit free.  For instance, we can replace the clock calculus of the 
UPSAMPLING program by its solved form 

z n  2 = n 2 = b ~ , r 2 = - b -  b 2 

which yields the graph with a single branch b --4 r 2. The resulting global graph is finally 
(arrows without input nodes denote inputs of the evaluation scheme): 

(input clock) 

(input: memory content) 

(input: value of R) 

--~ b 2 = n  2 = z n  2 ----> b ,  b 2 --4 ZN 

ZN ---> b --> r 2 

r2 ---> R , -->R 

ZN 1-~2> N, b2-->N, r2-->N, R--~N 

No circuit is exhibited, so that  a partial order can be associated with this graph. It is 
interesting to note that  the input clock is that  of the output  N, and that  only the value 
carried by R is an input: UPSAMPLING runs according to the demand driven mode. 

Again, the method we presented here informally can be extended to other algebras. 
The current SIGNAL compiler is powered with a very fast implementation of the above 
procedure, see [13, 7]. Finally, the reader is referred to [4] for a formal presentation of 
t h e  SIGNAL formal system in its present form. 



32 

3.3  E x t e n s i o n  t o  o t h e r  d o m a i n s :  q u a n t i t a t i v e  r e a l - t i m e  

We consider again the UPSAMPLING program, but we assume now that  its input l~ is a 
positive b o u n d e d  integer signal. Since all signals have now finite domains nothing really 
new happens compared to the elementary case of "pure" SIGNAL, for instance we may 
translate bounded integers into vectors of booleans. However we find it more convenient 
to use codings that  are tightly tailored to each of these domains, since the resulting 
coding will generally be more compact, thus memory saving and efficient calculations 
should result; in particular, the very efficient formal calculi developed for ~'3 [13, 7] 
generalize to any .T" v. 

Thus the boolean signal (ZN=I) is encoded using ~'3 as before. Similarly, the finite 
field ~'p of integers modulo p can be used with p large enough to encode the integer 
signals K, N, ZN with the following mapping: 

absent ~..~ 0 ,  l ~--* l , .  . . , p - l ~--* p - 1  

In this coding, clocks of integer signals are recovered as follows 

tt absent ~ r  v -1  = 0  , l~present ~ r  p-1 = 1  

From these remarks, the coding of the UPSAMPLING program follows (we denote by B 
the boolean signal (ZN=I): 

n = r + (1 - r P - 1 ) ( z n -  1) (i) first instruction 

v' = ( 1 - n P - 1 ) v + n  
z n  = n P - l v  (ii) second instruction (8) 

b = z n  " - l ( l + ( z n - 1 ) ' - * )  (iii) B a s a f u n c t i o n o f Z N  
r p-1 -~ --r -- r 2 (iv) last instruction 

However in doing this, a new difficulty appears. Equations (i,ii) are polynomial equa- 
tions within 9vp and thus can be handled in a way similar to that  of pure SIGNAL 
programs. Unfortunately, equation (iii) is a function mapping some 9Vp-expression into 
~'3; similarly, equation (iv) is a function mapping some ~'3-expression into 2-p. This is 
again a hybrid coding similar to that  of the preceding subsection. We can handle it in 
two different ways. 

1. Since B,ZN,R only are involved in the "hybrid" equations (iii,iv), we may first 
eliminate t~ and N from equations (i,ii). This is equivalent to projecting the dy- 
namical system (i,ii) onto the components ( z n ,  r) only, and is generally performed 
using elimination techniques in ~'p via efficient algorithms as mentioned before. 
In our case this yields the unique equation 

z . '  = r + (1  - r p - ' ) ( z .  - 1 )  

which we handle in combination with (iii,iv) via exhaustive scanning. In this 
way of doing, efficient algorithms can be called for to project each homogeneous 



33 

subsystem (here (i,ii)) onto its interfaces to other homogeneous ones (here B, ZN, R). 
Then the problem reduces to that of standard model checking techniques on the 
joint behaviour of the set of all such interfaces. 

. Perform first as before the reduction to the interfaces of the homogeneous sub- 
systems. The remaining "hybrid" equations are then app.i'oximately solved using 
the graph method of the preceding subsection. This is a less powerful but likely 
faster method of compilation. 

As sketched on this example, formal calculi can be developed for properties relevant to 
synchronization, logic, and quantitative timing. In particular, (qualitative and quanti- 
tative) real-time specifications for discrete event systems can be synthesized. 

4 C o n c l u s i o n  

We have presented the SIGNAL formalism to specify Hybrid Systems. SIGNAL is cur- 
rently used to specify and program real-time systems [13] according to the principles of 
synchrony [1]. 

SIGNAL is currently available under two different versions that were developed with 
different objectives. The INRIA H2 SIGNAL system provides the interface used in this 
article, and produces the intermediate level hierarchical code we have discussed. Sequen- 
tial FORTRAN or C code is currently produced. Developments on distributed implemen- 
tation are in progress based on this version. Tools for proving dynamical properties will 
be integrated in a short time. The CNET-TNI V3 version is commercially available 
from TNI Inc., Brest, France. SILDEX 4, a X-windows based graphical environment is 
provided for both program editing and on-line monitoring and supervision of the execu- 
tion. C, FORTRAN, or ADA code is produced. Experiments have been performed based 
on this version to produce distributed OCCAM code for a multi-Transputer system. The 
SIGNAL environment has been experimented on significant applications in the area of 
signal processing and dontrol: a speech recognition system, a radar system, a digital 
watch, a rail road crossing, an aircraft control system, were the major ones. 

We have discussed the expressive power of SIGNAL and have illustrated its generality, 
formal studies are also available in [2] to support this claim. 

We have presented an original and general method for deriving formal calculi for 
Hybrid Systems. The central notion of this method is'that of dynamical graph and is used 
in the current SIGNAL compiler to handle synchronization, logic, and data dependencies. 

Several directions for future research are currently pursued. Improving the efficiency 
and power of the formal system that handles ~'3-based dynamical graphs is a key is- 
sue to fast and efficient compilation [12]. Deriving efficient systems to handle bounded 
integers will open the route to quantitative real-time: a major issue is to handle the 
tradeoff efficiency/generality of such formal calculi. Finally, as lengthly discussed in [2], 
the SIGNAL formalism is already very close to models of stochastic processes: adding 
a single instruction to SIGNAL provided us with the SIGNalea extension [5]. SIGNalea 

4SILDEX is a TradeMark of TNI. 
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is able to specify and handle various probabilistic real-time systems such as queuing 
networks or uncertain real-time information processing systems. 

A p p e n d i x  

A A trace m o d e l  for H S  a n d  a s e m a n t i c s  o f  SIGNAL 

In this appendix, a mathematical  model for HS is presented, and used to formally 
define SIGNAL. The reader is referred to Section 2 for the motivation of the following 
definitions. 

A.1 Histories, signals, clocks 

Consider an alphabet (finite set) A of typed variables cMled ports. For each a 6 A, T)a 
is the domain of values (integers, reals, booleans. . . )  that  may be carried by a at every 
instant.  Introduce 

~ = U (~o u {• 
aEA 

where the additional symbol _1_ denotes the absence of the value associated with a port 
at a given instant.  For two sets A and B, the notation A --* B will denote the set of all 
maps defined from A into B. Using this notation, we introduce the following objects. 

E v e n t s .  Events specify the values carried by a set of ports at a considered instant. 
The set of the A-events (or "events" for short when no confusion is likely to occur) is 
defined as 

EA = A---~ :DA 

Events will be generally denoted by e and their domain by :D(e). We shall denote by _l_ 
the "silent" event e such that  e(a) = _l_ Va 6 l)(e).  

Traces .  Traces are infinite sequences of events. Let N+ = {1, 2, ...} denote the set of 
integers, then the set of A-traces (or simply "traces") is defined as 

0.4 = N+ ~ CA 

C o m p r e s s i o n s .  The compression of an A-trace T (deleting the silent events) is defined 
as the (unique) A-trace S such that:  

Sn =Tk. 

where 
k0 = m i n { m  > 0 : Tr~ # .1_), k,~ = min{m > k,,_, : T m #  A_) 

where rain 0 = +oo by convention. The compression of a trace T will be denoted by 
T L  
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Histories and signals. The condition 

Tl = T '$  

defines an equivalence relation on traces we shall denote by T ,,, T'.  The  corresponding 
equivalence classes are called histories. The  set of all possible histories on A will be 
denoted by ~tA, so that  we have 5 

a A  = (cA)/. 
Elements of ~'~A will be generically denoted by toA or simply w when no confusion can 
occur. While the notion of trace refers to a part icular  environment (since the _L's are 
explicitly listed), the notion of history does not. Since 

s = IN+ ~ (A ~ DA)]/~ 

any toA E ~A may be writ ten as 
= (9) 

and the wa's are termed signals. Hence a signal is a component  of a history specified by 
selecting a part icular  port  in the alphabet  A. The notion of "signal" has been informally 
discussed in section 2-(1), where we motivated the definition of signals and histories as 
equivalence classes with respect to the relation ,,,. 

C locks .  Extend the domains ~D~ with another  distinguished value $ ,  intended to 
encode the status "present" regardless of any part icular  value. Consider the map 
chronos~ E 23A ~ { / ,  T} defined by 

chronosv(_J_) = _J_, chronosv(x) = T for x # _1_ 

For each event e E s there is a unique map in CA --* s making the following diagram 
commutat ive,  denote it by chronose: 

A 
~/ "x~ chronose(~) 

chronosD 
DA ~ DA 

Similarly, there is a unique map in OA ~ OA, we denote by chronoso, making the 
following diagram commutat ive 

N+ 
T r "~ chronoso(T) 

chronosz 
sa ~ Ea 

This map satisfies the condition 7"1 ".. 7"2 :=~ chronoso(T~) ... chronoso(T2), so that  it 
induces a map in flA --* ftA we shall now denote by chronos: the chronos of a history 
is another  history which summarizes the status {present/absent} of each of its signals 
(i.e. components).  

Now, given to E f~A and a E A, consider the signal of port  a of the history chronos(to): 
this signal summarizes the relative status present /absent  of the signal toa given the other  
signals involved in the history w. We shall call this signal the clock of wa, or the clock of 
a for short when no confusion is likely to occur, and denote it by clock(too) or clock(a). 

5.1~ denotes here the quotient space by the relation ,,~ 



36 

A . 2  H S  

D e f i n i t i o n  o f  H S .  A HS is simply a subset 

f~ C f~A 

of the set of all histories on A. In other words, we consider a SIGNAL program, as a way 
to specify "legal" histories. 

R e s t r i c t i n g  H S .  Consider a subset A' of the alphabet  A. The  inclusion A' C A 
induces a projection from s onto s we denote by e -* e!!A,. Following the same 
argument as for the definition of clocks, we derive the following family of restrict ions 

we generically denote by "HA,. First,  the following commutat ive diagram 

N+ 
T r  "~ T.,!A, 

uniquely defines the restriction T * T.,!A, on traces. Since T] ,,~ T2 ~ (T1)!!A, "~ 
(T2)t!A, holds, a restriction on histories w ~ w!!a, may be defined, which finally yields 
a restriction on HS we denote by 

This restriction maps the set of HS defined over the alphabet A onto the set of HS defined 
over the alphabet  A'. The  HS ~'l,.!a, is called the restrict ion of [2 to (the subalphabet)  
A': only the signals with ports in A' are visible from outside and may be used for HS 
communicat ion we shall define next. 

H S  c o m m u n i c a t i o n .  Consider two HS f~l, [22 respectively defined over the alphabets 
A1 and A2. Set A = A1 tJ A2. Then  [21 [[22 will denote the maximal s HS [2 defined over 
the alphabet  A satisfying the following conditions: 

f~!!A1 C_ [21 

f~!!A2 C_ f~2 

In other  words, the communication constrains the signals in f~x and [22 of shared port  
to be identical (i.e. to be present simultaneously and then carry the same value). This 
is exactly what we wanted while discussing the example of eqns (2,3). 

A . 3  T h e  d e f i n i t i o n  o f  SIGNAL 

According to the preceding section, in order to specify an HS over a given alphabet,  we 
have to describe a subset of all histories that  can be built upon this alphabet.  Since 
histories are defined as equivalence classes of traces with respect to the relation ,,~, this 
may be done by listing a fami ly  of  constraints on the set of  all traces tha t  can be built 
on this alphabet.  The  equivalence classes of the so specified traces are the specified 
histories. This is what we shall do next. 

6with respect to the order by inclusion f~' C_ f~ defined on HS 
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I n s t r u c t i o n  ( i ):  R(xl . . . .  xp) 

V n E N + ,  Vi : x i , ~ . l _  

Vn E N+ : R ( x l , , . . . , x p , )  holds 

Here, the notation x i ,  denotes the value carried by the port with name x i  at the  n-th 
instant of the considered trace. This notation will be further used in the sequel of this 
subsection. 

I n s t r u c t i o n  ( i i ) :  y := x $1 x0 

Vn E N+ 

V n > l  

: x~#• 

: Yn ~ X n - 1  

Yl = x0 

I n s t r u c t i o n  ( i i i ) :  y := x when b 

Vn E N+, yn = ~ i f  xn # _L and b~ = true then x~ 

t else _L 

I n s t r u c t i o n  ( i v ) :  y := u d e f a u l t  v 

V n E N + ,  yn = { 
if u ,  ~t _L then u,  
else if u ,  = _l_ and v ,  ~ _L then vn 
else .L 

I n s t r u c t i o n  ( v ) :  P I 0 
We already defined the operator I on HS. 

I n s t r u c t i o n  (vi):  P !! x l  . . . . .  xp 
We already defined the restriction on HS. 
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