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1 I n t r o d u c t i o n  

Many semantic analyses of functional languages have been developed using the 
Cousots' abstract interpretation fralnework [CC77]. Some, such as Mycroft's pio- 
neering strictness analysis [MycS1] and Burn, Hankin and Abramsky's extension of 
it to higher=m~ler [BHA86], operate on abstract values representing the past history 
of the computation, and are therefore called forwards analyses. Others, such as 
W~Uer and Hughes' projection-based strictness analysis [WH87], or Hall's analysis 
of strictness patterns [Hal87] propagate abstract contexts representing the future of 
the computation, and are called backwards analyses. However, although the type 
of abstract information may suggest a "natural" direction, it is in fact possible to 
perform any analysis in either direction. The goal of this paper is to show how to 
reverse any given analysis. 

Why might one prefer one direction of analysis over another? We shall draw 
an analogy with solving a differential equation on an interval. Solutions may be 
found by iterating from one end of the interval to the other, with the two possible 
directions con'esponding to backwards and forwards analysis. But the purpose of 
an analysis is to answer a question, and such questions correspond to giving the 
boundary conditions at one end of the interval and asking for the function's value 
at the other. In such a case it's clearly preferable to start solving the equation at 
the end where the boundary conditions are known. Note that it's not impossible 
to work in the other direction--one can always use trial and error to find boundary 
conditions at the beginning that produce the right values at the end--but  in general 
working in the "wrong" direction will require many solutions to be calculated where 
one would suffice in the other direction. We will see exactly this effect arising in the 
case of strictness analysis. 

Every analysis associates with each function in the source program a correspond- 
ing abstract function. To reverse an analysis we have to "invert" these abstract 
functions. We begin by considering the conditions under which one function can be 
said to safely approximate the inverse of another. We show that there is a best re- 
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versal of each abstract function; and how best reversals interact with the combining 
forms of a programming language. 

Sometimes the best reversal of an abstract function carries less information than 
the original. This raises the question "How much less?" One way to compare 
abstract functions with their reversals is to reverse the reversal again, but  this may 
lose still more information. However, there is a class of functions whose reversal 
carries exactly the same information, and which may therefore be reversed any 
number of times with no loss. These turn out to be Galois connections. There is a 
best approximating Galois connection to each abstract function, which provides an 
upper bound on the information lost by reversal. 

The application we consider in this paper is the reversal of Burn, Hankin and 
Abramsky's strictness analysis. The analysis of the conditional proves hard to re- 
verse; we therefore derive a rule for backwards analysis directly from the concrete se- 
mantics. The power of this backwards rule is incomparable with that  of the forwards 
rule, disproving the old chestnut that  conditionals are better analysed forwards. The 
analysis derived is a previously known backwards analysis, but  it's relation to BHA 
and the corresponding proof of correctness were previously unknown. 

We go on to consider Wadler's 4-point abstract domain for lists [Wad87]. The 
reversal of his analysis turns out to be simpler than the original. In fact, Wadler's 
forwards a~.alysis of case expressions contains a complication which can be seen as 
necessary to obtain a good reversal of a backwards form! 

Finally, we derive a backwards analysis of higher-order programs from the BHA 
forwards analysis. Perhaps not surprisingly, we fail to obtain a particularly accurate 
analysis. 

2 Background 

2 .1  T h e  O b j e c t  L a n g u a g e  

We will discuss analyses in the context of a simple typed functional language based 
on categoricM notation. Types are base types (such as In t ) ,  and types built from 
them using • L i s t  (in section 5) and --* (in section 6). Terms denote continuous 
functions, and are built from an unspecified collection of primitive functions using 
combining forms. The basic term syntax is 

term ::= ide I term o term I < t e r m ,  t e r m >  [ #ide. term 

Here o denotes composition, < f , g  > denotes the function < f , g  > x = (f x,g x) 
and #f.H(.f) is the recursive function satisfying #f.H(f) = H(pf.H(f)). The primi- 
tives include at least the projection functious r l ,  7r~, and the constant functions 
Kc x = c. Although our language is monomorphic, for notational convenience we 
will allow polymorphic primitives such as II : VX. X x X -~ X. Occun'ences of such 
primitives should be read as the appropriate member of a family of monomorphic 
functions. 

We will consider extensions of the language with other combining forms such 
as the conditional (p --* f; g) (see section 3.4). In particular, we can extend this 
first-order language to a higher-order one by adding the combining form A (curry) 
and the polymorphic primitive ap, where (Af) x = )~y.f(z,  y) and ap (f ,  x) = f x. 
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2 . 2  A b s t r a c t  I n t e r p r e t a t i o n  

We'll use the same laa~guage to express abstract funct ions ,  which we distinguish 
notationally using italics. We restrict the types over which abstract functions are 
defined to be f inite lattices. This is consistent with [BHA86] and [WH87] for example, 
where the restriction is used to guarantee termination of analysis 1. Finiteness is 
important  here for a different reason: it means continuity reduces to monotonicity 
in the proofs which follow, and indeed some of the fnnctions we construct need not 
be continuous in the infinite case. 

Abstract functions come with a notion of safe approximation: we say it is safe 
to approximate upwards if an abstract function f can be replaced by any f _3 f 
without compromising the correctness of conclusions drawn from the analysis. Less 
commonly, it may be safe to approximate dowmvards. When an analyser cannot 
predict which of two abstract flmctions f or g applies (for example, in the anal- 
ysis of a conditional) it may safely approximate by f U g if the direction of safe 
approximation is upwards, or by f n g if it is downwards. 

To define an analysis we associate each type A with a corresponding abstract 
type A t, and give a safety condition rclating concrete functions f : A --~ B to ab- 
stract functions f : A t --* B ~ for a forwards aalalysis, or f : B t -~ A t for a backwaa'ds 
one. The safety condition tells us when an abstract function faithfully reflects the 
behaviour of the concrete one, and must be consistent with the notion of safe ap-  
proximation for abstract functions. Since this condition relates the semant ics  of a 
concrete function to an abstract function it is not immediately useful in a compiler, 
but  we can compute safe abstract functions for any term given abstract functions 
for the primitives and ways of deriving abstract functions for compound terms from 
those for their subterms. This process is called abstract interpretation. 

2 . 3  T h e  B u r n ,  H a n k i n  a n d  A b r a m s k y  F r a m e w o r k  

In the BHA approach, concrete and abstract types are related by a family of ab- 
straction .functions absA : A ---* A ~ and the safety condition relating f : A --* B to 
f : A  t---, B ~is a b s B o f  C_ foabsA .  

Abstract values axe associated with Scott-closed 2 sets of concrete values via con- 
cretisation functions, concA a = {x  I absA x U a}. The safety condition can be re- 
formulated as Vx,  a . x E conc a =~ f x E conc( f  a). 

There is a best abstract function for each concrete function f : A --* B given 
by [J o pH(abs~ o f)  o concA where (P l f f )  X = { f  x ] x E Z}* and X* denotes the 
Scott-closure of X. Products axe abstracted as products, so (A x B) t = A t • B t 
and absA• (x, y) = (absA x, absD y). 

The following theorems justify a very simple abstract interpretation of terms: 

T h e o r e m  1 
If f and g m'e safe for f and g respectively, then 

(i) f o g is safe for f o g 
(ii) < f ,  g > is safe for < f ,  g > 

1Although finiteness is commonly required there are other ways of ensuring termination - -  see [CC77]. 
2A set S is Scott-closed if it is downwards clo~,d, and whencver all tim elements of a chain lle in S, so does the- 

limit. 
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T h e o r e m  2 
Let H and H be functionals such that whenever f is safe for f ,  then H f is safe for 
H f.  Then # f . H  f is safe for #f.S f.  

Similar theorems must be proved for each proposed analysis. This approach 
extends very naturally to the higher-order case. We define (A --~ B) B -- AS--* B j 
and absA~ B :[ = [J o ~H(absB o :f) o cOnCA, with abstract interpretation justified by: 

T h e o r e m  3 
I f f  is safe for f ,  then (i) Af is safe for Af, and (ii) ap is safe for ap. 

Strictness analysis is cast in this framework by abstracting base types as the 
2-point domain 2 = {0 U 1}, with abstraction defined by 

absDase x = { 0 if x = .l_ 
1 othm~vise 

I~ follows that  all abstraction functions are strict a~ld .l_-reflecting: in other words 
abs x = .l. r x = .L. From this and the safety condition abs o f C f o abs we see 
that  if f is strict, f must be too. We can test for strictness of f by testing whether  
f o = o .  

2 . 4  G a l o i s  C o n n e c t i o n s  

De f in i t i on  
A Galois connection between lattices A and B is a pair of monotonic functions 
/ : A - - * B  and g : B - - . A  such that  f o g  ~ id and g o ]  E id, or equivalently 
Vx, y. g y E x ~=~ y _ f x. f is called the upper component  and g is called the 
lower component.  D 

T h e o r e m  4 
Let (f,  g) be a Galois connection. Then (i) ] T = T and g .L = .1_, (ii) f distributes 
over R, g distributes over U, and (iii) g y is the least x such that  y U ] x and ] x 
is the greatest y such that  g y E x. 

C o r o l l a r y  5 
Each component of a Galois connection uniquely determines the other. 

In view of the Corollary we will sometimes be sloppy and say "the Galois connection 
p '  instead of "the upper-component of a Galois connection f " .  

Galois connections were used by the Cousots to relate abstraction and concreti- 
sation, and consequently often appear in papers on abstract interpretation. The 
use we ea'e maldng of them is quite different: we use Galois connections as abstract 
functions, the Cousots used them as abstraction functions. 

3 Reversing an Analysis 

3 . 1  S a f e  R e v e r s a l s  

Suppose we're given an abstract function f : A --+ B to reverse. In general, f will not 
have an exact inverse and we will need to approximate. We therefore need to know 
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in which direction approximation is safe: suppose the safe direction is upwards so 
that  any f~ _2 f may safely be used instead of f .  Furthermore, suppose the questions 
we want to answer are of the form 

Does y _C [ .'r ? 

Since it's safe to approximate f upwards, such questions can safely be answered 'yes' 
when the correct answer is 'no', but must never be a2~lswerec~ 'no' when the correct 
answer is 'yes'. Thus, 'no' means 'no', whereas 'yes' means 'maybe'. 

When can a reversed function f r  : B --* A be used to answer such questions? 
Since f r  is a kind of inverse, we'll ask instead 

Doesf~ y _ z  ? 

We can use the answer to this question as an answer to the previous one provided 
y C_ f z =~ f r y  C X, since then we can never answer 'no' by mistake (negate both 
sides to obtain the more intuitive implication). 

Def in i t ion  
f r  is a safe reversal of f if Vz, y . y C f z =~ f~ y C z, or equivalently, i f /~  o f  C_ id 
[] 

Note that safe reversals ~'e always strict, and that a n y / r '  ___ f r  is also a safe 
reversal of f .  In other words, safe reversals can be safely approxilhated in the 
opposite direction from abstract functions. 

3.1.1 Example 

In the case of BHA strictness analysis the test for strictness is usually phrased 
slightly differently. For example, if f is an integer-valued function of three integer 
parameters and f is its abstract function, then strictness is tested in each argument 
separately by asldng the questions 

D o e s /  (0 ,1;1)  = 0 ? 
D o e s / ( 1 , 0 , 1 )  = 0 ? 
D o e s /  (1 ,1 ,0 )  = 0 ? 

Of course, we can instead ask 

Does 1 E /  (0 ,1 ,1 )  ? 
Does 1 C_f (1 ,0 ,1 )  ? 
Does 1 E f  (1 ,1 ,0 )  ? 

whose answers are the negations of those above. But suppose ] r  is a safe reversal of 
f ,  and f r l  - (1 ,1 ,0 ) .  Now we call answer the three questions by answering 

D o e s / r l  C_ (0, 1,1)  ? 
D o e s / r /  _C (1 ,0 ,1 )  ? 
D o e s / r 1  C_ ( 1 , 1 , 0 )  ? 

So with a single call of I t ,  we discover that  f is strict in its first and second argu- 
ments, but not necessarily in its third. 
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Forwards analysis nlay require lnany abstract evaluations to find all the strict- 
ness of a function, especially if its arguments are of complex types. The reversed 
analysis finds all the strictness in one abstract evaluation. Recalling our discussion 
of differential equations, this suggests that  the boundary conditions for strictness 
analysis make it "naturally" a backwards analysis. 

3.1.2 Comput ing  Safe Reversals 

Safe reversals of abstract functions can be computed efficiently if we know safe 
reversals for the primitives, and if we can derive safe reversals of compound terms 
from safe reversals of their subterms. We'll discuss primitives in the next subsectioh; 
the following theorem helps us do the latter. 

T h e o r e m  6 
I f f  r and gr are safe reversals o f f  and g respectively, then (i) gr o .fr is a safe reversal 
of f o g, and (ii) f r  0 7ri II gr o 7re is a safe reversal of < f ,  g >. 

P r o o f  
(i) (gr o f r )  o ( f  og)  = gr o f r  o f  og  U__ g r o g  U__ id 

(ii) (/roTrz U g r o T r ~ ) o < f , g >  = . f r o f  U g r o g E i d  C] 

To find a safe reversal of recursive functions we need a safe reversal of Kj., the 
constant undefined function. One such is 

_k if y = .l. 
K2 Y = T otherwise 

Now we can reverse recursive functions using the following theorem. 

T h e o r e m  7 
Let H and H r be functionals such that  for all f ,  H r maps safe reversals o f f  to safe 
reversals of H(f ) .  Then r~,~,=o (H~)"(K~) is a safe reversal of /~f .H(f) .  

P r o o f  
Since K.[ o K• E id, we can show by induction that  V n .  (Hr)n(K~) o Hn(K.L) U id. 
But since we are working in finite lattices all ascending and descending chains are 
eventually stationaxy 3, so there is an N such that  

OO 

~],~176 0 (Hr)"(K~) o II Hn(K• = (Hr)tC(K~) o HN(K• E id 

i"1 

In applications the functional H will be built up using composition, tupling, and 
so on, and a suitable H r will be constructed using the rules above. 

SThis theorem could be proved for infinite lattices using continuil,y, but its dual camlot. 
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3 . 2  B e s t  R e v e r s a l s  

Since safe reversals can safely be approximated downwards, it's natural to ask 
whether there are best, or greatest safe reversals. The following definition and 
theorem assure us that  there are. 

Def in i t ion  
Given any func t ion / ,  we de f ine / -  y =V~{x [ y E / z }  [] 

T h e o r e m  8 
f -  is the greatest safe reversM of f .  

P r o o f  
It is clear from the definition that y C f x =~ f -  y r- x, so f -  is a safe reversal of 
f .  Moreover, it is the greatest safe reversal, for i f f  r is any other safe reversal o f f ,  
t h e n y _ f x  =>f r  y E x ,  a n d s o f , . y l - ~  {x [ y E f  x } = f -  y [] 

As a corollaxy to this theorem, we can now show that any function f r  is a safe 
reversM of f merely by showing that f r  E f - .  

Best reversals of primitives are now easily calculated. For example, 

_L if y =  J_ 
K2 Y = T otherwise 
i d - y  = y 

y = ( y , •  

n -  y = ( y , y )  
u - y  = (•177 

Clearly the last of these loses all infornlation; abstract functions involving U are 
therefore hard to reverse accurately. 

One may ask whether the methods above for reversing compound terms pro- 
duce best reversals from best reversals. Unfortunately they do not. For example, 
U o < f , f >  = f  and so (11 o < f , f  > ) - = f -  but applying the methods devel- 
oped yields 

( u o < / , / > ) -  _n < / , / > - o u -  
_-D o u -  
= / - o K ,  
= K• [since all reversals are strict] 

so all information is lost. It can therefore be worthwhile deriving special reversal 
rules for constructs defined as combinations of the primitives. 

3 . 3  R e v e r s i b l e  A n a l y s e s  a r e  G a l o i s  C o n n e c t i o n s  

Suppose we are given a safe reversal/" o f / .  Can we reconstruct (a safe approxima- 
tion to) ] from it? Reversals arc just like abstract flmctions, except that  it's safe 
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to approximate them downwards rather than upwards. Clearly we can construct a 
dual theory by im,erting the ordering: f,-r will b c a  safe reversal of f r  if 

Vx, y . f r  y E x  =*,. y E f " r  x 

or equivalently, f r r  o f~' ~ id. We'll write the best reversal o f f  r in this dual theory 
as (f~)+, and where there's no risk of confusion We'll be sloppy and write i f - ) +  also 
as f-I-. 

It 's easy to show that  if f is an abstract function, then f _ f+ .  In other words, 
the safe reversal of a safe reversal safely approximates the original abstract function. 
But what if f+  is actually equal to f ?  In that  case the two safety conditions can be 
combined to give 

Vx, y . f - y E x  r y E f +  x 

This tells us that  the two directions of analysis have exactly the same power. Any 
question of the form y E f+  x can be exactly answered by a question of the form 
f -  Y E x, and vice versa. Interestingly, it is also the condition under which f+  
and jr- form a Galois connection. Hence the slogan: reversible analyses are Galoi8 
connections. We can now strengthcn Theorem 6 in a pleasing way. 

T h e o r e m  9 
If f and g axe (the upper components of) Galois connections, then 

(i) f o g is a Galois connection 

(ii) < f ,  g > is a Galois connection 

P r o o f  
The lower components of these Galois connections are given in Theorem 6, and the 
proof is very similax to the proof given there. I::l 

Of the primitives discussed so far, id, 7rl, 7re and I"1 axe all (the upper components 
of) Galois connections, and so can be analysed equally well in either direction. 
However, K• and II are not. Their double reversals a~'e 

K+ x = { T  i f x = T  
l otherwise 

U + x = T 

It turns out that  the triple reversals of these primitives are the s~me as their single 
reversals, so that  K + and U + are Galois connections. Such cases axe very important  
because it means that  the double reversal of an abstract function is of exactly the 
same power as the single reversal. Thus the power of the single reversal may be 
directly compaa'ed with the original. In the case just above, for example, we can see 
that  a backwards analysis using I J -  will have the same power as a forwards analysis 
that  approximates x U y by T. It is clear that  this is a very poor approximation. 

We can extend the same idea to show that  every abstract function has a best 
approximating Galois connection. 

T h e o r e m  10 
For every abstract function f ,  there is a least g -1 f such that  g is the upper com- 
ponent of a Galois connection. 
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P r o o f  
We construct g as follows. We know that the double reversal of / satisfies / _C/+, 
and therefore ] C / +  E (/+)+ C . . .  Because we are working in finite lattices, this 
'increasing chain must eventually be stationary: call the limit g. Clearly f C g. 
Moreover, since g+ = g, g is a Galois connection. 

It remains to show that  if h is a Galois connection with / _ h, then g _ h 
also. But, we know that  best reversal is anti-monotonic, and so double reversal 
is monotonic. From f _E h we ,nay therefore conclude f +  _ h + = h. By induction 
/+"  E h for all n, and so g _ h. I::l 

The only combining form we have not yet discussed is recursion. Since K• is not a 
Galois connection, it 's hardly surprising that  recursive functions are not  necessarily 
Galois connections either. However, we can prove an analogue of Theorem 7. 

T h e o r e m  11 
Let H be a functional which maps Galois connections to Galois connections. Then 
II,~176 H"(K +) is a Galois connection, with lower component[-]~=0 (H-)"(K~.) where 

= ( H ( g + ) ) -  

P r o o f  
Similar to Theorem 7. [] 

Thus backwards analysis of a recursive function has the same power as forwards 
analysis using a variant of recursion whidl starts from K + rather  than K• By in- 
spection, K + is the hyper-strict function, m,d so at least for the purpose of strictness 
analysis it seems that  little useful information will be lost. 

3 . 4  E x a m p l e :  R e v e r s i n g  C o n d i t i o n a l s  

In this section we apply the theory developed so far to the analysis of conditionals. 
The conditional construct we analyse works at the function level: 

f x i f p x = t r u e  
(p --* f;g) x = g x if p x = false 

3_ otherwise 

To give the BHA abstract intm]~retation we need a new operator: 

3_ if x = O  
x t> y = y otherwise 

Promoting t> to operate on functions, we can write the abstract interpretation of a 
conditional as p I> (] LJ g). 

How can we reverse this abstract function? It turns out tha t  I> is a Galois 
connection with lower componcnt 

3_) if y = 3_ 
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fl-om which we can infer 

(p t> h ) - y  -7 { • if y = &  
- p -  I U h-  y otherwise 

Intuitively, for the result of a conditional to be defined, the condition must be defined 
and the branches must be sufficiently defined. 

We still need to reverse (f U g), which we can do as follows: 

(/ u g)- = ( u o < / , ~ > ) -  
~_ < f , g > -  o U -  
= < f , g > -  o K •  
= K• 

Using this reversal we find 

(v ~" (f u g))-  ~ < p , f  u ~ > -  

That  is, 

o i>- 
~_ ( p - o ~  u (f u g ) - o r e ) o  ~- 
= p-oTrloC>- 

(p i> (f LI g) ) -y  -1 { .L if y= .L  
- p -  1 otherwise 

If p is a GMois connection, then this is the lower component of a Galois connection 
whose upper" component is p i> T. Thus backwards anMysis of a conditional is 
equivalent to forwards analysis where we ignore the branches and simply use the 
strictness in the condition. 

In some cases this is the best  we can do. For example, consider the function 
cond defined by cond = 7rl --* re; rs .  The best reversal of 7r2 U 7rs really is K• and 
so all we can say about  cond is that it is strict in its first argument. However, if f 
and g have some strictness in common then we may be able to find a much bet ter  
reversal of f U g: 

f f u g ) - y  = [ - ]{~ . lyE/~  u g h }  
= N { . ~ l y E _ y ~ u y ~  ^ y ~ c _ I ~  ^ y ~ E _ g ~ }  
~_ H { . ~ I y E _ y ~ u y 2  ^ / - y ~ E x  ^ g - y ~ _ = }  
= ~ { / -  y, u g- yo I ,.I E ,J, u ,j~} 

Although we've now expressed a safe reversal of f 11 g in terms of f -  and g-  the 
need to consider all I I-factorisations of y makes this formula unsuitable for use in 
practice: in general there are too many of them. In the pal'ticulaz case when y is 
an element of the two-point domain, however, it can be simplified to 

(f U g ) - y  ~ f - y  n .q-y 

In the next section we'll show that,  in fact, this form can always be used. 
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4 Relating Backwards Analysis to the Concrete 
Semantics 

So far we have studied reversal of abstract functions,  using only the notion of safe 
approximation of one abstract flmction by another and, except for examples, have 
made no reference to the concrete semantics. The theory is therefore applicable to 
any analysis, including those such as Wadler and Hughes' projection analysis which 
do not fit the BHA fl'amework. Now we restrict ourselves to this framework: not 
surprisingly, we can derive better results in this special case. 

BHA abstract functions satisfy the following safety condition: an abstract func- 
tion f is safe for a concrete function f if abs o f E_ f o abs. If f r  is a safe reversal 
o f f ,  then we have f r o  abs o :[ C_ f r  o f  o abs E abs. We can take this relationship 
between f r  and f as a definition of safety for backwards abstract functions. 

Def in i t ion  
An abstract funct ionf  r is safe backwards for a concrete function f i f f  r o abs o f C abs, 
or equivalently Vx, a . a E_ abs ( f  x) =~ f r  a E_ abs x. rn 

That is, if f 's  result is at least as defined as a, then f 's  argument must be at least 
as defined as f r  a. Clearly, this safety condition justifies the test for strictness 
developed in section 3.1. 

We can now construct a theory of backwards abstract interpretation dual to BHA. 
We associate abstract values with Scott-open sets 4 via a concretisation function 
conc a = {x  I a E abs x} .  The safety condition can then be re-expressed as 

Vx, a . f x E conc a =~ z e conc ( f  a) 

Scott-open sets form a complete lattice ordered by superset (isomorphic to the Hoare 
power domain including {}); conc and ~ are monotonic. 

There is a best backwards abstract function for each concrete function f given 
by 

: [ J=[7"~  poabs o f - l  o conc 

where ( P o f )  X = { f x  [ x E X }  ~ and f - I  y = { x  I f  x e  Y}. He reX*  denotes 
the interior of the upward closure of X. 

The following theorems, analogous to Theorems 6 and 7, enable us to compute 
backwards abstract flmctions by abstract interpl~etation. 

T h e o r e m  12 
If f"  and g" are safe backwards for f and g respectively, then 

(i) g" o f~ is safe backwards for f o g 

(ii) f ' o r ~  U g" o~r~ is safe backwards for < f , g  >. 

P r o o f  
omitted for space reasons. 1:3 

4A set 5' is 5"cott-ope.a if it is upwards-closed, and whenever the l imit  of a chain LJ~ z~ E S, there is some a such 
that x. E 5'. Equivalently, a set is Scott-open if its complement is Scott-closed. 
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T h e o r e m  13 
Let H and H ~ be functionals such that whenever f "  is safe backwards for f then H ~ f r  
is safe backwaxds for H f. Then ~ = 0  (H~)"(KZ) is safe backwards for #f  .It f. 

P r o o f  

(#f.H f) x E conc  a 
=~ LJ~,,=o H"(K• x e conc a 
=~ ~n. H"(K• x e cone a [since conc a is Scott-open] 
=~ an. x e cone((g ' )"(Ki)  a) [by safety of H ~] 
=~ x e eonc~-~= 0 ( H r ) n ( g ; )  a) 

I"1 

Cleaxly a safe reversal of a safe forwards abstract function is safe backwards, 
but our interest is in safe backwards abstract functions which axe no t  safe reversals 
of forwards ones. In particular consider the conditional (p --* f; g). The best safe 
backwards abstract function is (p --~ f; g)U = ~ o p o a b s  o (p --~ f; g)-I o cone.  But 

{ •  if I e S 
(p __. f; g)-I S = (p-I {true} N f - I  S) O 

(p - l{ fa l se}  Qg-I  S) otherwise 

where { l }  l is the upwaxds closure of { l} .  Using this, and the fact that abs (and 
therefore conc)  are strict and l-reflecting we obtain, 

& i f y = i  
(p ._, f;g)l y _ p~ 1 U (f~ y F1 g~ y) otherwise 

a n d s o ( p - ~ f ; g ) = _ u o ( p ~  • (f~ n g~))o ~,-. 
There are functions that can be shown strict using this rule that cannot be shown 

strict by the forwa~'ds analysis. An exa,nple is + o (7rl --* < KI, ~r, >; < 7r~, KI >). 
Backwards analysis shows 

(+ o (Tr~ --, < K~,Tr2 >; < ~,K~ >))~ I 
= (r l  --* < Ki,Tre >; < ~r2,K~ >)t ( 1 , 1 )  

= ~ 1 u ( < K ~ , ~ > ~  (I ,1)  n < ~ , K ~  >~ (1,1)) 
= ( I , 0 )  U ((g~ 1 U r~ 1) I"1 (r~e 1 U Z~ I))  

= ( 1 , 0 )  u ( ( o , I )  n ( o , I ) )  
= (1,1) 

and so the function is strict in both arguments. Forwards analysis cannot discover 
strictness in the second argument, because when it has abstract value 0 then the 
values of the two branches of the conditional axe (1,0)  and (0, 1), and taking the 
least upper bound loses the information that the argument was 0. This example 
has also been noticed by Hunt [Hungl]. 

It is not true, therefore, that conditionals are "good" forwards and "bad" back- 
wards. They are bad in both directions, but in different ways! An analyser which 
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repeatedly worked backwm'ds and forwaxds, using the results of each stage to im- 
prove the next, could discover more information than all analyser working in either 
direction alone. 

The backwards analysis we have derived in tlfis section is essentially the same 
as Johnsson's [Job81] or the simplest strictness analysis discussed in [Hug88]. It 
can also be thought of as an abstraction of Dybjer's inverse image analysis [Dyb91], 
which also used inverse imagcs of Scott-open sets. 

5 W a d l e r ' s  4 - p o i n t  D o m a i n  

In this section we consider the abstraction of lists of atomic values by elements of 
Wadler's 4-point domain [Wad87]. The abstract domain is 

1E 
I 

0E 
I 

OO 

I 
I 

.I. abstracts just the undefined list; oo abstracts lists whose last tail is l and their 
limits, infinite lists; 0E abst,r~cts lists ending in n i l  and containing an undefined 
element; 1E abstracts lists cnding in n i l  all of whose elements axe defined. For 
example, 

abs (cons 1 (cons 2 .L)) = oo 
abs [ 1 , 2 , 1 ]  = 0e  
abs [1,2] = 1E 

If f ' s  abstract function maps oo to .l_ we may conch~de that  f is tail-strict; if it maps 
0E to _1_ we may conclude that f is head-and-tail-strict. 

Lists axe built using cons and n i l  aald taken apaxt by pat tern matching. Wadler 
gives a special rule for analysing case expressions, but  we will instead simulate 
pattern-matching with t,hc funct.ions n u l l  and uncons: 

(x,zs') if XS = c o n s  z x s '  
uncons xs = _1_ otherwise 

The abstract value of n i l  is 1E, and the abstraction of cons is given below. 

co,  I • oo 0e le 
0 ]c~ c~ 0E 0E 
1 c~ oo 0E IE 

For our analysis of conditionals of the form (nu l l  --* f; g) to match Wadler's rule 
for case in accuracy, we have to abstract nu l l ' s  boolean result by an element of 
the four-point domain {.1_, true,false, T}. With this abstraction of booleans better 
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forwards mad backwards analyses of conditionals can be derived: the new backwards 
rule is 

3_ if y = 3 _  
(p y t,',,e u y) n 

(p~ false 13 g~ y) otherwise 

The abstractions of n u l l  and uncons are now: 

null 
2. .L 
oo false 
OE false 
1E T 

u n c o 7 " 1 , 8  

3_ 
O 0  

OE 
1E 

(0,3_) 
(1 ,oo) 
(1 ,1e )  
(1 ,1e)  

But there is a problem - -  uncons does not distinguish 0E from 1E ! The reason is 
that  0E = cons 1 0 E  = cons 0 1E ,  and uncons must approximate both possibili- 
ties by their least upper bound. The resulting analysis has very little power, which 
is why Wadler gave a special rule for entire case  expressions. 

But now consider a backwards anMysis. K,a ,  Cons, and null are all Galois 
connections and so may be reversed at once. Reversing uncons is pointless--it  
would produce an equally uninformative backwards abstract funct ion--but  we can 
instead determine the best backwards abstract function for uncons. It is: 

uncons" [ 3_ c~ OE 1E 

0 I 1 c~ OE OE 
1 c~ c~ OE IE 

(To interpret this table intuitively, think of the first argument as the demand for 
the head of a cons-cell, and the sccond argument as the demand for the tail. The 
result is then the demmld for the whole cons-cell. 1E should be intel~reted as a 
head-and-tail-strict demand, and 0E as a tail-strict demand.) 

Now all four values of the second argument axe properly distinguished, and indeed 
an accurate backwaxds analysis can be based on these functions 5. It corresponds 
to projection-based strictness ~mMysis with the projections for head-strictness dis- 
carded [WH87, Bur90]. But uncons ~ is not the lower component of a Galois con- 
nection since there is no greatest argument mapped to 0 E ,  and hence no equally 
powerful forwards function exists. 

We can compare this to the  example in section 4 of a flmction where back- 
wards analysis is more accurate t, hma forwards: the need for forwards analysis to 
approximate (0, 1) and (1 ,0 )  by (1 ,1)  in that  example is analogous to the need to 
approximate cons  0 1E and cons 1 0 E  by cons 1 1E here. 

What  if we reverse this backwm'ds analysis to derive a more accurate forwards 
one? We model case  constructs by c a s e ( n , / )  = n u l l  --* K. ; f o uncons. The 
interesting term here is f o uncons. Given a fomvards abstract function f for f ,  a 
safe backwards abstract Mnction for this term is uncons ~ o ] - .  So a safe forwards 
abstract function for the composition is 

(uncons r o f - )  + x = l l {y I (uncons" o f - )  y IZ x}  

SChoosing hd and t l  as primitives instead ofuncons does not lead to a good analysis. The best backwards abstract 
function for t], is t l  r y = u n c o , ~ s  r (0, y) corresponding 1~ the first row of the table, which again fails to distinguish 
OE from IE �9 
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Taking x to be 0E for example, the right hand side is 

u{y I u~con: ( / -  v) ~_ o~ } 
= U { y I f - y E _ ( O ,  1E) V f - y E ( 1 , 0 e ) }  
= U { y l / - y E _ ( O ,  l e ) }  u u{y l l - y_E(1 ,o~) }  
= f+(o ,  le )  u / + ( ~ , o e )  

The other cases are similar, but  simpler since there is a unique lm'gest value mapped  
below x by unconsL Using this abstract  function and interpret ing the other paxts 
of c a s e ( n , / )  in the s tandard way leads us to 

_L if x =  J_ 
/ +  (1, oo) if x = oo 

case(n,/) = /+(1,0E) LI /+ (O, IE) ifz=OE 
n U / +  (1, 1E ) otherwise 

which is almost exactly Wadler's rule. The  difference is tha t  Wadler omi t ted  the 
double reversal of f that  appears here. Of course the double reversal is unnecessary, 
bu t  to derive this via reversal we need theory developed in [HL91]. 

6 H i g h e r - o r d e r  F u n c t i o n s  

Since one of the strengths of BHA analysis is its ability to handle higher-order func- 
tions, it 's natural  to ask wh~tt happens  when we reverse the corresponding abstract  
functions. Unfortunately, the reversals are not very informative. This  is not  surpris- 
ing since backwards analyses in general have difficulty with higher-order functions. 

Consider first r with type (X ---* Y) x X ---* Y. Its best reversal is 

ap-  y = M{( f ,x )  l y E / x }  
= M{( lx  ~ y] ,z )  I ~ e X }  
= ( F]{[.~ ~ y] I ~ e X } ,  M{~  I ~ e X } )  
= ([T ~ y], •  

where [x ~-* y/ is  the step function that  maps a31y x ~ ~ x to y and all other arguments  
to _L. This is the lower component  of a Galois connection whose upper  component  
is ap + (f, x) = / T. Thus all of the information about  strictness in the axgument is 
lost: backwards analysis can only discover strictncss in the /unc t ion .  

In the case of currying, 

( A / ) -  g = [7 {a l g E (Af)  a} 
= M {a IW.  g �9 _ / (~ ,~)}  
_~ F1 {a I vz .  1~(~ ~) c_ (a, z)} 
= M {a I Vx . 7r,(f~(g x)) ~ a A Vx . r $ ( f f ( g  x)) E x}  
= r / { a l T r l ( f ~ ( g T ) ) E a  A I r e o f r o g C i d }  

f T)) if og_c 
/ T otherwise 

w h e r e / "  is a safe reversM o f / .  I f " / i s  a Galois connection then  this is the lower 
component  of a Galois connection with upper  component  

T i f a = T  
(Af)  + a = (Af)  a otherwise 
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froln which we see that backwards analysis cannot discover strictness in the sec- 
ond argument of a curricd function, since this is equivalent to testing whether 
(A/) + T • = •  

7 R e l a t i o n a l  Reversa l  

As we've seen, the reversal of an analysis is usually less accurate than the original. 
However, by worldng with sets of abstract values it's possible to derive an analysis 
in the opposite direction with equal power. Such an analysis is called relational. 

The basic idea is to promote each abstract function f to ~oo f ,  operating on 
upwards-closed sets of abstract valucs. Whatever / is, it turns out that  lpo .f is the 
upper component of a Galois connection, with lower component f - l .  So backwards 
abstract functions of the form f - I  carry just as much information as the original 
functions f .  Unfortunately, relational analyses seem to be far too costly to use in 
practice. 

One compromise is to combine a locally relational analysis with either backwards 
or forwards non-relational analyses; the idea being to use the rather expensive re- 
lational analysis just for smM1 parts of a program that would be analysed badly by 
a non-relational method. Within those parts we can mix backwards and forwards 
abstract functions. For instm~cc, Wadler's rather tricky analysis of case expres- 
sions can be derived as a locally relational combination of the accurate backwards 
abstract function for uncons with the forwards abstract functions used in BHA 
strictness analysis. 

These results are beyond the scope of this article. They appear in a companion 
paper [HL91], where we provide generalised backwards and forwards safety condi- 
tions relating relational abstract functions to the concrete semantics, and show that 
a relational analysis may be used as part of a non-relational analysis in the same 
direction. 

8 R e l a t e d  W o r k  and C o n c l u s i o n s  

Strictness analysis h ~  given rise to a rich variety of analyses, both forwa~'ds and 
bazkwards, and the relationship bctween these has not always been clear. Not only 
are the directions of analysis oftcn different, but  commonly so are the abstract 
values and their interpretations. Working towards a unified understanding, Burn 
showed the relationship between BHA strictness analysis and Wadler and Hughes' 
projection-based strictness analysis through the use of so-called "smash projections' 
[Bur90]. This allowed the results of each analysis to be related to the results of the 
other. 

Soon afterwards, Hunt presented a forwards strictness analysis based on partial 
equivalence relations (PERs) [Hung0]. These were particularly interesting as most 
of the PERs used at the ground types con'esponded exactly with projections. In 
particular, the ever elusive property of head-strictness was captured. However in 
order for the analysis to be able to derive head-strictness info,~nation a double 
analysis within the case construct was required. Again, this may be viewed as an 
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instance of obtaining the best reversal of a backwards analysis by considering the 
case construct as a whole. 

Meanwhile, spurred by the discovery of a "naturally forwards" projection-based 
analysis 6 [Lau89, Lau91], Hughes and Launchbury studied.a direction-independent 
formulation of projection analysis [HL90], in order to assess when a view of the 
aalalysis from one dircction may cquM or be superior to a view from the other. 
The concept of Galois connections arose here as a means of demonstrating equality. 
Following this lead, Hunt reformulated much of [HL90] in terms Scott-closed sets, 
so divesting it of its dependence on projections [Hun91]. 

The present paper develops the use of Galois connections as abstract functions 
(i.e. within an aalalysis), mad shows that such abstract functions may safely be re- 
versed with no loss of accuracy. Furthermore, any abstract function may be safely 
reversed, though possibly losing information in the process. In the particular case 
where the reversal is itself a Galois connection, its reduced power may be compared 
against the original by reversing once more to obtain an abstract function in the 
original direction having the same power as the reversed. 

These ideas mad methods were then applied to BHA style abstract interpretation, 
and provided a link between this and a previously unconnected backwards analy- 
sis. In an effort to improve the reversal of the conditional we showed that  the best 
backwards abstraction of the conditional is incomparable with the best forwards ab- 
straction. Consequently, neither forwards nor backwards analysis of the conditional 
may be said to be superior to the other. 

Wadler's 4-point abstract domain requires a special interpretation of the case 
construct to achieve good results. With the experience of reversals, we were able to 
see exactly where a naive abstract interpretation would lose information: uncons has 
a good backwards abstraction, but a poor forwards abstraction. Unfortunately the 
non-relational techniques of this paper are insufficiently powerful to derive Wadler's 
rule for case directly, but they were able to produce a very similar version. 

Finally we applied the techniques to higher order constructs, in order to obtain a 
backwards aalalysis of higher order functions. We obtained a simple reversal which 
may be of some use in practice, but one whose power is si/,mificaatly less than the 
forwards version. 

Recent work by the Niclsons on complexity measures in abstract interpretation 
has a~a interesting connection with the work here [NN92]. They show that find- 
ing fixed points over lattices of completely additive functions may require at most 
a quadratic number of unfoldings, whereas general fixpoint finding is exponential. 
As completely additive functions m'e lower components of Galois connections, our 
result that  ever), abstract function has a best approximating Galois connection (ob- 
tained by repeated reversal) may be seen as a generic method for deriving cheap 
approximating aaaalyses. 

Although the development of this paper has been with an eye on strictness anal- 
ysis, many of the results are further reaching: strictness analysis is used mainly as 
a pedagogic tool, and the techniques may be applied to other analyses. 

Snamely binding-time analysis, as uscd in parl.ial evaluation 
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