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Abstrac t  

We present a parallelizing compiler for lazy functional programs that uses strictness analysis to detect 
the implicit parallelism within programs. It generates an intermediate functional program, where a special 
syntactic construct 'letpar', which is semantically equivalent to the well-known let-construct, is used to 
indicate subexpressions for which a parallel execution is allowed. Only for sufficiently complex expressions 
a parallelization will be worthwhile. For small expressions the communication overhead may outweigh the 
benefits of the parallel execution. Therefore, the parallelizing compiler uses some heuristics to estimate 
the complexity of expressions. 

The distributed implementation of parallelized functional programs described in [Loogen et al. 89] 
enabled us to investigate the impact of various parallelization strategies on the runtimes and speedups. 
The strategy, which only allows the parallel execution of non-predeflncd function calls in strict positions, 
shows the best runtimes and reasonable speedup results. 

1 I n t r o d u c t i o n  

Due to their side effect free nature, functional programs contain implicit parallelism, which consists of 
independent subexpressions that  can be evaluated in parallel. In lazy functional languages, one has to 
take into account that  only subexpressions, whose result is necessary for the overall computation, may be 
evaluated. So, one has to use some analysis to determine the demanded subexpressions of a program. In 
general, strictness analysis is proposed for tha t  purpose, because demanded subexpressions are always strict 
arguments of their context. 

During the last decade, a lot of foundational work has been done on strictness analysis methods, see 
e.g. [Mycroft 81], [Maurer 85], [Burn e t a l .  86], [Burn 87a,b], [Hudak, Young 86], [Wadler 87], [Wadler, 
Hughes 87]. The implementation of strictness analysers has been considered in [Clack, Peyton-Jones 85] - -  
with a generalization in [Martin, Hankin 87] - -  and in [Young, Hudak 86] and [NScker 90]. 

The aim of our work has been to implement a strictness analyser and use it as the kernel of a paralle]izing 
compiler for lazy functional programs. The compiler generates an intermediate functional program, where a 
special syntactic construct 'letpar' is used to indicate subexpressions for which a parallel execution is allowed. 
Although the theoretical foundations of the parallelization process are well-understood, there is a lack of 
practical experience. Especially the question of how to decompose a program with strictness annotations 
into sufficiently complex parallel processes has not yet been investigated. 

Recently, it has been questioned whether an automatic paras of functional programs is at all 
possible [Vrancken 90]. Of course, one cannot expect that  a parallelizing compiler automatically transforms 
a sequential algorithm into a parallel one. It will always remain the task of the programmer to design the 
parallel algorithm. The advantage of using a functional programming language instead of a 'parallel' con- 
ventional language like OCCAM or ParMlel C is that  the programmer needs not to think about distribution, 
communication and synchronization of parallel processes. He "only" has to specify the process system, the 
management of the dynamic processes is done by the runtime system. The automatic parallellzation - -  as 
we understand it - -  simplifies the portability of programs. The same functional program can be executed 
on either a sequential or, after parallelization, on a parallel system. 
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Most projects on the implementation of functional programming languages on parallel architectures direc- 
tly use a functional language with explicit parallelism, given by special annotations or syntactic constructs, 
as source language, where it is either claimed that the programmer is responsible for the specification of 
parallelism and its correctness with respect to the semantics of programs, or that some parallellzing compiler 
should transform functional programs into their 'parallel' source language, see e.g. [Hudak 86], [Raber et 
al. 88], [van Eekelen et al. 88], [Hammond, Peyton Jones 90], [McBurney, Sleep 90]. These and several other 
projects concentrate on the efficient implementation of functional languages plus explicit parallelism on par- 
allel distributed or shared memory architectures rather than on the detection and exposition of parallelism 
in conventional functional programs. 

The work on strictness analysis has often been motivated by the detection of implicit parallelism in 
functional programs, but up to now only few approaches exist on the use of strictness analysers for that 
purpose. The first papers that describe a parallelizing compiler, whose structure is similar to ours, are 
[Hudak, Goldberg 85a,b]. They use some first order strictness analysis over fiat domains to detect paralleliz- 
able subexpressions and then also use some, not further specified, heuristics to decide which subexpressions 
should really be executed in parallel. 

Our approach can be seen as a continuation of Hudak's and Goldberg's work. We use an advanced 
strictness analyser that is based on the evaluation transformer approach of [Burn 87a,b], which takes into 
account context information to handle data structures in an appropriate way. Higher order functions are also 
supported. It is implemented by the frontier's algorithm, that was introduced in [Clack, Peyton-Jones 85] 
and extended to include higher-order functions and general lattices in [Martin, Hankin 87]. 

The main new aspects of our work lie in the discussion and comparison of strategies for the decomposition 
of analysed programs into parallel processes. Experimental results show that these strategies may have a 
great impact on the runtimes of parallelized programs and the achievable speedup values. 

In this paper we concentrate on three natural decomposition strategies which are compared with respect 
to runtime experiments using the distributed implementation of [Loogen et al. 89]. It turns out that the 
strategy, which only allows the parallel execution of non-predefined function applications, gives the best 
results for our example programs. 

The treatment of functions with functional parameters reveals an important property of our parallel 
implementation, namely the facility to perform a dynamic parallelization, which exploits parallelism that 
cannot be detected by our parallelizing compiler. As it is only possible to parallelize applications where the 
function is definitely strict in some arguments and as functional parameters may be instantiated by non 
strict functions, the parallelization of applications of functional parameters is not at all possible. For this 
reason, a static parallelization of higher order functions is not feasible, in general. This is the situation where 
the dynamic parallelization applies. It allows the parallel evaluation of "complex" arguments of dynamically 
created applications, i.e. applications of functional parameters that are instantiated by some strict function 
at runtime, or applications, whose evaluation has been delayed. Consequently, it might be the case that a 
functional program is evaluated in parallel, although it does not contain any /etpar-construct, i.e. explicit 
(static) parallelism. 

[Burn 88] and [Lester, Burn 89] also present a realization of the evaluation transformer model of parallel 
evaluation of functional programs. The main difference to our approach lies in the fact that they allow 
parallel evaluation wherever possible. This may lead to the generation of too small processes, for which the 
overhead of the parallel execution is higher than the benefits. 

The paper is organized as follows. Section 2 describes the parallelizing compiler. In Section 3 we review 
our implementation of parallelized functional programs on a distributed memory system (transputers). A 
comparison of different parallelization strategies with runtime results is contained in Section 4. The dynamic 
parallelization of higher order functions is discussed in Section 5. Section 6 finally contains some conclusions 
and hints at future work. 

2 Structure of the Parallelizing Compiler 

The parallelizing compiler translates a lazy functional program into a system of parailelized combinators, 
i.e. a set of global function definitions, in which the places, where a parallel evaluation of subexpressions 
may take place, are indicated by a special syntactic construct. This transformation needs three phases as 
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functional program ) 

~ [ h-Liftlng [ 

( combinator system ) 

~ombinator system with strictnes's annotations) 

( parallelized combinatorsystem ) 

Figure 1: Structure of the ParMlelizing Compiler 

quicksort/intlist _ c a s e  l Of NIL : NIL; 

CONS h int t intllst : (append (quicksort (filter less t)), 
(CONS h (quick.sort (filter geq t)))) 

where less z int = (< z h) 
and geq z int = (~_ z h) 

filter t e s t  i n t ' ' b ~ 1 7 6  I intfist = case l of NIL : NIL; 

CONS h int t intlist : i f  (test h) 
then (CONS h (filter test t)) 
else (filter test t) 

append/ilntlist/12ntlJst :-- c a s e  l I of NIL : 12; 

CONS h int t intlist : (CONS h (append t 12)) 

Figure 2: Example Program 

k 

indicated in Figure 1. We explain the main ideas of these phases using the qnicksort program given in 
Figure 2. 

2.1 ~-Li f t ing  

The translation of functional programs with nested function definitions into a system of global function 
definitions (combinators) is called ,~-lifting and was introduced in [Johnsson 85]. A-lifting has several ad- 
vantages, especially with respect to the parallel execution of functional programs. For the evaluation of 
functional programs with nested function definitions, one has to use a central environment structure which 
contains the bindings of global variables during the evaluation of local function applications. Such a central 
structure is of course an obstacle for a parallel implementation, especially when the target architecture is 
a distributed memory system. A-lifting lifts local function definitions to the upper level by extending the 
parameter list of such functions by the global variables that occur in their body. By explicitly passing the 
values of global variables to the function, a central environment structure becomes superfluous. The value of 
a combinator application only depends on the arguments. Thus, it causes no problems to pass combinator 
applications to other processors for evaluation. 
A-lifting of the example program in Figure 2 simply lifts the local non-recursive functions less and geq, by 
extending their parameter list by the global variable h. Each occurrence of the local functions is replaced by 
an application of the new global function to the global variable. Thus the function quick.sort is replaced by 
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quicksort I intllst = eaBe l of  NIL : NIL; 
CONS h int t intllst : (append ( quicksort (filter (globaLless h) t) ), 

(CONS h ( quicksort (filler (globaLgeq h) t)))) 
globaLless h int :gint =. (< ~ h) 
globaLgeq h int z int = (_~ z h) 

Figure 3: A-Lifted Example Program 

the system given in Figure 3. The functions filter and append are omitted, because they are not changed. 
In general, A-lifting is more involved, especially for mutually recursive local function definitions. A 

complete algorithm is described in [Johnsson 85]. 

2.2 S t r i c t n e s s  A n a l y s i s  

Strictness analysis is used to detect the maximal source of parallelism within a program. Here, we use the 
technique of abstract interpretation to determine the strictness properties of combinator systems [Abramsky, 
Hankin 87]. The analysis applies only to monomorphic programs, but in [Abramsky 85] it has been shown 
that the result of the analysis of any monomorphic instance of a polymorphic function is valid for all 
instances. 

Monomorphic programs are interpreted over the abstract base domains {0,1} and {0,1,2, 3) following 
the approach of [Mycroft 81, Burn et al. 86, Wadler 87]. The abstract domains have the following intuitive 
meaning: 

�9 {0,1} with 0 < 1 is the abstraction of non-structured base domains. 

0 represents the bottom value .L. 
1 represents all values. 

* {0,1,2,3) with 0 < 1 < 2 < 3 is the abstraction of the domains of algebraic data structures. 

0 represents the bottom value _L, i.e. the non-defined structure. 
1 represents in addition, partial and infinite structures. 
2 represents in addition, finite structures (with possibly undefined entries). 
3 represents all structures, i.e. in addition, finite structures with defined entries. 

The abstract interpretation is defined in such a way that: 

The standard interpretation of a function definition is strict in an argument i, if its abstract 
interpretation is strict in this argument. 

Thus, strictness in the abstract interpretation is a decidable approximation of strictness in the standard 
interpretation. 

Example :  The abstract interpretation of the combinators of our small example program is as follows. F t 
denotes the abstract interpretation of a combinator F. 

quicksort u filter ~ append u ~lobaltesst Y ~eq I 
I n testt\l t 0 1 2 31 ~ t l t \ l  ~ 0 1 2 3 h t \ z  t 0 1 
0 ~OI bD'~O 0 0 0 131 0 0 0 0 ~0] 0 0 [0] 
1 0 b t..-,bn 0 1 1 3 1 1 1 1 1 1 [ ]  1 
2 2 b | ~ l  [ ]  1 3 3 2 1 1 2 2 
3 3 3 I[~] 1 2 3 

The boxed entries show the strictness properties of the combinators. We can determine the strictness 
property by applying F I to .L in the tested argument position and to the top values of the abstract 
domain in all other positions. E.g., append is strict in its first argument, because appendM(O, 3) = 0, but 
not in its second argument, since appendJ(3, 0) = 1 > 0.  The combinators global_less/geq are strict in 
both arguments. 
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To compute the abstract  interpretation of combinator systems, we apply the frontier method of [Clack, 
Peyton-Jones 85], which has been extended in [Martin, Hankin 87] to handle higher order functions and 
data structures. 

In order to handle data  structures in an appropriate way, we use the evaluation transformer model 
of computation, which has been introduced in [Burn 87a]. In this model, expressions are annotated by 
evaluators, which indicate the amount of evaluation that  can be done on these expressions. The following 
evaluators are distinguished: 

~0 - -  means no evaluation, 

~1 - -  evaluates expressions to weak head normal form, 

{~2 - -  evaluates the structure of data  types, i.e. all constructor nodes, but no entries. For example, the 
structure of a list is its spine. 

~3 - -  evaluates the structure of data  types and each element of the data  type to weak head normal 
form. 

The first two evaluators axe common for the lazy evaluation of functional programs. Evaluation to weak 
head normal form means that  data  structures are evaluated up to their top level constructor and functional 
values are evaluated, until a partial application 1 of a base function, constructor or combinator is reached. 
Expressions of a base type are completely evaluated. The additional evaiuators allow a more accurate 
treatment of data structures, because they enable an earlier and more extensive evaluation of components 
and thus may reveal more implicit parallelism. 

The evaluators are ordered by ~0 < ~ < ~2 < ~a. There is a close correspondence of evaluators and 
abstract domain values: 

The evaluation of an expression with evaluator ~i terminates if and only if the abstract  value of 
the expression is greater than or equal to i. 

An evaluation transformer is a function that  maps evaluators of a function application to suitable evaluators 
for the argument expressions. So it can be used to determine for each application, which amount of evaluation 
can be done on the arguments, when the evaluator for the whole application is known. 

Thus, the evaluation transformer of an n-axy function F consists of n functions, ETi(F), 1 < i < n, 
which map the evaluator of an application of F to the evaluator for the i th  argument. It can simply be 
determined using the abstract  interpretation of F (for details see [Burn 87a]). 

E x a m p l e :  The evaluation transformers of the combinators in our example program are as follows: 

ET ( quicksort ) 
ETK~) 

~o ~o 

~2 ~2 
~3 ~3 

ET(filter) ET( append) I ET(global. . .) 

,o ,o ,o ,o ,o ,o ,~o, ,  ,o ,o 

~2 ~o ~2 ~2 ~2 ~2 
~3 ~o ~2 ~3 ~3 ~3 

If an application of quicksort is evaluated with evaluator ~1, it is e.g. safe to evaluate the argument list 
with ~2. Intuitively this is true, because it is only possible to determine the top level constructor of the 
result list, if it is empty, contains only one element or if the minimum element has been determined. As 
sorting of the list (coNs .L N1L) yields the list itself, without tha t  the non defined entry is accessed, the 
maximal possible evaluator for the argument list is ~2. 

Evaluation transformers can also be introduced for arbitrary expressions. One simply views the expression 
as a function of its direct subexpressions. In this case, one even gets more specific information, because it 
is possible to use the abstract interpretation of the other subexpressions instead of assuming the top value 
of the abstract domains for these, when determining the strictness properties of argument subexpressions. 
In general, this approach is called context sensitive strictness analysis. We therefore call the evaluation 
transformer of an arbitrary expression e context sensitive and denote it by ETCS(e). 

IPartial applications correspond to ~-abstractions. 
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2.3  P a r a l l e l i z e d  C o m b i n a t o r  S y s t e m s  

In the parallelized combinator systems, explicit parallelism is indicated by the following letpar-cOnstruct: 

l e t p a r  Yl = F l ( e 1 1 , . . . , e l , l )  i f ev l  
a n d  �9 �9 �9 

and yp = F~,(epl . . . .  , epn~) if  evp 
in e 

where the subexpressions of an expression e, for which it is decided that  a parallel execution may be 
worthwhile, are abstracted out of the expression and represented by combinator applications. Thereby, 
new combinators are introduced, if a subexpression is not yet a combinator application. Thus, in the 
letpar-construct, 

�9 Yi are local variables, which replace the abstracted subexpressions in e, 

�9 F/denote (possibly new) combinators with ni parameters in the defining equations, 

�9 e and eij are applicative expressions built from variables, predefined constants and functions, con- 
structors and combinators by application, if_then_else, case, let and letpar-constructs, 

�9 evl are evaluators. 

The meaning of a letpar-expression is, that the combinator applications Fi(eil,..., ein~) may be evaluated 
in parallel with the main stream of evaluation, e, if the evMuator of the whole expression is stronger, i.e. 
greater, than or equal to evl. Whether a parallel evaluation really takes place at runtime, depends on the 
workload of the distributed system. Evaluation of a letpar~expression first leads to the parallel activation 
of the combinator applications, for which the eva~uator allows a parallel execution. Then the evaluation of 
the body e proceeds until the result of a parallel subexpression, represented by yj, is needed and not yet 
available. In this case, the evaluation of e is suspended until the parallel subprocess yields its result. In the 
meantime, the processor is free to evaluate some other process. 

The resulting process system is hierarchical. The execution of a parallelized combinator system starts 
with the evaluation of the main expression, letpar-expressions generate parallel subprocesses, that can be 
executed on other processor elements. By the execution of parallel processes, further processes may be 
generated. When a process terminates, its result is communicated to the father process, i.e. the process that 
generated the subprocess. 

2.4 Parallelization 

Principally, each expression of a program, for which an evaluator different from ~o can be determined, can 
be evaluated in parallel. Such a maximal parallelization may however not be optimal, because a parallel 
evaluation always causes an overhead that might be greater than its gain. The expression, that is to be 
evaluated in parallel, must be encoded in a message that is passed to another processor element and there 
must be decoded. In the same way, the result z of the parallel evaluation must be transferred back to the 
original processor element. In order to guarantee that the parallel execution of an expression is profitable, 
one has to ensure that the expression has enough evaluation complexity (whatever this means). In general, 
it will not be possible to determine the complexity of expressions exactly, even if one focusses on a special 
implementation technique and target architecture. So, one has to use some heuristics. 

In order to translate combinator systems into parallelized combinator systems, we use, in addition to 
the evaluator information given by the evaluation transformers of the combinators, constructors and base 
functions, an oracle function 

oracle : Ezpressions ~ { true, false ) 

that  determines whether a parallelization is allowed or not. The oracle functions, tha t  we used in our 
experiments, are presented in Section 4. In the remainder of this section, we describe the parallelization 
algorithm and finish with a possible paraUelization of our example program. 

The paralhlization algorithm transforms expressions into expressions, hopefully containing the letpar- 
construct. On the top level it is applied to the bodies of the eombinator definitions. The most important  

2in the case of data structures at least the top-level constructor 
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case is the treatment of general applications (e0 el . . .  ern). First, one has to determine the sets of parameters, 
for which a parallelization is allowed, 

�9 0 := { i l  0 < i < m ,  orac le (e i )  = true),  

and the set of parameters, for which an evaluator stronger than ~0 can be expected, 

�9 P := ( i l  0 < i < m,3~ : E T ~ ' ( ( e o  e l . . . e r a ) ) ( ~ )  > ~0}. 

The subexpressions, whose indices are in 0 N P, can be evaluated in parallel. For the subexpressions in 
0 \ P,  the oracle allows a parallel execution, but the non-strict context forbids an evaluation. A s  it is possible 
that  such expressions are dynamically passed to a strict context, we providently repla~ee these expressions, 
if necessary, by a combinator application in order to enable a parallel evaluation. Our implementation does 
not only support the explicit parallelism introduced by the l e tpar -cons t ruc t ,  but also the parallel execution 
of strict, not yet evaluated, arguments, which themselves are combinator applications, as only combinator 
applications can be distributed in the system. This is an additional source of parallelism, which may lead 
to the generation of parallel processes where a static parallelization during compile time is not possible. 
Consequently, our approach ensures that  a delayed activation of the subexpressions, whose indices are in 
0 \ P,  may nevertheless lead to a parallel evaluation. The effect of this d y n a m i c  para l l e l i za t ion  in the case 
of higher order functions is shown in Section 5. 

In order to avoid unnecessary process switches, the paralleUzation should ensure tha t  enough work is 
kept on the processor element tha t  evaluates the l e tpar-express ion  and does the parallel activation of the 
subprocesses. Thus, two cases are distinguished in the parallelization algorithm. If the oracle says tha t  the 
whole expression can be evaluated in parallel, all parallelizable subexpressions are abstracted out. Otherwise, 
the leftmost parallelizable subexpression is kept for execution on the same processor element. 

In order to keep as much locality as possible and to avoid flooding the system with parallel processes 
whose results are not yet needed, we abstract expressions only one level out. Thus, we parallelize e.g. an 
expression ( F . . . ( G . . . (  t I  . . .) . . .) . . .) ,  
where we assume that  the shown subexpressions are in strict parameter positions and allowed to be paral- 
lelized by the orade, in the following way 

l e t p a r  y = (Fpl . . . )  i f . . .  where the subsequent combinator is introduced: 
in  ( F . . . y . . . )  Fpl . . . .  l e t p a r  y = ( / / . . . )  i f . . .  

in (a . . .y . . . )  
Another possibility would be to generate the expression 

l e t p a r  Yx = ( I I . . . )  i f . . .  
in l e t p a r  Y2 = ( G . . . y l . . . )  i f . . .  , 

in ( F . . .Y 2 . - - )  

which may however lead to unfavourable situations, because the result of the subprocess H of G will not be 
directly communicated to the place where G is executed, but via the processor element, where H has been 
as Thus, locality is lost. Furthermore, it may be disaxlvantageous to start  subprocesses before the 
processes tha t  consume their result, especially when the subprocesses need a lot of resources and produce a 
lot of output.  The advantage of the second approach is a broader and faster paralhlization with an early 
a~tivation of subprocesses. Note tha t  there is always a trade-off between parallelism and locality. 

Let us come back to the problem of parallelizing an application (e0 el . . .era).  Let 0 fl P = { i l , . . . , i p}  and 
v a r s ( e j )  = { v j l , . . . ,  v j h j }  be the set of all (free) variables in ej ( j  E 0 ) .  

�9 If oracle( (eo  e l . . . e r a ) )  = true, the paraJlelization algorithm produces the expression 

l e t p a r  Yl = (F~i lcw~i11. . '~ i lh i l )  if  evil  
a n d  . . .  

a n d  Yl, = (F~ipr i f  e %  

in  (ezP0 e z p l . . ,  ezpm), 

where 
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- new combinators F~j T M  ( j  E O) with defining equations "~njewvjl . . . n jh  i = parallelize(ej)" are 
introduced, 

- evl, = min{~ [ ETi~((eo el...e,~))(~) > ~0} and 

{ y~ i f k = i j E O N P  
- ezp~ = (FffkeWvkl ...vkh~) /f k E (O \ P)  (0 < k < m). 

parallelize( ek ) otherwise 

�9 If oracle((eo el . . .  e,~)) = false, a similar parallelization takes place, except tha t  the expression, whose 
index is the minimal element of O N P, is not abstracted out for parallel activation, but  kept in the 
body of the letpar-expression for local execution. 

The parallelization of if-then-else and ease expressions consists of an independent parallelization of their 
subexpressions. The treatment of let-expressions can be reduced to the parallelization of applications, 
because a let-expression can be viewed as a special application. 

The parallelization of our quieksort example, assuming an oracle tha t  only returns true for (complete) 
combinator applications, leads to the para/lelized combinators given in Figure 4. The other combinators of 
the example remain unchanged. 

quicksort I in t l i s t  - -  c a s e  l o f  NIL : NIL;  

C O N S  h in t  t in t l is t  : 

l e t p a r  Yl = ( F  ~ew h t) i f~ l  
in (append 91 (coNs h l e t p a r  Y2 = (filter (global_geq h) t) i f~ l  

in  (quick, sort Y2 ) ) ) 
F new h int t intllst -- l e t p a r  y = (filter (global_less h) t) if  ~1 

in (quicksort y) 

Figure 4: Parallelized Example Program 

When the expression, that  is abstracted out for parallel execution, is already a combinator application, 
we avoid the introduction of new combinators during the parallellzation process. In our example in Figure 4, 
we have not introduced new combinators for the 'parallel' call of filter. In fact, our current implementation 
always avoids the generation of new combinators when the subexpression, for which a parallel execution is 
decided, is already a combinator application. This implies tha t  the parallel execution of arguments of the 
combinator application is not enabled. 

3 The Underlying Parallel Implementation 

The parallel implementation of the combinator systems is based on a parallel abstract  machine (PAM) 
[Loogen et al. 89], tha t  consists of a finite number of identical processor elements with local storage. The 
processor elements communicate by exchanging messages via an interconnection network. 

PAM has a modular structure. Each processor element consists of two independent processing units (see 
Figure 5): 

�9 a communication unit that  is responsible for the organizational aspects of the parallelization of the 
reduction process, and 

�9 a reduction unit tha t  executes the parallelized functional program by code-directed graph reduction. 

The two processing units communicate by exchanging messages in a local shared memory. 
The modularization permits a decentralization of the parallel program execution by separating the 

overhead of parallelism - -  message handling, work distribution, workload balancing - -  from the reduction 
process. This leads to a bet ter  exploitation of parallelism. 
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Figure 5: Structure of a Processing Unit 

3 .1  P r o g r a m  E x e c u t i o n  

In the parallel abstract  machine, program execution is done within the reduction units by distributed code- 
directed graph reduction. 

The parallelized combinator program is translated into abstract machine code, that  is copied into the 
program store of each reduction unit. For each potential (combinator, evaluator)-pair, a machine code 
sequence is generated that  controls the execution of combinator calls with this evaluator. The evaluation 
transformer information is integrated into this code sequence. So, the (first) evaluator of each subexpression 
can be determined at compile time. In particular, it is fixed which letpar-expressions yield parallel processes. 
At run time, one only has to choose the appropriate code sequence for a combinator and its evaluator. 

Each code sequence for a combinator has two different entry points which correspond to the two different 
activation modes for applications. The first entry point leads to the potentially parallel activation of the 
arguments of the combinator using the evaluator given by its evaluation transformer, before the second 
entry point is passed which immediately leads to the evaluation of the eomhinator body. The second entry 
point can be used when it is known that  the evaluation of the arguments of the combinator has already 
been initiated. This is the case for combinator applications within the program, which are directly activated. 
The evaluation of the arguments is initiated just before the combinator call, using the evaluator given by 
the context sensitive evaluation transformer of the application. The first entry point is used for indirectly 
activated applications, where we distinguish two cases. On the one hand, combinator applications can be 
dynamically created by some "higher order" applications. On the other hand, the evaluation of a combinator 
application may be ddayed, because it appears in a non-strict context. When such applications are activated, 
one cannot assume that  the arguments have already been evaluated. 
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[ TASK I function id I argument list I evaluator I i p  I ds [ f q  I flags [ 

] DATA [ value I 

[ CONSTRUCTOIt [ constructor id [component  list I ev~uator  I 
[FUNCTION [funct ion id I argument list I number of missing arguments I 

I SUSPENSION I argument list I code address (triple) ] 

I INDIRECTION [ address / ? I evaluator I f q  [ 

Figure 6: Graph Nodes 

The main runtime structure is a graph which contains the following types of nodes (see also Figure 6): 

�9 the activation blocks for the combinator calls, called task nodes, which are not, as usual, allocated on 
a stack, but, in order to support the parallelism, in the decentral graph structure, 

- -  Each task node contains the whole status information of the combinator call evaluation, i.e. a 
local instruction pointer (ip), a local data  stack 3 (ds), a list of tasks waiting for the result ( fq ,  father 
queue), the evaluator etc. This decentral organisation makes task switches very simple and cheap. - -  

�9 terminal nodes, where we distinguish data, constructor and function nodes, which represent expressions 
in weak head normal form, 

�9 suspension nodes, which represent expressions whose evaluation is not yet demanded, due to the lazy 
evaluation strategy, and finally 

�9 indirection nodes, which reserve place for the result of parallel processes, which are executed on other 
processor dements,  or for terminal nodes, which have to be transferred from other processor elements. 

At each time, a reduction unit executes at most one task, whose task node is indicated by the so called 
active task pointer (atp).  A task is executed until it is finished or suspended. A suspension occurs, when a 
task has to wait for some information that  is locally not yet awilable. 

During a task execution, new local tasks or even parallel processes may be generated. The local tasks 
are kept in a local task queue, while the paraJlel processes are encoded into a process message and passed to 
the communication processor. 

A task switch, triggered by a task termination or suspension, means that  the reduction unit inspects 
the locM task queue for a new task. If this queue is empty, the communication processor is asked to pass a 
new parallel process to the reduction unit. When a parallel process is passed to the reduction unit, it will 
be executed in this unit until it finishes. 

3 .2  M e s s a g e  H a n d l i n g  

Each reduction unit can be seen as a sequential reduction machine that  has been extended for multitasking 
and message handling. Four types of messages are necessary for the parallelization of the reduction process: 

�9 process messages to distribute the paralld processes among the processor elements, 

�9 answer messages to communicate the result of distributed parldlel processes and the contents of shared 
subgraphs, 

�9 request messages to ask for graph nodes that  are allocated on other processor elements and 

�9 activation messages to activate the evaluation of subgraphs on other processor elements. 

3The maximum storage requirements can be computed at compile time. 
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A parallel process always corresponds to a combinator application. Thus, it is completely specified by the 
combinatorname, the list of arguments, the evaluator with which the parallel process has to be evaluated , 
and finally the return-address (the address where the result of the task has to be sent to). These are exactly 
the contents of a process message. When a parallel process is initiated, an indirection node for the result of 
the process is generated and an appropriate process message is passed to the communication processor. 

Access to an indirection or task node leads to the suspension of a task, i.e. its execution is stopped and 
its address is written into the accessed indirection or task node. For that purpose, indirection nodes and 
task nodes incorporate lists f q  containing addresses of task nodes, which are waiting for the result of these 
nodes, i.e. for the indirection node to be overwritten by the result of a parallel process or the contents of 
a graph node, that lies on another processor element (both communicated by an answer message), and for 
the task to finish, respectively. 

If a task needs access to a global node, a new indirection node is generated, a request message containing 
the address of this indirection node is sent to the global address and the address of the task is written into 
the new indirection node. When a task finishes or an indirection node is overwritten by the contents of an 
answer message, the tasks whose addresses are noted in the task or indirection node are reactivated. 

Each communication processor maintains in its local store a process queue, that  contains process messages 
that have been passed from other processor elements or from the reduction unit. When a process message 
from the reduction unit is passed to the communication processor, it will decide whether to keep it in the 
own process queue or to distribute it to a neighbour processor 4 depending on the load balancing strategy. 

3 .3 T h e  C o n c r e t e  I m p l e m e n t a t i o n  

The abstract machine has been implemented on an OccAM/Transputersystem [Loogen et al. 89, Hogen 91], 
where one processor element of the abstract machine runs on one transputer. Asynchronous message passing 
is simulated by buffering messages to ensure that no processor is ever blocked because it has to wait for a 
communication. 

As the interconnection network does not provide a full interconnection of all transputers, messages must 
be routed through the network. The current implementation realizes a simple static routing scheme, where a 
routing table determines for each processor element, via which neighbour a message to that  processor must 
be passed. 

Experiments with our implementation showed that a very simple passive load balancing strategy is in 
general sufficient [Kuchen, Wagener 90]: Processors, which have no work and run idle, send workrequest 
messages to locally connected processor elements. These messages may then be answered by process messa- 
ges, if the addressed processor has enough work and decides to distribute some processes. Otherwise, they 
are answered by nowork messages. 

4 Investigation of Parallelization Strategies 

In Section 2, we described the parallelizing compiler, up to the function oracle : Expressions --~ {true, false} 
used in the final phase to decide whether a paral]elization is allowed or not. As the resulting parallelized 
comhinator program strongly depends on the choice of this oracle function, we investigated four different 
oracle functions, which realize different levels of parallelization, with our implementation. 

1. seq : e ~ false does not allow any parallelization. 

true i f  e is a complete combinator application 
2. comb : e ~-* false otherwise 

only allows the parallel execution of combinator applications. This strategy, in general, realizes a very 
natural parallelization, that very often resembles the parallelization that one would intuitively produce 
by hand. 
Assuming that an atomic expression is a variable, base function, constructor or combinator, we define 

true i f  e is not an atomic expression and has not only atomic subexpressions 
3. nested : e ~ false otherwise 

4A neighbour processor is a physically connected processor, 
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nested allows more parallelism than comb, but parallellzes still less than 

true /.f e is not an atomic expression } which the maximal 
4. max : e ~ false otherwise produces parallelization. 

Note that  these oracle functions are completely independent from the underlying implementation. They 
consider only the structure of expressions. 

The parallelizing compiler has been implemented in Turbo-Pascal s under MS-DOS e [Kindler 91]. It 
translates lazy functional programs into parallelized combinator systems, which are translated into abstract 
machine code for the PAM by an additional compiler, also written in Turbo-Pascal [Hogen 91]. The abstract 
machine code must finally be transferred to the transputer system, where it is, up to now, interpreted by 
an implementation of the PAM on one, four and twelve transputers, respectively [ltogen 91]. 

Runtime (see) Speedup 

abs. I tel. [abs.  tel. [ abs. 

seq 44.269 . . . . . . .  

9enfib(21 ) comb 60.390 15.254 5.581 0.73 3.96 2.90 11.18 7.93 
nested 71.538 17.921 6.093 0.62 3.99 2.47 11.74 7.27 
max 71.564 17.921 6.087 0.62 3.99 2.47 11.76 7.27 
seq 71.618 . . . . . . .  

genfib(22) comb 97.707 24.569 8.739 0.73 3.98 2.91 11.57 8.20 
nested 115.748 28.950 9.749 0.62 4.00 2.47 11.87 7.35 
max 115.775 28.931 9.760 0.62 4.00 2.48 11.86 7.34 

seq 7.938 . . . . . . .  
comb 8.460 2.151 0.795 0.94 3.93 3.69 10.64 9.98 

hanoi(12) nested 13.788 3.475 1.224 0.58 3.97 2.28 11.27 6.49 
max 18.307 4.628 1.611 0.43 3.96 1.72 11.36 4.93 
seq 15.876 . . . . . . .  

comb 16.920 4.266 1.496 0.94 3.97 3.72 11.31 10.61 
hanoi(13) nested 27.578 6.917 2.369 0.58 3.99 2.30 11.64 6.70 

max 36.617 9.197 3.140 0.43 3.98 1.73 11.66 5.06 

seq 31.169 . . . . . . .  
queens(6) comb 33.373 8.775 3.299 0.93 3.80 3.55 10.12 9.45 

nested 49.940 13.062 4.834 0.62 3.82 2.39 10.33 6.45 
max 56.804 14.824 5.459 0.55 3.83 2.10 10.41 5.71 
seq 147.219 . . . . . . . . . . .  

queens(7) comb 157.518 40.833 14.520 0.93 3.86 3.61 10.85 10.14 
nested 238.108 61.298 21.713 0.62 3.88 2.40 10.97 6.78 
max 271.721 69.750 24.573 0.54 3.90 2.11 11.04 5.99 

Table 1: Measurements on 1, 4 and 12 Transputers 

In Table 1 the runtimes and speedups, that have been measured for the different parallelizations of three 
example programs on 1, 4 and 12 transputers, are reported. The example programs are the following: 

�9 genfib computes for a given number i a list containing the first i fibonacci numbers, where each number 
is computed by a separate call of the fibonacci function. 

�9 hanoi solves for a given number n the 'Towers of Hanoi' problem starting with n slices. 

�9 queens computes for a given number n all solutions of the queens problem on an n • n chessboard. 

5Turbo Pascal is a trademark of Borland International. 
SMS-DOS is a trademark of Microsoft Corporation. 
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We distinguish two speedup values. The relative speedup is the ratio of the runtime of a parallelized program 
on one processor element (PE) to the runtime of the same program on 4 or 12 processors, respectively. The 
absolute speedup is the ratio of the runtime of the sequential version of the program on 1 processor to the 
runtime of the parailelized version on 4 or 12 processors, respectively. 

The runtimes for the different parallelized versions on 1 processor element show tha t  already the intro- 
duction of the letpar-construet causes a non-neglectable overhead, which is due to the additional combinator 
calls and the abstraction of the parallel expression in the letpar-expressions. The maximal parallelization of 
the hanoi program runs more than twice as long on one transputer as the sequential version. 

Although the nested and maximal parMlelizations show the best relative speedups, their performance 
with respect to the sequential programs, indicated by the absolute speedup, is very poor. The relative 
speedups can only be used to get an impression of the quality of the parallel implementation and the 
distributed process management..  To rate the quality of the parallelization, one has to consider the absolute 
speedups. It turns out that  the parallelization using the oracle comb shows the best absolute speedups and 
accordingly the best runtimes on 4 and 12 processors. 

This is a consequence of the fact, that  the strategy comb is especially suited to our implementation, 
because of the presupposition that  parallel processes correspond to combinator applications. The other 
strategies have to introduce new combinators to meet this requirement, but additional combinator calls cause 
additional overhead. It becomes clear that  the overhead of the additional parallelization is not compensated 
by the profits of the parallel execution. This might, however, be different for more complex problems. 

5 D y n a m i c  P a r a l l e l i z a t i o n  o f  H i g h e r  O r d e r  F u n c t i o n s  

An important  advantage of functional programming languages is the modularity and abstraction that  can 
be achieved by using higher order functions, which allow to define general recursion schemes tha t  can then 
be adapted to special situations. Consider the higher order function foldint, given in Figure 7, tha t  can e.g. 
be used to compute the factorial function: "fac n i~t = (foldint 1 n i d  *) ' ,  where "id n = n" is the identity 
combinator, or the list of the first n square numbers: "squares nint = (foldint 1 n sqr append)", where "sqr 
i = (CONS (* i i) NIL)". 

foldint i int j l , t  fi~t-~. # . x . - .  = if  (= i j )  t h e n  ( f  i) else let  reed = ( / ( +  i j )  2) 
in (g (fotdint i reed f 9) (foldint (+ reed 1) j f 9)) 

[ * is a type variable that can be instantiated by an arbitrary type. 

Figure 7: Example of a Higher Order Function 

These examples show that the higher order function foldint will often be called with strict functional 
parameters, so that it would be possible and advantageous to evaluate the recursive calls in the body of 
this function in parallel. Our parallelizing compiler is, however, not able to detect this implicit paralle- 
lism, because the parallelization is done independently from the actual parameters of the function in the 
program. As the parallel evaluation of the recursive calls is not correct with respect to the underlying 
non-strict semantics (laziness) if the higher order function is called with non-strict functional parameters, a 
parallelization is not possible. 

Consequently, programs may contain implicit parallelism that cannot be expressed explicitly using the 
letpar~construct of the intermediate language. To exploit this kind of parallelism, our implementation allows 
the parallel activation of arguments of indirectly activated combinator or base function applications. In 
order to avoid the generation of too small processes, a parallel activation takes only place if the argument 
expression is a combinator application. Note that the parallelizing compiler always transforms expressions, 
for which the oracle function allows a parallel execution, into combinator applications, no matter in which 
context (strict or non-strict) they occur. 

In Table 2 it is shown, that the dynamic parallelization applies to the foldint-function when its functional 
argument # is instantiated by the strict base function +. Although no static parallelization takes place, 
reasonable speedups are obtained, because the indirect activation of the dynamically created application of 
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I Prablem II Runtime ( ee) II Speedup II 
1 PE ~ PE's 12 PE's ~ PE's 12 PE's 

I (foldint I I000 id +) 9.124 2.659 1.053 3.43 8.66 
(foldintl 2000id+) 1118.2521 5.2441 1.95111 3 .481  9.3611 
(foldint 1 5000 id +) 1 1 4 5 ~ . 0 3 2 [  4.~1911 3 . 501  9.6711 
(foldint 1 10000 id +) 91.273 25.990 9.321 3.51 9.79 

Table 2: Measurements of Dynamic Parallelism 

the base function + leads to the generation of parallel processes for the recursive calls of foldint. Note that 
the relative and absolute speedup values collapse, because the parallelized version of foldint is identical to 
the sequential version. 

6 Conclus ions  and  F u t u r e  Work  

We presented a technique for the automatic parallelization of la~zy functional programs, which uses a strict- 
ness analyser, based on the technique of abstract interpretation, for the detection of implicit parallelism, 
and an oracle function to restrict the parallelization to expressions, for which a parallel execution seems to 
be profitable. In order to keep locality, we enable the activation of parallel subprocesses only immediately 
before the evaluation of the expression, that consumes the result of the subprocess, is initiated. The most 
natural and, with respect to our runtime experiments, best parallelization could be achieved by the oracle, 
that only allows the parallel evaluation of combinator applications. 

A natural generalization of our parallellzation algorithm will be to consider not only the direct subex- 
pressions of an expression for the generation of the letpar-construct, but the maximal subexpressions for 
which the oracle allows a parallel evaluation. Then, the comb oracle will e.g. lift the recursive calls of the 
quicksort combinator to the same level, which is the parallelization of this algorithm, one usually has in 
mind. 

A disadvantage of our parallelizing compiler is its time complexity, where most of the time is needed to 
compute the abstract interpretation of combinators. Therefore, it will be important to investigate whether 
alternative, more efficient analysis methods, as they have e.g. been proposed in [Hughes 90], [N6cker 90], 
[Hartel et al. 91], can be incorporated in our paralhllzing compiler. 
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