
Reversing Abstract Interpretations

John Hughes and John Launchbury*

Depa r tmen t of C o m p u t i n g Science,

Universi ty of Glasgow,

{rjmh, jl} @dcs.glasgow.a~.uk

1 I n t r o d u c t i o n

Many semantic analyses of functional languages have been developed using the
Cousots' abstract interpretation fralnework [CC77]. Some, such as Mycroft's pio-
neering strictness analysis [MycS1] and Burn, Hankin and Abramsky's extension of
it to higher=m~ler [BHA86], operate on abstract values representing the past history
of the computation, and are therefore called forwards analyses. Others, such as
W~Uer and Hughes' projection-based strictness analysis [WH87], or Hall's analysis
of strictness patterns [Hal87] propagate abstract contexts representing the future of
the computation, and are called backwards analyses. However, although the type
of abstract information may suggest a "natural" direction, it is in fact possible to
perform any analysis in either direction. The goal of this paper is to show how to
reverse any given analysis.

Why might one prefer one direction of analysis over another? We shall draw
an analogy with solving a differential equation on an interval. Solutions may be
found by iterating from one end of the interval to the other, with the two possible
directions con'esponding to backwards and forwards analysis. But the purpose of
an analysis is to answer a question, and such questions correspond to giving the
boundary conditions at one end of the interval and asking for the function's value
at the other. In such a case it's clearly preferable to start solving the equation at
the end where the boundary conditions are known. Note that it's not impossible
to work in the other direction--one can always use trial and error to find boundary
conditions at the beginning that produce the right values at the end--but in general
working in the "wrong" direction will require many solutions to be calculated where
one would suffice in the other direction. We will see exactly this effect arising in the
case of strictness analysis.

Every analysis associates with each function in the source program a correspond-
ing abstract function. To reverse an analysis we have to "invert" these abstract
functions. We begin by considering the conditions under which one function can be
said to safely approximate the inverse of another. We show that there is a best re-

"Wozk supported by ESPRIT BRA 3124 - Semantique

270

versal of each abstract function; and how best reversals interact with the combining
forms of a programming language.

Sometimes the best reversal of an abstract function carries less information than
the original. This raises the question "How much less?" One way to compare
abstract functions with their reversals is to reverse the reversal again, but this may
lose still more information. However, there is a class of functions whose reversal
carries exactly the same information, and which may therefore be reversed any
number of times with no loss. These turn out to be Galois connections. There is a
best approximating Galois connection to each abstract function, which provides an
upper bound on the information lost by reversal.

The application we consider in this paper is the reversal of Burn, Hankin and
Abramsky's strictness analysis. The analysis of the conditional proves hard to re-
verse; we therefore derive a rule for backwards analysis directly from the concrete se-
mantics. The power of this backwards rule is incomparable with that of the forwards
rule, disproving the old chestnut that conditionals are better analysed forwards. The
analysis derived is a previously known backwards analysis, but it's relation to BHA
and the corresponding proof of correctness were previously unknown.

We go on to consider Wadler's 4-point abstract domain for lists [Wad87]. The
reversal of his analysis turns out to be simpler than the original. In fact, Wadler's
forwards a~.alysis of case expressions contains a complication which can be seen as
necessary to obtain a good reversal of a backwards form!

Finally, we derive a backwards analysis of higher-order programs from the BHA
forwards analysis. Perhaps not surprisingly, we fail to obtain a particularly accurate
analysis.

2 Background

2 .1 T h e O b j e c t L a n g u a g e

We will discuss analyses in the context of a simple typed functional language based
on categoricM notation. Types are base types (such as In t) , and types built from
them using • L i s t (in section 5) and --* (in section 6). Terms denote continuous
functions, and are built from an unspecified collection of primitive functions using
combining forms. The basic term syntax is

term ::= ide I term o term I < t e r m , t e r m > [#ide. term

Here o denotes composition, < f , g > denotes the function < f , g > x = (f x,g x)
and #f.H(.f) is the recursive function satisfying #f.H(f) = H(pf.H(f)). The primi-
tives include at least the projection functious r l , 7r~, and the constant functions
Kc x = c. Although our language is monomorphic, for notational convenience we
will allow polymorphic primitives such as II : VX. X x X -~ X. Occun'ences of such
primitives should be read as the appropriate member of a family of monomorphic
functions.

We will consider extensions of the language with other combining forms such
as the conditional (p --* f; g) (see section 3.4). In particular, we can extend this
first-order language to a higher-order one by adding the combining form A (curry)
and the polymorphic primitive ap, where (Af) x =)~y.f(z, y) and ap (f , x) = f x.

271

2 . 2 A b s t r a c t I n t e r p r e t a t i o n

We'll use the same laa~guage to express abstract funct ions , which we distinguish
notationally using italics. We restrict the types over which abstract functions are
defined to be f inite lattices. This is consistent with [BHA86] and [WH87] for example,
where the restriction is used to guarantee termination of analysis 1. Finiteness is
important here for a different reason: it means continuity reduces to monotonicity
in the proofs which follow, and indeed some of the fnnctions we construct need not
be continuous in the infinite case.

Abstract functions come with a notion of safe approximation: we say it is safe
to approximate upwards if an abstract function f can be replaced by any f _3 f
without compromising the correctness of conclusions drawn from the analysis. Less
commonly, it may be safe to approximate dowmvards. When an analyser cannot
predict which of two abstract flmctions f or g applies (for example, in the anal-
ysis of a conditional) it may safely approximate by f U g if the direction of safe
approximation is upwards, or by f n g if it is downwards.

To define an analysis we associate each type A with a corresponding abstract
type A t, and give a safety condition rclating concrete functions f : A --~ B to ab-
stract functions f : A t --* B ~ for a forwards aalalysis, or f : B t -~ A t for a backwaa'ds
one. The safety condition tells us when an abstract function faithfully reflects the
behaviour of the concrete one, and must be consistent with the notion of safe ap-
proximation for abstract functions. Since this condition relates the semant ics of a
concrete function to an abstract function it is not immediately useful in a compiler,
but we can compute safe abstract functions for any term given abstract functions
for the primitives and ways of deriving abstract functions for compound terms from
those for their subterms. This process is called abstract interpretation.

2 . 3 T h e B u r n , H a n k i n a n d A b r a m s k y F r a m e w o r k

In the BHA approach, concrete and abstract types are related by a family of ab-
straction .functions absA : A ---* A ~ and the safety condition relating f : A --* B to
f : A t---, B ~is a b s B o f C_ foabsA .

Abstract values axe associated with Scott-closed 2 sets of concrete values via con-
cretisation functions, concA a = {x I absA x U a}. The safety condition can be re-
formulated as Vx, a . x E conc a =~ f x E conc(f a).

There is a best abstract function for each concrete function f : A --* B given
by [J o pH(abs~ o f) o concA where (P l f f) X = { f x] x E Z}* and X* denotes the
Scott-closure of X. Products axe abstracted as products, so (A x B) t = A t • B t
and absA• (x, y) = (absA x, absD y).

The following theorems justify a very simple abstract interpretation of terms:

T h e o r e m 1
If f and g m'e safe for f and g respectively, then

(i) f o g is safe for f o g
(ii) < f , g > is safe for < f , g >

1Although finiteness is commonly required there are other ways of ensuring termination - - see [CC77].
2A set S is Scott-closed if it is downwards clo~,d, and whencver all tim elements of a chain lle in S, so does the-

limit.

272

T h e o r e m 2
Let H and H be functionals such that whenever f is safe for f , then H f is safe for
H f. Then # f . H f is safe for #f.S f.

Similar theorems must be proved for each proposed analysis. This approach
extends very naturally to the higher-order case. We define (A --~ B) B -- AS--* B j
and absA~ B :[= [J o ~H(absB o :f) o cOnCA, with abstract interpretation justified by:

T h e o r e m 3
I f f is safe for f , then (i) Af is safe for Af, and (ii) ap is safe for ap.

Strictness analysis is cast in this framework by abstracting base types as the
2-point domain 2 = {0 U 1}, with abstraction defined by

absDase x = { 0 if x = .l_
1 othm~vise

I~ follows that all abstraction functions are strict a~ld .l_-reflecting: in other words
abs x = .l. r x = .L. From this and the safety condition abs o f C f o abs we see
that if f is strict, f must be too. We can test for strictness of f by testing whether
f o = o .

2 . 4 G a l o i s C o n n e c t i o n s

De f in i t i on
A Galois connection between lattices A and B is a pair of monotonic functions
/ : A - - * B and g : B - - . A such that f o g ~ id and g o] E id, or equivalently
Vx, y. g y E x ~=~ y _ f x. f is called the upper component and g is called the
lower component. D

T h e o r e m 4
Let (f, g) be a Galois connection. Then (i)] T = T and g .L = .1_, (ii) f distributes
over R, g distributes over U, and (iii) g y is the least x such that y U] x and] x
is the greatest y such that g y E x.

C o r o l l a r y 5
Each component of a Galois connection uniquely determines the other.

In view of the Corollary we will sometimes be sloppy and say "the Galois connection
p ' instead of "the upper-component of a Galois connection f " .

Galois connections were used by the Cousots to relate abstraction and concreti-
sation, and consequently often appear in papers on abstract interpretation. The
use we ea'e maldng of them is quite different: we use Galois connections as abstract
functions, the Cousots used them as abstraction functions.

3 Reversing an Analysis

3 . 1 S a f e R e v e r s a l s

Suppose we're given an abstract function f : A --+ B to reverse. In general, f will not
have an exact inverse and we will need to approximate. We therefore need to know

273

in which direction approximation is safe: suppose the safe direction is upwards so
that any f~ _2 f may safely be used instead of f . Furthermore, suppose the questions
we want to answer are of the form

Does y _C [.'r ?

Since it's safe to approximate f upwards, such questions can safely be answered 'yes'
when the correct answer is 'no', but must never be a2~lswerec~ 'no' when the correct
answer is 'yes'. Thus, 'no' means 'no', whereas 'yes' means 'maybe'.

When can a reversed function f r : B --* A be used to answer such questions?
Since f r is a kind of inverse, we'll ask instead

Doesf~ y _ z ?

We can use the answer to this question as an answer to the previous one provided
y C_ f z =~ f r y C X, since then we can never answer 'no' by mistake (negate both
sides to obtain the more intuitive implication).

Def in i t ion
f r is a safe reversal of f if Vz, y . y C f z =~ f~ y C z, or equivalently, i f /~ o f C_ id
[]

Note that safe reversals ~'e always strict, and that a n y / r ' ___ f r is also a safe
reversal of f . In other words, safe reversals can be safely approxilhated in the
opposite direction from abstract functions.

3.1.1 Example

In the case of BHA strictness analysis the test for strictness is usually phrased
slightly differently. For example, if f is an integer-valued function of three integer
parameters and f is its abstract function, then strictness is tested in each argument
separately by asldng the questions

D o e s / (0 ,1;1) = 0 ?
D o e s / (1 , 0 , 1) = 0 ?
D o e s / (1 ,1 ,0) = 0 ?

Of course, we can instead ask

Does 1 E / (0 ,1 ,1) ?
Does 1 C_f (1 ,0 ,1) ?
Does 1 E f (1 ,1 ,0) ?

whose answers are the negations of those above. But suppose] r is a safe reversal of
f , and f r l - (1 ,1 ,0) . Now we call answer the three questions by answering

D o e s / r l C_ (0, 1,1) ?
D o e s / r / _C (1 ,0 ,1) ?
D o e s / r 1 C_ (1 , 1 , 0) ?

So with a single call of I t , we discover that f is strict in its first and second argu-
ments, but not necessarily in its third.

274

Forwards analysis nlay require lnany abstract evaluations to find all the strict-
ness of a function, especially if its arguments are of complex types. The reversed
analysis finds all the strictness in one abstract evaluation. Recalling our discussion
of differential equations, this suggests that the boundary conditions for strictness
analysis make it "naturally" a backwards analysis.

3.1.2 Comput ing Safe Reversals

Safe reversals of abstract functions can be computed efficiently if we know safe
reversals for the primitives, and if we can derive safe reversals of compound terms
from safe reversals of their subterms. We'll discuss primitives in the next subsectioh;
the following theorem helps us do the latter.

T h e o r e m 6
I f f r and gr are safe reversals o f f and g respectively, then (i) gr o .fr is a safe reversal
of f o g, and (ii) f r 0 7ri II gr o 7re is a safe reversal of < f , g >.

P r o o f
(i) (gr o f r) o (f og) = gr o f r o f og U__ g r o g U__ id

(ii) (/roTrz U g r o T r ~) o < f , g > = . f r o f U g r o g E i d C]

To find a safe reversal of recursive functions we need a safe reversal of Kj., the
constant undefined function. One such is

_k if y = .l.
K2 Y = T otherwise

Now we can reverse recursive functions using the following theorem.

T h e o r e m 7
Let H and H r be functionals such that for all f , H r maps safe reversals o f f to safe
reversals of H(f) . Then r~,~,=o (H~)"(K~) is a safe reversal of /~f .H(f) .

P r o o f
Since K.[o K• E id, we can show by induction that V n . (Hr)n(K~) o Hn(K.L) U id.
But since we are working in finite lattices all ascending and descending chains are
eventually stationaxy 3, so there is an N such that

OO

~],~176 0 (Hr)"(K~) o II Hn(K• = (Hr)tC(K~) o HN(K• E id

i"1

In applications the functional H will be built up using composition, tupling, and
so on, and a suitable H r will be constructed using the rules above.

SThis theorem could be proved for infinite lattices using continuil,y, but its dual camlot.

275

3 . 2 B e s t R e v e r s a l s

Since safe reversals can safely be approximated downwards, it's natural to ask
whether there are best, or greatest safe reversals. The following definition and
theorem assure us that there are.

Def in i t ion
Given any func t ion / , we de f ine / - y =V~{x [y E / z } []

T h e o r e m 8
f - is the greatest safe reversM of f .

P r o o f
It is clear from the definition that y C f x =~ f - y r- x, so f - is a safe reversal of
f . Moreover, it is the greatest safe reversal, for i f f r is any other safe reversal o f f ,
t h e n y _ f x =>f r y E x , a n d s o f , . y l - ~ {x [y E f x } = f - y []

As a corollaxy to this theorem, we can now show that any function f r is a safe
reversM of f merely by showing that f r E f - .

Best reversals of primitives are now easily calculated. For example,

L if y = J
K2 Y = T otherwise
i d - y = y

y = (y , •

n - y = (y , y)
u - y = (•177

Clearly the last of these loses all infornlation; abstract functions involving U are
therefore hard to reverse accurately.

One may ask whether the methods above for reversing compound terms pro-
duce best reversals from best reversals. Unfortunately they do not. For example,
U o < f , f > = f and so (11 o < f , f >) - = f - but applying the methods devel-
oped yields

(u o < / , / >) - _n < / , / > - o u -
_-D o u -
= / - o K ,
= K• [since all reversals are strict]

so all information is lost. It can therefore be worthwhile deriving special reversal
rules for constructs defined as combinations of the primitives.

3 . 3 R e v e r s i b l e A n a l y s e s a r e G a l o i s C o n n e c t i o n s

Suppose we are given a safe reversal/" o f / . Can we reconstruct (a safe approxima-
tion to)] from it? Reversals arc just like abstract flmctions, except that it's safe

276

to approximate them downwards rather than upwards. Clearly we can construct a
dual theory by im,erting the ordering: f,-r will b c a safe reversal of f r if

Vx, y . f r y E x =*,. y E f " r x

or equivalently, f r r o f~' ~ id. We'll write the best reversal o f f r in this dual theory
as (f~)+, and where there's no risk of confusion We'll be sloppy and write i f -) + also
as f-I-.

It 's easy to show that if f is an abstract function, then f _ f+ . In other words,
the safe reversal of a safe reversal safely approximates the original abstract function.
But what if f+ is actually equal to f ? In that case the two safety conditions can be
combined to give

Vx, y . f - y E x r y E f + x

This tells us that the two directions of analysis have exactly the same power. Any
question of the form y E f+ x can be exactly answered by a question of the form
f - Y E x, and vice versa. Interestingly, it is also the condition under which f+
and jr- form a Galois connection. Hence the slogan: reversible analyses are Galoi8
connections. We can now strengthcn Theorem 6 in a pleasing way.

T h e o r e m 9
If f and g axe (the upper components of) Galois connections, then

(i) f o g is a Galois connection

(ii) < f , g > is a Galois connection

P r o o f
The lower components of these Galois connections are given in Theorem 6, and the
proof is very similax to the proof given there. I::l

Of the primitives discussed so far, id, 7rl, 7re and I"1 axe all (the upper components
of) Galois connections, and so can be analysed equally well in either direction.
However, K• and II are not. Their double reversals a~'e

K+ x = { T i f x = T
l otherwise

U + x = T

It turns out that the triple reversals of these primitives are the s~me as their single
reversals, so that K + and U + are Galois connections. Such cases axe very important
because it means that the double reversal of an abstract function is of exactly the
same power as the single reversal. Thus the power of the single reversal may be
directly compaa'ed with the original. In the case just above, for example, we can see
that a backwards analysis using I J - will have the same power as a forwards analysis
that approximates x U y by T. It is clear that this is a very poor approximation.

We can extend the same idea to show that every abstract function has a best
approximating Galois connection.

T h e o r e m 10
For every abstract function f , there is a least g -1 f such that g is the upper com-
ponent of a Galois connection.

277

P r o o f
We construct g as follows. We know that the double reversal of / satisfies / _C/+,
and therefore] C / + E (/+)+ C . . . Because we are working in finite lattices, this
'increasing chain must eventually be stationary: call the limit g. Clearly f C g.
Moreover, since g+ = g, g is a Galois connection.

It remains to show that if h is a Galois connection with / _ h, then g _ h
also. But, we know that best reversal is anti-monotonic, and so double reversal
is monotonic. From f _E h we ,nay therefore conclude f + _ h + = h. By induction
/+" E h for all n, and so g _ h. I::l

The only combining form we have not yet discussed is recursion. Since K• is not a
Galois connection, it 's hardly surprising that recursive functions are not necessarily
Galois connections either. However, we can prove an analogue of Theorem 7.

T h e o r e m 11
Let H be a functional which maps Galois connections to Galois connections. Then
II,~176 H"(K +) is a Galois connection, with lower component[-]~=0 (H-)"(K~.) where

= (H (g +)) -

P r o o f
Similar to Theorem 7. []

Thus backwards analysis of a recursive function has the same power as forwards
analysis using a variant of recursion whidl starts from K + rather than K• By in-
spection, K + is the hyper-strict function, m,d so at least for the purpose of strictness
analysis it seems that little useful information will be lost.

3 . 4 E x a m p l e : R e v e r s i n g C o n d i t i o n a l s

In this section we apply the theory developed so far to the analysis of conditionals.
The conditional construct we analyse works at the function level:

f x i f p x = t r u e
(p --* f;g) x = g x if p x = false

3_ otherwise

To give the BHA abstract intm]~retation we need a new operator:

3_ if x = O
x t> y = y otherwise

Promoting t> to operate on functions, we can write the abstract interpretation of a
conditional as p I> (] LJ g).

How can we reverse this abstract function? It turns out tha t I> is a Galois
connection with lower componcnt

3_) if y = 3_

278

fl-om which we can infer

(p t> h) - y -7 { • if y = &
- p - I U h- y otherwise

Intuitively, for the result of a conditional to be defined, the condition must be defined
and the branches must be sufficiently defined.

We still need to reverse (f U g), which we can do as follows:

(/ u g)- = (u o < / , ~ >) -
~_ < f , g > - o U -
= < f , g > - o K •
= K•

Using this reversal we find

(v ~" (f u g))- ~ < p , f u ~ > -

That is,

o i>-
~_ (p - o ~ u (f u g) - o r e) o ~-
= p-oTrloC>-

(p i> (f LI g)) -y -1 { .L if y= .L
- p - 1 otherwise

If p is a GMois connection, then this is the lower component of a Galois connection
whose upper" component is p i> T. Thus backwards anMysis of a conditional is
equivalent to forwards analysis where we ignore the branches and simply use the
strictness in the condition.

In some cases this is the best we can do. For example, consider the function
cond defined by cond = 7rl --* re; rs . The best reversal of 7r2 U 7rs really is K• and
so all we can say about cond is that it is strict in its first argument. However, if f
and g have some strictness in common then we may be able to find a much bet ter
reversal of f U g:

f f u g) - y = [-]{~ . lyE/~ u g h }
= N { . ~ l y E _ y ~ u y ~ ^ y ~ c _ I ~ ^ y ~ E _ g ~ }
~_ H { . ~ I y E _ y ~ u y 2 ^ / - y ~ E x ^ g - y ~ _ = }
= ~ { / - y, u g- yo I ,.I E ,J, u ,j~}

Although we've now expressed a safe reversal of f 11 g in terms of f - and g- the
need to consider all I I-factorisations of y makes this formula unsuitable for use in
practice: in general there are too many of them. In the pal'ticulaz case when y is
an element of the two-point domain, however, it can be simplified to

(f U g) - y ~ f - y n .q-y

In the next section we'll show that, in fact, this form can always be used.

279

4 Relating Backwards Analysis to the Concrete
Semantics

So far we have studied reversal of abstract functions, using only the notion of safe
approximation of one abstract flmction by another and, except for examples, have
made no reference to the concrete semantics. The theory is therefore applicable to
any analysis, including those such as Wadler and Hughes' projection analysis which
do not fit the BHA fl'amework. Now we restrict ourselves to this framework: not
surprisingly, we can derive better results in this special case.

BHA abstract functions satisfy the following safety condition: an abstract func-
tion f is safe for a concrete function f if abs o f E_ f o abs. If f r is a safe reversal
o f f , then we have f r o abs o :[C_ f r o f o abs E abs. We can take this relationship
between f r and f as a definition of safety for backwards abstract functions.

Def in i t ion
An abstract funct ionf r is safe backwards for a concrete function f i f f r o abs o f C abs,
or equivalently Vx, a . a E_ abs (f x) =~ f r a E_ abs x. rn

That is, if f 's result is at least as defined as a, then f 's argument must be at least
as defined as f r a. Clearly, this safety condition justifies the test for strictness
developed in section 3.1.

We can now construct a theory of backwards abstract interpretation dual to BHA.
We associate abstract values with Scott-open sets 4 via a concretisation function
conc a = {x I a E abs x} . The safety condition can then be re-expressed as

Vx, a . f x E conc a =~ z e conc (f a)

Scott-open sets form a complete lattice ordered by superset (isomorphic to the Hoare
power domain including {}); conc and ~ are monotonic.

There is a best backwards abstract function for each concrete function f given
by

: [J=[7"~ poabs o f - l o conc

where (P o f) X = { f x [x E X } ~ and f - I y = { x I f x e Y}. He reX* denotes
the interior of the upward closure of X.

The following theorems, analogous to Theorems 6 and 7, enable us to compute
backwards abstract flmctions by abstract interpl~etation.

T h e o r e m 12
If f" and g" are safe backwards for f and g respectively, then

(i) g" o f~ is safe backwards for f o g

(ii) f ' o r ~ U g" o~r~ is safe backwards for < f , g >.

P r o o f
omitted for space reasons. 1:3

4A set 5' is 5"cott-ope.a if it is upwards-closed, and whenever the l imit of a chain LJ~ z~ E S, there is some a such
that x. E 5'. Equivalently, a set is Scott-open if its complement is Scott-closed.

280

T h e o r e m 13
Let H and H ~ be functionals such that whenever f " is safe backwards for f then H ~ f r
is safe backwaxds for H f. Then ~ = 0 (H~)"(KZ) is safe backwards for #f .It f.

P r o o f

(#f.H f) x E conc a
=~ LJ~,,=o H"(K• x e conc a
=~ ~n. H"(K• x e cone a [since conc a is Scott-open]
=~ an. x e cone((g ')"(Ki) a) [by safety of H ~]
=~ x e eonc~-~= 0 (H r) n (g ;) a)

I"1

Cleaxly a safe reversal of a safe forwards abstract function is safe backwards,
but our interest is in safe backwards abstract functions which axe no t safe reversals
of forwards ones. In particular consider the conditional (p --* f; g). The best safe
backwards abstract function is (p --~ f; g)U = ~ o p o a b s o (p --~ f; g)-I o cone. But

{ • if I e S
(p __. f; g)-I S = (p-I {true} N f - I S) O

(p - l{ fa l se} Qg-I S) otherwise

where { l } l is the upwaxds closure of { l} . Using this, and the fact that abs (and
therefore conc) are strict and l-reflecting we obtain,

& i f y = i
(p ._, f;g)l y _ p~ 1 U (f~ y F1 g~ y) otherwise

a n d s o (p - ~ f ; g) = _ u o (p ~ • (f~ n g~))o ~,-.
There are functions that can be shown strict using this rule that cannot be shown

strict by the forwa~'ds analysis. An exa,nple is + o (7rl --* < KI, ~r, >; < 7r~, KI >).
Backwards analysis shows

(+ o (Tr~ --, < K~,Tr2 >; < ~,K~ >))~ I
= (r l --* < Ki,Tre >; < ~r2,K~ >)t (1 , 1)

= ~ 1 u (< K ~ , ~ > ~ (I ,1) n < ~ , K ~ >~ (1,1))
= (I , 0) U ((g~ 1 U r~ 1) I"1 (r~e 1 U Z~ I))

= (1 , 0) u ((o , I) n (o , I))
= (1,1)

and so the function is strict in both arguments. Forwards analysis cannot discover
strictness in the second argument, because when it has abstract value 0 then the
values of the two branches of the conditional axe (1,0) and (0, 1), and taking the
least upper bound loses the information that the argument was 0. This example
has also been noticed by Hunt [Hungl].

It is not true, therefore, that conditionals are "good" forwards and "bad" back-
wards. They are bad in both directions, but in different ways! An analyser which

281

repeatedly worked backwm'ds and forwaxds, using the results of each stage to im-
prove the next, could discover more information than all analyser working in either
direction alone.

The backwards analysis we have derived in tlfis section is essentially the same
as Johnsson's [Job81] or the simplest strictness analysis discussed in [Hug88]. It
can also be thought of as an abstraction of Dybjer's inverse image analysis [Dyb91],
which also used inverse imagcs of Scott-open sets.

5 W a d l e r ' s 4 - p o i n t D o m a i n

In this section we consider the abstraction of lists of atomic values by elements of
Wadler's 4-point domain [Wad87]. The abstract domain is

1E
I

0E
I

OO

I
I

.I. abstracts just the undefined list; oo abstracts lists whose last tail is l and their
limits, infinite lists; 0E abst,r~cts lists ending in n i l and containing an undefined
element; 1E abstracts lists cnding in n i l all of whose elements axe defined. For
example,

abs (cons 1 (cons 2 .L)) = oo
abs [1 , 2 , 1] = 0e
abs [1,2] = 1E

If f ' s abstract function maps oo to .l_ we may conch~de that f is tail-strict; if it maps
0E to _1_ we may conclude that f is head-and-tail-strict.

Lists axe built using cons and n i l aald taken apaxt by pat tern matching. Wadler
gives a special rule for analysing case expressions, but we will instead simulate
pattern-matching with t,hc funct.ions n u l l and uncons:

(x,zs') if XS = c o n s z x s '
uncons xs = _1_ otherwise

The abstract value of n i l is 1E, and the abstraction of cons is given below.

co, I • oo 0e le
0]c~ c~ 0E 0E
1 c~ oo 0E IE

For our analysis of conditionals of the form (nu l l --* f; g) to match Wadler's rule
for case in accuracy, we have to abstract nu l l ' s boolean result by an element of
the four-point domain {.1_, true,false, T}. With this abstraction of booleans better

282

forwards mad backwards analyses of conditionals can be derived: the new backwards
rule is

3_ if y = 3 _
(p y t,',,e u y) n

(p~ false 13 g~ y) otherwise

The abstractions of n u l l and uncons are now:

null
2. .L
oo false
OE false
1E T

u n c o 7 " 1 , 8

3_
O 0

OE
1E

(0,3_)
(1 ,oo)
(1 ,1e)
(1 ,1e)

But there is a problem - - uncons does not distinguish 0E from 1E ! The reason is
that 0E = cons 1 0 E = cons 0 1E , and uncons must approximate both possibili-
ties by their least upper bound. The resulting analysis has very little power, which
is why Wadler gave a special rule for entire case expressions.

But now consider a backwards anMysis. K,a , Cons, and null are all Galois
connections and so may be reversed at once. Reversing uncons is pointless--it
would produce an equally uninformative backwards abstract funct ion--but we can
instead determine the best backwards abstract function for uncons. It is:

uncons" [3_ c~ OE 1E

0 I 1 c~ OE OE
1 c~ c~ OE IE

(To interpret this table intuitively, think of the first argument as the demand for
the head of a cons-cell, and the sccond argument as the demand for the tail. The
result is then the demmld for the whole cons-cell. 1E should be intel~reted as a
head-and-tail-strict demand, and 0E as a tail-strict demand.)

Now all four values of the second argument axe properly distinguished, and indeed
an accurate backwaxds analysis can be based on these functions 5. It corresponds
to projection-based strictness ~mMysis with the projections for head-strictness dis-
carded [WH87, Bur90]. But uncons ~ is not the lower component of a Galois con-
nection since there is no greatest argument mapped to 0 E , and hence no equally
powerful forwards function exists.

We can compare this to the example in section 4 of a flmction where back-
wards analysis is more accurate t, hma forwards: the need for forwards analysis to
approximate (0, 1) and (1 ,0) by (1 ,1) in that example is analogous to the need to
approximate cons 0 1E and cons 1 0 E by cons 1 1E here.

What if we reverse this backwm'ds analysis to derive a more accurate forwards
one? We model case constructs by c a s e (n , /) = n u l l --* K. ; f o uncons. The
interesting term here is f o uncons. Given a fomvards abstract function f for f , a
safe backwards abstract Mnction for this term is uncons ~ o] - . So a safe forwards
abstract function for the composition is

(uncons r o f -) + x = l l {y I (uncons" o f -) y IZ x}

SChoosing hd and t l as primitives instead ofuncons does not lead to a good analysis. The best backwards abstract
function for t], is t l r y = u n c o , ~ s r (0, y) corresponding 1~ the first row of the table, which again fails to distinguish
OE from IE �9

283

Taking x to be 0E for example, the right hand side is

u{y I u~con: (/ - v) ~_ o~ }
= U { y I f - y E _ (O , 1E) V f - y E (1 , 0 e) }
= U { y l / - y E _ (O , l e) } u u{y l l - y_E(1 ,o~) }
= f+(o , le) u / + (~ , o e)

The other cases are similar, but simpler since there is a unique lm'gest value mapped
below x by unconsL Using this abstract function and interpret ing the other paxts
of c a s e (n , /) in the s tandard way leads us to

L if x = J
/ + (1, oo) if x = oo

case(n,/) = /+(1,0E) LI /+ (O, IE) ifz=OE
n U / + (1, 1E) otherwise

which is almost exactly Wadler's rule. The difference is tha t Wadler omi t ted the
double reversal of f that appears here. Of course the double reversal is unnecessary,
bu t to derive this via reversal we need theory developed in [HL91].

6 H i g h e r - o r d e r F u n c t i o n s

Since one of the strengths of BHA analysis is its ability to handle higher-order func-
tions, it 's natural to ask wh~tt happens when we reverse the corresponding abstract
functions. Unfortunately, the reversals are not very informative. This is not surpris-
ing since backwards analyses in general have difficulty with higher-order functions.

Consider first r with type (X ---* Y) x X ---* Y. Its best reversal is

ap- y = M{(f ,x) l y E / x }
= M{(lx ~ y] ,z) I ~ e X }
= (F]{[.~ ~ y] I ~ e X } , M{~ I ~ e X })
= ([T ~ y], •

where [x ~-* y/ is the step function that maps a31y x ~ ~ x to y and all other arguments
to _L. This is the lower component of a Galois connection whose upper component
is ap + (f, x) = / T. Thus all of the information about strictness in the axgument is
lost: backwards analysis can only discover strictncss in the /unc t ion .

In the case of currying,

(A /) - g = [7 {a l g E (Af) a}
= M {a IW. g �9 _ / (~ ,~)}
~ F1 {a I vz . 1~(~ ~) c (a, z)}
= M {a I Vx . 7r,(f~(g x)) ~ a A Vx . r $ (f f (g x)) E x}
= r / { a l T r l (f ~ (g T)) E a A I r e o f r o g C i d }

f T)) if og_c
/ T otherwise

w h e r e / " is a safe reversM o f / . I f " / i s a Galois connection then this is the lower
component of a Galois connection with upper component

T i f a = T
(Af) + a = (Af) a otherwise

284

froln which we see that backwards analysis cannot discover strictness in the sec-
ond argument of a curricd function, since this is equivalent to testing whether
(A/) + T • = •

7 R e l a t i o n a l Reversa l

As we've seen, the reversal of an analysis is usually less accurate than the original.
However, by worldng with sets of abstract values it's possible to derive an analysis
in the opposite direction with equal power. Such an analysis is called relational.

The basic idea is to promote each abstract function f to ~oo f , operating on
upwards-closed sets of abstract valucs. Whatever / is, it turns out that lpo .f is the
upper component of a Galois connection, with lower component f - l . So backwards
abstract functions of the form f - I carry just as much information as the original
functions f . Unfortunately, relational analyses seem to be far too costly to use in
practice.

One compromise is to combine a locally relational analysis with either backwards
or forwards non-relational analyses; the idea being to use the rather expensive re-
lational analysis just for smM1 parts of a program that would be analysed badly by
a non-relational method. Within those parts we can mix backwards and forwards
abstract functions. For instm~cc, Wadler's rather tricky analysis of case expres-
sions can be derived as a locally relational combination of the accurate backwards
abstract function for uncons with the forwards abstract functions used in BHA
strictness analysis.

These results are beyond the scope of this article. They appear in a companion
paper [HL91], where we provide generalised backwards and forwards safety condi-
tions relating relational abstract functions to the concrete semantics, and show that
a relational analysis may be used as part of a non-relational analysis in the same
direction.

8 R e l a t e d W o r k and C o n c l u s i o n s

Strictness analysis h ~ given rise to a rich variety of analyses, both forwa~'ds and
bazkwards, and the relationship bctween these has not always been clear. Not only
are the directions of analysis oftcn different, but commonly so are the abstract
values and their interpretations. Working towards a unified understanding, Burn
showed the relationship between BHA strictness analysis and Wadler and Hughes'
projection-based strictness analysis through the use of so-called "smash projections'
[Bur90]. This allowed the results of each analysis to be related to the results of the
other.

Soon afterwards, Hunt presented a forwards strictness analysis based on partial
equivalence relations (PERs) [Hung0]. These were particularly interesting as most
of the PERs used at the ground types con'esponded exactly with projections. In
particular, the ever elusive property of head-strictness was captured. However in
order for the analysis to be able to derive head-strictness info,~nation a double
analysis within the case construct was required. Again, this may be viewed as an

285

instance of obtaining the best reversal of a backwards analysis by considering the
case construct as a whole.

Meanwhile, spurred by the discovery of a "naturally forwards" projection-based
analysis 6 [Lau89, Lau91], Hughes and Launchbury studied.a direction-independent
formulation of projection analysis [HL90], in order to assess when a view of the
aalalysis from one dircction may cquM or be superior to a view from the other.
The concept of Galois connections arose here as a means of demonstrating equality.
Following this lead, Hunt reformulated much of [HL90] in terms Scott-closed sets,
so divesting it of its dependence on projections [Hun91].

The present paper develops the use of Galois connections as abstract functions
(i.e. within an aalalysis), mad shows that such abstract functions may safely be re-
versed with no loss of accuracy. Furthermore, any abstract function may be safely
reversed, though possibly losing information in the process. In the particular case
where the reversal is itself a Galois connection, its reduced power may be compared
against the original by reversing once more to obtain an abstract function in the
original direction having the same power as the reversed.

These ideas mad methods were then applied to BHA style abstract interpretation,
and provided a link between this and a previously unconnected backwards analy-
sis. In an effort to improve the reversal of the conditional we showed that the best
backwards abstraction of the conditional is incomparable with the best forwards ab-
straction. Consequently, neither forwards nor backwards analysis of the conditional
may be said to be superior to the other.

Wadler's 4-point abstract domain requires a special interpretation of the case
construct to achieve good results. With the experience of reversals, we were able to
see exactly where a naive abstract interpretation would lose information: uncons has
a good backwards abstraction, but a poor forwards abstraction. Unfortunately the
non-relational techniques of this paper are insufficiently powerful to derive Wadler's
rule for case directly, but they were able to produce a very similar version.

Finally we applied the techniques to higher order constructs, in order to obtain a
backwards aalalysis of higher order functions. We obtained a simple reversal which
may be of some use in practice, but one whose power is si/,mificaatly less than the
forwards version.

Recent work by the Niclsons on complexity measures in abstract interpretation
has a~a interesting connection with the work here [NN92]. They show that find-
ing fixed points over lattices of completely additive functions may require at most
a quadratic number of unfoldings, whereas general fixpoint finding is exponential.
As completely additive functions m'e lower components of Galois connections, our
result that ever), abstract function has a best approximating Galois connection (ob-
tained by repeated reversal) may be seen as a generic method for deriving cheap
approximating aaaalyses.

Although the development of this paper has been with an eye on strictness anal-
ysis, many of the results are further reaching: strictness analysis is used mainly as
a pedagogic tool, and the techniques may be applied to other analyses.

Snamely binding-time analysis, as uscd in parl.ial evaluation

286

R e f e r e n c e s

[AH87] S.Abramsky and C.L.Hankin eds., Abstract Interpretation of Declarative
Languages. Ellis Horwood, Chichcster, England, 1987.

[BHA86] G.L.Burn, C.L.Hankin and S.Abramsky, Strictness analysis for higher or-
der functions, In Science of Corrqmter Programming, 7, 249-278, 1986.

[Bur90] G.L.Burn, A relation.ship between abstract interpretation and projection
analysis, POPL, 1990.

[CC771 P.Cousot and R.Cousot, Abstract Interpretation: A unified lattice model for
static analyses of programs by construction of approximation of fixpoints, POPL,
1977.

[Dyb91] P.Dybjer, Inverse Image Analysis Generalises Strictness Analysis, Infor-
mation aald Computation 90, 2, 1991, pp 194-216.

[Hal87] C.V.Hall, Strictness Analysis Applied to Programs with Lazy List Construc-
tors, Ph.D. thesis, Indiana University, 1987.

[HL90] R.J.M.Hughes and J.Launchbury, Towards Relating Forwards and Back-
wards Analyses, Glasgow Functional Programming, Ullapool, In Workshops in
Computing, S-V, 1991.

[HL91] R.J.M.Hughes and J.Launchbury~ Locally Relational Abstract Interpretation,
in preparation, Glasgow University, 1991.

[Hug88] R.J.M.Hughes, Backwards Analysis of Functional Programs, In D. Bj0rner,
A. Ershov aald N.D. Jones eds. Partial Evaluation and Mixed Computation, Proc.
IFIP TC2 Workshop, Demnark, Oct 1987; North-Holland, 1988.

[Hun90] S.Hunt, PERs generalise projections for strictness analysis, Glasgow Func-
tional Programming, Ullapool, In Workshops in Computing, S-V, 1991.

[Hun91] S.Hunt, Forwards and Backwards Strictness Analysis: Continuing the Com-
parison, unpublished draft, hnpcrial College, 1991.

[Joh81] T.Johnsson, Detecting whcn Call-by-Value can be used instead of Call.by.
Need, Programming Methodology Group, PMG-14, Chalmers, Gothenburg, 1981.

[Lau89] J.Launchbury. Projection Factorisations in Partial Evaluation. Ph.D. The-
sis, Glasgow University, 1989; Distinguished Dissertations in Computer Science,
Vol 1, C.U.P. 1991.

[Lan91] J.Launchbury. Strictness and Binding-Time Analyses: Two for the Price of
One, SIGPLAN PLDI, Toronto, 1991.

[Myc81] A.Mycroft, Abstract inteT:pretation and optimising transformations for ap-
plicative languages, Ph.D. thesis, Universit.y of Edinburgh, 1981.

[NN92] H.R.Nielson and F.Nielson, Bounded Fixed Point Iteration, POPL 92.

[WH87] P.Wadler and R.J.M.Hughes, Projections for Strictness Analysis, FPCA 87.

[Wad87] P.Wadler, Strictness analysis on non-flat domains, In [AH87], 1987.

