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A b s t r a c t  

In the context of the executable specification language OBJ3, an order-sorted completion 
procedure is implemented, providing automatically convergent specifications [rom user-given 
ones. This feature is of first importance to ensure unambiguity and bermination of the 
rewriting execution process. We describe here how we specified a modular completion design 
in terms of inference rules and control language, using OBJ3 itself. On another hand, the 
specific problems encountered to integrate a completion process in an already reduction- 
oriented environment are pointed out. 

1 I n t r o d u c t i o n  

OBJ3 is a programming language based on equational logic: programs are given in terms of 
abst ract  da ta  types and their semantics relies on order sorted algebras, which enables inclusion 
of types. The problem approached here is the correctness of axiom sets, in the following sense. 
The operational  semantics of OBJ3 is rewriting, which means tha t  when a program is executed 
on a given value, the set of axioms is interpreted and used as a set of rewrite rules that  reduces 
the value to its normal form. We have to establish whether computations are correct with 
respect to validity in initial models, whether results are unique and - last  but not least - whether 
computat ion always terminates.  

The completion process of a rewrite rule set is able to ensure the previous requirements. 
Start ing from any axiom set, it provides, when it succeeds (this is a semi-decidable problem), 
an equivalent set of rules with the same deduction power, confluent (the result of rewriting an 
expression does not depend of the way the rules are applied: it  is unambiguous), and terminating 
(there is no infinite rewrite chain). Hence, it can be seen as an automat ic  prover of program 
correctness. We intend here to design and implement an integrated programming environment, 
named ELIOS-OBJ, allowing programming and proving in the same context. 

Our goal here has three aspects: to provide the user with a tool for proving correctness of 
specifications in the context of OBJ3, namely with an order-sorted semantics; to propose an 
implementat ion of order-sorted completion described and proved in [6]; and to point out some 
problems arising in integrating theorem proving aspects (completion here) with programming 
aspects (the OBJ3 language). 
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We describe completion in a high-level formalism allowing modularity and general expres- 
siveness, using inference rules. This approach, first presented for completion in [1], has also be 
implemented in [13]. A control language is proposed, to combine these inference rules in any kind 
of strategy. In this formalism, completion can be considered as a particular instance of general 
deduction mechanisms, described by inference rules and control, as equational proofs, inductive 
proofs, equation solving by unification, disunification... The specification of our implementation 
is given in OBJ3 itself. 

The main definitions and the algebraic context are given in Section 2. Section 3 recalls 
results on order sorted completion established in [5, 6], expressed in terms of inference rules 
and control. Section 4 describes the control language for expressing and implementing different 
completion strategies. Section 5 presents the features of the orientation engine, transforming 
axioms into rules. Section 6 presents an investigation towards the integration of a theorem prover 
into a programming context. It points out the technical problems encountered in implementing 
completion in OBJ3. They are mainly due to the fact that  features for an efficient rewrite 
engine (as integrated in OBJ3) are not necessarily compatible with completion mechanisms. 
Some examples of completion in ELIOS-OBJ are given and illustrated in Section 7. 

2 Order -Sor ted  Algebra  

In this section the basic notions about order-sorted algebras are shortly summarized [7]. 
Given an index set S, an S-sorted set A is just a family of sets, one for each s E S; we will 

write {Asls E S}. Similarly, given two S-sorted sets A and B, an S-sorted function a : A --+ B 
is an S-indexed family a = {as : As --+ Bs[s E S}. Assume a fixed partially ordered set (S, <),  
called the sor t  set.  

An o r d e r - s o r t e d  s i g n a t u r e  is a triple (S, <, ~) where S is a sort set, ~ is an S* x S 
-indexed family {E~,~Iw E S*,s  E S}, and (S ,< )  is a partially ordered set. Elements of 
are called operators. When the sort set S is clear, we write ~ for (S, ~). Similarly, when the 
partially ordered set (S, <) is clear, we write ~ for (S, <, ~). For operators, we write f : w ~ s 
for f E ~, ,s .  We say that  the rank of f is w ~ s. An important special case is when w is A, the 
empty string; then f E ~]~,s denotes a constant of sort s. Note that the ordering < on S extends 
to strings of the same length in S* by sl...s,~ < s 1' ...s n' iff si 5 s i' for i = 1, ..., n; similarly, _< 
extends to pairs (w, s) E S* x S by (w, s) < (w', s') iff w < w' and s < s ' .  

Let (S, <, ~) be an order-sorted signature. A (S, <, ~ ) - a lgeb ra  A consists of a family 
{As[s E S} of subsets of A, called the ca r r i e r s  of A, and a function fA : A~ --+ As for each 
f E ~w,s where A~, = As1 x ... • As, when w = Sl...s~ and A~ is a one point set when w = A, 
such that:  

1. s < s ~ in S implies As C_ As, and 

2. f E ~ , s  n ~ , , s ,  with s'  _< s and w' < w implies fA : A~ ---, A~ equals fA : A~, ---+ A~, on 
A~,. 

Following [7], we define the order-sorted Z-term algebra T~. as the least family {T~.,sis E S} 
of sets satisfying the following conditions: 

* ~':~,s C_ T~,~ for s E S; 

, T~,s, C_ T~,s if s' < s; 

�9 if f E ~,,~ with w = sl...s,~ # ,~ and if t~ E T~,s~ then (the string) f ( t l . . . tn)  E T~,s. 
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* for f E ~ , s ,  let 7) : 7",, --+ 7s map tl , . . . ,  tn to (the string) f ( t l . . . t~ ) .  

Following [9], we denote by T~(t) the set of occurrences of t i.e. the domain of the term t 
viewed as a partial function from A/'* to Z. We denote by tl~ the subterm of t at occurrence 
w and by t[w *-- t'] the result of the replacement by t '  of tl~ for w E D(t). Clearly 7-r. is an 
order-sorted ~-algebra. 

We restrict to the class of regular signatures. Essentially, regularity asserts that  overloaded 
operations are consistent under restriction to subsorts, so that  each well-formed expression on 
the function symbols has a least sort. An order-sorted signature Z is r egu la r  if[ for any w0 E S* 
such that  there is a f E ]C",s with w0 _< w, then there is a least (w ~, s ~) E S* x S such that 
f E Z",,s, and wo <_ w ~. Under that  condition, Tr. is an initial order-sorted )"..-algebra [7]. In 
this case, for any t E 7-~, there is a least s E S, called lowest  sor t  of t and denoted LS( t ) .  

2.1 E q u a t i o n s  a n d  r e w r i t e  r u l e s  

An S - so r t ed  var iab le  set  is an S-indexed family X = {Xs l  s E S} of disjoint sets. A variable 
x of sort s is also denoted (x : s). Given an order-sorted signature (S, _<, Z) and a variable set 
X that  is disjoint from ~., (S, _<, ~ (X) )  is defined by ~.(X)~,s = ~,~,s U X,  and ~.(X)",, = Z",8 
for w ~ A. 

Note that  if Z is regular, so is Z(X) .  We can now form 7"~(x) and then view it as a Z-algebra; 
let us denote this Z-algebra by 7-r.(X). It is the free Z-algebra generated by X.  12(t) denotes 
the set of variables of the term t. 

To get an adequate notion of satisfaction (see [11]), an additional hypothesis on the set of sorts 
S must be satisfied: An order-sorted signature (S, <_, Z) is c o h e r e n t  iff each of the connected 
components of S for _< (i.e. each equivalence class under the transitive symmetric closure of _<) 
has a maximum, and Z is regular. We will only consider here order-sorted signatures that are 
coherent. 

A Z-equa t i on  is a triple (X, t, t ') where X is a variable set and t, t '  E 7"r.(X) with L S ( t )  
and L S ( t ' )  in the same connected component of (S, _<). We will use the notation ((VX)t = t'). 

2 .2  O r d e r - s o r t e d  r e w r i t i n g  

For (S, _<, Z) a coherent order-sorted signature and X, Y two S-sorted variable sets, a subs t i t u -  
t i on  is an  S-sor ted  function a : X --* 7-r~(Y), extended in a unique way to a : Tr . (X)  --~ 7"~(Y). 

Operationally, order-sorted equations are used as rewrite rules. An order-sorted r ewr i t e  
r u l e  is aa order-sorted equation ((VX)I = r) satisfying r ( r )  C_ r ( l )  and denoted ((VX)I --* r). 
A m a t c h  from a term t E T ~ ( X )  to a term t' E Tr . (Y)  is a substitution a such that a( t )  = t'. 

Let R be a set of rewrite rules. A term t E TE(Y)  rewrites to t' with a rewrite rule ((VX)I ~ r) 
in R at occurrence w, which is denoted t --+~ t '  = t[w ~ a(r)] whenever 

1. there is a match a : X -~ 7-r.(Y) from l to t at occurrence w (a(1) = tl~ ) 

2. there is a sort s such that,  for x a variable of sort s, t[w ~- x] is a well-formed term and 
a(l ) ,  a(r)  E T~, , (Y) .  

The difficulty is that  a(l )  and a( r )  may have different sorts, and the second condition in the 
previous definition is needed to avoid that  replacements produce ill-formed terms. 

. R 
We define -----*y to be the reflexive transitive closure of -----*~ and ~ ~ *~ to be its sym- 

metric, reflexive and transitive closure. This last equivalence relation is called o r d e r - s o r t e d  
r e p l a c e m e n t  o f  equals  b y  equals .  For the notion of order-sorted replacement of equals by 



185 

equals to be correct and complete with respect to order-sorted deduction, the rewriting relation 
.has to  be confluent and sort-decreasing [11]. 

An order-sorted term rewriting system R is s o r t - d e c r e a s i n g  iff Vt, t ~ E Tr . (Y) ,  t --*R r t ~ 
implies L S ( t )  >_ LS( t ' ) .  

In order to give decidable criteria for this property to hold, we need the notion of special- 
ization. A sorted set of variables X can be viewed as a pair ()( ,  ~u) where ) (  is a set of variable 
names (i.e. unsorted variables) and #, the sort assignment, maps the variable names to the set 
of sorts # : ) (  ~ S. The ordering < on S is extended to sort assignments by 

We then say that  # '  spec i a l i z e s  to # via the substi tut ion p : (z ' :  # ' (x ) )  ~ (x : #(x) )  called a 
s p e c i a l i z a t i o n  of X = ( ) ( ,  # ' ) i n t o  p ( X )  = ( f ( ,  #).  

The notion is then extended to equations and rewrite rules. A specialization of an equation 
( V X ) ( l  = r)  is another equation (Vp(X) ) (p ( l )  = p(r ) )  where p is a specialization of X .  A 
specialization of a rule ( V Z ) ( l  --, r) is the rule (Vp(X)) (p(1)  ~ p ( r ) )  where p is a specialization 
of X .  

If the set of sorts is finite, or if each sort has only a finite number of sorts below it,  a finite 
sorted set of variables has a finite number of specializations. This allows deciding the sort- 
decreasing property. A set of rules R is s o r t - d e c r e a s i n g  iff any rule of R is s o r t - d e c r e a s i n g ,  
that  is iff for any rule ( ( V X ) / ~  r)  of R, for any specialization p of X ,  the lowest sort of p(l)  
is greater  or equal than the lowest sort of p(r) .  An order-sorted term rewriting system R is 
sort-decreasing if R is a sort-decreasing set of rules. 

The definitions R being con f luen t  are similar to the unsorted case. Let R be an order-sorted 
. R tl __~yR t" term rewriting system. R is con f luen t  iff for any terms t, t ~, t"  E T~(Y), t ----~y and t 

implies there exists to such that  t ~ . n t" . n - - -*r  to and ----*y to. R is C h u r c h - R o s s e r  iff for any 
. R . R 

terms t , t  ~ E Try(Y), t ~ *~t  ~ implies there exists to such tha t  t ~y to and t ~ ---~y to. 
When the variable set Y can be deduced from the context,  we allow it to be omit ted and we 

write t __._~n t ~ for t ___,yR t I. 

2 .3  C r i t i c a l  p a i r s  

Two reductions applied to a same term can sometimes overlap, yielding critical pairs. Let ~( t )  
be the set of occurrences ca in t such that  the subterm of t at  occurrence ca is not a variable. A 
unifier of two terms t and t I is a substi tution a such that  at  = a t  I. 

A non-variable term t I and a term t o v e r l a p  at occurrence w in G(t) with a subst i tut ion a 
iff a is a unifier of rio ~ and t ~. 

Given two rules g ~ d and l --* r such that  1](g) n P(l)  = 0 and l and g overlap at  occurrence 
w of ~(g)  with the substi tution a ,  then the pair (p = a(g[w ~ r]), q = a ( d ) ) i s  called a c r i t i c a l  
p a i r  of the rule l --* r on the rule g --* d at  occurrence w (a trivial  one if ca = e, 1 = g, r = d). 

3 Completion in order sorted algebras 

In [6] we describe the completion process in order-sorted algebras by a set of inference rules. 
Although [6] presents results on equational completion, we implement here completion in the 
empty theory. This more simple process enables us to focus on interaction and interface between 
the completion and the language, instead of problems specific to completion. 

Recall that  an ordering on terms is compatible (with the term structure) if s ~- t implies 
f ( . . . s . . . )  ~- .f(.. .t . . .),  for all terms s , t  and all contexts f (  . . . . . .  ) such that  / ( . . . s . . . )  and .f(. . .t . . .) 
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are well-formed. A reduction ordering is a well-founded and compatible ordering. A reduction 
ordering warrants termination of a rewriting system R, if al ~- ar  for each rule l ~ r of It, and 
every substitution a [2]. 

Let P be a set of equations and >- a reduction ordering. As pointed out previously, the 
signature of the algebra, P is defined on, has to be coherent. The completion procedure 
transforms, if possible, P into a confluent and terminating set of rules R, having the same 
deduction power. This transformation can be described by a derivation chain of the form 
( p 0  R 0) F (p1, R1)... F (P'~, R~)... F (BOO ROO) (that may be constant from a given rank n). 
The completion transformation is based on the well known basic mechanisms: orienting an axiom 
of P into a terminating and sort-decreasing rule, adding equational consequences named critical 
pairs, and reducing the left-hand-side and the right-hand-side of axioms and rules. Order-sorted 
completion can be expressed by the following inference rules: 

1. Orienting an equation 
P U {s : t ) ,  R 
P, R U {s ---* t} if s ~- t & s ---+ t sort - decreasing 

2. Adding a critical pair 
P~ R if u ~ R  s & u--+n t 

P u {s = t}, R 

3. Simplifying an equation 
P u = t) ,  R + R  
P U { u = t } , R  i f s  u 

4. Deleting an equation 
P u {~ = ~},R 

P, R 

5. Simplifying the right-hand side of a rule 
P, R U { s "* tul .~ R 
P, R U  {s ~ i f t  u 

6. Simplifying the left-hand side of a rule 
P, R U {s ~ t} __.n 
P U { u = t } , R  i f s  t - ~ r u & s  t>l 

where t> is the proper specialization ordering,  defined by s I> l iff 3a, a( l )  = sl~ with w ~ e, 
or a(1) = s and a is not a renaming. 

With respect to the completion procedure for unsorted rewriting described in [1], the mod- 
ifications for the order-sorted completion are localized in the conditions of the first inference 
rule, where the sort-decreasing test for a new rule must be performed. Remark that  the sort- 
decreasing test in the rule 5 is not needed since s --* t and t ~ u sort-decreasing implies s --* u 
sort-decreasing (by definition of a sort-decreasing rule and by transitivity of the ordering _< on 
sorts). 

Furthermore, except for the sort-decreasing test, it appears that the specific sort problems 
are hidden in the definition of rewriting and critical pairs: order-sorted matching, order-sorted 
unification. 
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4 Specifying control for completion 

The concept of inference rules previously chosen for describing the theoretical aspects of com- 
pletion, will be completed by a control mechanism on these inference rules, to give particular 
completion procedures. Control specifies the order in which inferenc~ rules are applied. As 
required in [6], the control has to be fair, which means that all critical pairs of the resulting set 
of rules R ~176 have to be computed, and the resulting set of pairs poo has to be empty. If the 
completion is fair and does not fail, then R ~176 is Church-Rosser and sort-decreasing. 

Here is developed a simple control language, aimed at expressing any "combination" of 
inference rules and at providing effective completion procedures. Note that  this control language 
is general enough to be applied on any activity described with inference rules (and on any 
working universe named UNIVERSE); it is not specific to completion since it doesn't depen~i 
on the inference rules themselves. 

The language used for describing control is OBJ3 itself. So, we at tempt in the same time 
to test expressiveness of OBJ3 for describing an already complex problem. The effective imple- 
mentation is made in Kyoto Common Lisp, like OBJ3. 

Let us start from the definition of the specific completion universe. The working domain 
COMP-UNIVERSE is a pair of sets: the set P of axioms to be oriented and the set R of current 
rules generated by completion. 

Note that the subsort mechanism of OBJ3 allows an elegant "error-handling" feature used 
here when completion fails on a given universe: we just have to define a sort Comp-universe-with- 
failure including the sort Comp-universe. Hence, when finishing with success, the completion 
procedure gives a pair (E,  R) of sort Comp-universe. When instead failing, it returns an error 
result of sort Comp-universe-with-failure. The modules BOOL, PAIR, PAIRS and RULES used 
in the following specify respectively the booleans, a pair, a set of pairs and a set of rules. They 
are not detailed here. 

obj COMP-UNIVERSE is 

protecting PAIRS, RULES . 

sorts Comp-universe Comp-universe-with-failure . 

subsorts Comp-universe < Comp-universe-with-failure . 

op <_,_> : Pairs Rules -> Comp-universe . 

op P : Comp-universe -> Pairs , 

op R : Comp-universe -> Rules . 

vat p : Pairs . 

vat r : Rules . 

eq P(<p, r>)  = p . 
eq R(<p,r>) = r . 

jbo  

The protecting feature is a mechanism for importing modules in OBJ3 (to become familiar 
with the OBJ3 syntax, read [8]). 

Let us now define strategies by a control on inference rules. The completion can then be 
seen as the application of a chosen strategy (available for instance in a strategy library) on a 
completion universe. This is a simple way to describe concisely a completion strategy, looking it 
as independent of the data structures (axioms and rules), it is working on. In other words, the 
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strategy (specified in STRAT-COMP) is a constant with respect to the completion universe U, 
as specified below: 

obj COMPLETION is 

protecting STRAT-COMP . 

protecting COMP-UNIVERSE . 
op comple t i on  : Comp-universe S t ra t -comp -> Comp-universe . 
v a t  U : Comp-universe  . 
var s : Strat-comp . 

eq : completion(U,s) = apply(s,U) . 

jbo 

We now have to define how the apply operation works on a strategy and a universe, intro- 
ducing here our control language on inference rules. It is expressed in the module STRAT by 
the classical basic instructions of imperative programming languages: a test if-then-else, a loop 
while-do, a sequence operator concat, an iterator iter. This module is parametrized by the mod- 
ules TE,  expressing the notion of test, IT, expressing the notion of iterator, and INF, defining 
inference rules written < U, U', C >. 

obj STRAT[TE : TEST, IT : ITERATOR, INF : INFERENCE-RULE] is 

protecting UNIVERSE B00L . 

sort Strategy . 

op empty-strategy : -> Strategy . 

op while_do_ : Test Strategy -> Strategy . 

op if-then-else : Bool Strategy Strategy -> Strategy . 

op apply : Strategy Universe -> Universe . 

op _concat_ : Strategy Strategy -> Strategy . 

op iter : Strategy Iterator -> Strategy . 

vats C : Bool . 

vars S S' : Strategy . 

vars U U' : Universe . 

var I : Iterator . 

var B : Test . 

eq a p p l y ( e m p t y - s t r a t e g y ,  U) = U . 

eq apply(<U,U' ,C>)  = i f  C then  U' e l s e  U . 

eq apply(while B do S,U) = if test-apply(B, U) 

then apply(while B do S, 

app ly(S ,U) )  
e l s e  U . 

eq apply((if-then-else(B,S,S'),U) = if test-apply(B, U) 

then apply(S,U) 

else apply(S' ,U) . 
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eq apply((S concat S'),U) = apply(S',apply(S,U)) . 

eq a p p l y ( i t e r ( S ,  I ) ,  U) = i f  i t e r - a p p l y ( I ,  U) d i f f  e r r o r  
then apply(iter(S, I), 

iter-apply(I, apply(S, U))) 

else U . 

jbo . 

The operation apply is itself defined through more specific operations: test-apply and iter- 
apply, working respectively on tests and i terators  defined in the following two specifications, for 
the completion case. 

obj COMP-TEST is 

Protecting COMP-UNIVERSE, BOOL, PAIRS, PAIR, RULES . 

Sort Comp-Test . 

op non-empty-set-of-pairs : -> Comp-Test . 

op is-trivial-pair : -> Comp-Test . 

op orientable-pair : -> Comp-Test . 

op non-empty-critical-pairs : -> Comp-Test . 

op test-apply : Comp-Test Comp-Universe -> Boo1 . 

var U : Comp-universe . 

eq test-apply(non-empty-set-of-pairs, U) = non-empty(P(U)) . 

eq test-apply(is-trivial-pair, U) = is-trivial(current(P(U))) . 

eq test-apply(orientable-pair, U) = is-orientable(current(P(U))) 

eq test-apply(non-empty-critical-pairs, U) = non-empty(critical-pairs(R(U))) . 

jbo . 

obj COMP-ITERATOR is 

Protecting C0MP-~NIVERSE PAIRS RULES . 

Sort Comp-I%erator . 

op for-each-pair : -> Comp-Iterator . 

op for-each-rule : -> Comp-Iterator . 

op iter-apply : Comp-Iterator Comp-Universe -> Comp-Universe . 

var U : Comp-universe . 

eq iter-apply(for-each-pair, U) = <increment-on-set((P(U)), R(U)> . 

eq iter-apply(for-each-rule, U) = <P(U), increment-on-set(R(U))> . 

j b o  . 

Note that  the operations used to define test-apply and iter-apply are working at lower level 
than the previous ones, and on da ta  structures,  tha t  we will not specify here: non-empty is a test  
of non-emptyness of a set, current gives the current element of a set, is-trivial and is-orientable 
are working on a pair of terms, increment-on-set manages the access to elements of a set, and 
critical-pairs gives the critical pairs of a set of rules. 
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Then the specification of a strategy for completion can be designed, using the the mod- 
ule STRAT instantiated by the parameters COMP-TEST, COMP-ITERATOR. and COMP- 
INFERENCE-RULE. 

The last parameter COMP-INFERENCE-RULE defines inference rules for completion, adap- 
ted from those of Section 3: normalize-lhs-pair, normalize-rhs-pair, delete-pair, orient-pair-l-to-r, 
orient-pair-r-to-l, normalize-rhs-rule, simplify-lhs-rule, failure-inf-rule, add-critical-pairs. 

Remark that, in order to be used in an operational way, the first inference rule orienting an 
equation has been splitted in orient-pair-l-to-r and orient-pair-r-to-l, the third rule simplifying 
an equation has been splitted in normalize-lhs-pair and normalize-rhs-pair. Note also that the 
orientation failure case is handled by a new inference rule: failure-inf-rule. 

obj STRAT-COMP 

Pro%ecting STRAT[COMP-TEST, COMP-ITERATOR, COMP-INFERENCE-RULE] . 

Sort Strat-comp . 

op sitar-simple : -> Strat-comp . 

eq strat-simple = while non-empty-critical-pairs do 

while non-empty-se t -o f -pa i r s  do 
normalize-lhs-pair concat 
normalize-rhs-pair concar 
if is-trivial-pair 

then delete-pair 
else if orientable-pair 

then orient-pair-l-to-r concat 
orient-pair-r-to-I concat 
i t e r (  normalize-rhs-rule concat 

simplify-lhs-rule , 
f o r - each - ru l e )  

else failure-inf-rule 
endif 

endif 

end while concat 
add-cmtical-pairs 

end while . 

jbo . 

5 The orientation engine 

The test orientable-pair includes the complete mechanism for orienting an axiom in order sorted 
completion, depending on two criteria. First, the axiom has to be oriented in a sort-decreasing 
way. Second, it has to be oriented according to some reduction ordering, to ensure termination 
of the computed rewrite system. 

A decidable criterion for sort-decreasingness is given through the notion of specialization 
(see Section 2). For implementing the sort-decreasing test, the rule specialization computing 
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algorithm, already existing in OBJ3 for defining the rewrite engine [8], is used. 
To handle the termination problem, an usual simplification ordering is chosen: the left- 

to-right lexicographical path ordering (LPO in short) [10]. This ordering is based on a basic 
ordering on the set F of symbols of the signature: the precedence (denoted by >F).  In our sys- 
tem, like in REVE [12, 3], the precedence is empty when the completion starts, and incrementally 
enriched by interaction of the user, as new rules are oriented. 

Termination of rewriting in an order sorted algebra can be proved without considering the 
sort information of operators and terms in the algebra. If a rewriting relation terminates in the 
homogeneous algebra, then it terminates in the corresponding order sorted algebra. Therefore, 
the LPO is used, where the precedence, namely the ordering on operators, does not take into 
account the sort information on operators, i.e. their rank. Let us give an example. 

obj PRECEDENCE is 

sorts Nat Int. 

subsorts Nat < Int. 

op _§ : Nat Nat -> Nat . 

op _+_ : Int Int -> Int. 

op - : Int -> Int. 

vars x y : Nat . 

eq - ( x  + y) = (-x)  + ( -y )  . 
eq -(-(x + y)) = x + y . 

jbo 

Let us try to orient both axioms into rewrite rules. For ensuring termination, we have to 
prove - ( x  + y) >LPO (--x) + (--y). Let us note, the top symbol of the right hand side is 
"+ : Int  Int  --+ Int".  The unequality is true if we assume - >F  +. We do not precise in the 
precedence, what "+"  of the signature, we are handling with. That  means that " - "  is greater 
than any "-t-" of the signature. For the second axiom to be oriented, the previous precedence 
hypothesis can then be used, although the "+"  operator is "+  : Nat Nat --+ Nat" in both sides 
of the axiom. 

The choice made in our orientation engine is to treat sort-decreasingness, before termination. 
If an axiom is not sort-decreasing, the user can reverse it or orient it by hand (in this last case, 
correction of rewriting is not warranted, see Section 2). If however a given axiom is not orientable 
for the current LPO, he can backtrack for chosing another precedence, before trying to reverse 
it. The structure of our orientation engine, hidden in the test orientable-pair (already presented 
in the STRAT-COMP module) looks like: 

obj DRIENTATION-ENGINE is 

Protecting PAIR . 

op orientable-pair : Pair -> Bool . 

op orientable-pair-l-to-r : Pair -> Bool . 

op orientable-pair-r-to-I : Pair -> Bool . 

Vat p : Pair . 

eq orientab~e-pair (p) = if orientable-pair-l-to-r (p) 

then true 

else if orientable-pair-r-to-I (p) 

then true 

else false . 
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eq orientable-pair-l-to-r (p) = if sort-decreasing (p) 

then if is-LPO-oriented (p) 

then true 

else false 

else false . 

eq orientable-pair-r-to-i (p) = orientable-pair-l-to-r (reverse(p)) 

jbo 

where the reverse operation transforms an equality g = d into its symmetrical equality d = g, 
and is-LPO-oriented is the orientation test using the LPO. 

This algorithm is used interactively, each time a pair can be oriented into a rule. But the 
orientation can also be "forced" "by hand", or the pair can be postponed in the current set of 
axioms, or simply completion can be interrupted and the original set of axioms restored. 

6 The technical problems of integrating completion in O B J 3  

The goal of our work was to develop an order-sorted completion algorithm interfaced with OBJ3. 
In order to rewrite a minimum amount of code and to have an integrated design of completion in 
the language, we wanted to reuse already existing tools like the matching algorithm, the rewrite 
engine, the specialization algorithm. For a given O B J  specification, we have also chosen to 
perform completion on the internal OBJ3 form of the axiom set obtained after compilation of 
the given specification. Completion works directly on the same structures as the rewrite engine; 
it modifies them to give directly the compiled O B J  module, corresponding to the completed set 
of axioms. 

Recall that one goal of this work was to discover and solve the problems of integrating 
a theorem prover in a programming language interpreter. As known, execution of programs 
and theorem proving have very different requirements and the design of the first is not easily 
compatible with the requirements of the second. 

For instance, an operation like reduction of terms is used in two different ways, first in 
the reduction process of the OBJ language, where it requires efficiency for applying the rules, 
second in the simplification mechanism of the completion procedure, where instead it requires 
efficiency for updating the set of rules. The problems encountered during the integration of a 
completion procedure in OBJ3 are now enumerated, and the propc.~ed choices and compromises 
are explained. 

6.1 A d a p t i n g  OBJ3 s p e c i f i c a t i o n s  to completion c o n t e x t  

OBJ3 provides a mechanism of order-sorted conditional rewriting. Until now, however, order- 
sorted completion only works on unconditional rules. A filter has been implemented, for trans- 
forming conditional specifications into unconditional ones, by discarding conditional axioms, 
before a completion is started on an OBJ module. 

OBJ3 allows manipulating booleans, in any user-defined module, adding implicitly an impor- 
tation of an OBJ predefined module for booleans containing associative-commutative operators 
like and, or, xor (exclusive or) [8]. Since our completion doesn't handle associative-commutative 
axioms, and since this predefined module is already complete, we suppress this systematic im- 
portation. Instead, booleans are explicitly imported by the user, only if desired. 
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Let us also take into account the general importation mechanism. For the evaluation of a 
term in an OBJ3 module, all axioms of all recursively imported modules are used for rewriting. 
Let us give an OBJ3 example. 

obj NAT_S is 

sort Nat_s . 
op 0 : -> Nat_s . 

op s : Nat_s -> Nat_s . 

var x, y : Nat_s . 

eq 0 + x = x . (1) 
eq s(x) § y ffi s(x + y) . (2) 
jbo 

obj FIBO_S is 

protecting NAT_S . 

op _+_ : Nat_s Nat_s -> Nat_s . 

op fib : Nat_s -> Nat_s . 

var x, y : Nat_s . 

eq fib(O) = 0 . (3) 

eq fib(s(O)) = s(O) . (4) 

eq fib(s(s(x))) ffi (fib(x) + fib(s(x))) . (5) 

jbo 

In the previous specification, the definition of the Fibonacci function is built on the integers 
defined in NAT_S. So the rewrite mechanism of OBJ3 uses the axioms of NAT_S (interpreted 
as rules) in addition to those of FIBO_S, to reduce terms of FIBO_S. For example, the term 
fib(O + O) defined in FIBO_S is reduced in fib(O) using (1), before fib(O) is reduced in 0 using 
(3). 

The first possible alternative for completion would be to collect recursively all imported 
axioms, adding them to those of the current module, and completing the resulting set. This 
process causes problems with respect to the design of OBJ3. Any rule is attached to the module, 
in which the top operator of left hand side has been declared. Provided new rules may appear 
during completion, the question is to which module they must be attached. Theorem proving 
would be involved to prove that the definitions of modules are not changed. Moreover, this 
mechanism of putting together all the imported axioms for completion would be a contradiction 
to the modularity of OBJ3. Our completion procedure thus applies on axioms of a module in a 
modular way, without considering the eventually imported rules. 

This fact emphasizes the difficulties for integrating a proof mechanism in a modular pro- 
gramming language, and suggests to investigate a theory of modular proofs in the completion 
context, related to the problem of preserving properties of rewrite systems when considering 
their union. Results have already been given for confluence and termination of the direct sum 
of two rewrite systems, that is the union of two rewrite systems having disjoint sets of function 
symbols. In particular, it is shown in [15] that two term rewriting systems are left-linear, con- 
fluent and terminating if and only if the direct sum of these systems is so. Let us also cite a 
work concerning termination [14], and a work concerning confluence and termination in the case 
of sorted rewrite systems [4]. 

6.2 C o m p l e t i o n  and  t he  s t a t i c  OBJ3 r e w r i t e  eng ine  

The first problem was to dynamically update the set of rules in the rewrite engine of OBJ3 during 
the completion. Two solutions were possible: to write a new rewriting procedure independent 
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of OBJ, for ensuring reduction in completion, or to use the already existing engine of OBJ. The 
second way was chosen for reusability and integration reasons. But the OBJ rewrite engine is 
very close to the set of reducing rules itself. Let us present its mechanism. For efficiency reasons, 
rules are specialized [11], and then installed in different data structures: for any operator f 
appearing as top in a left-hand-side of rule is attached: 

�9 a rule-ring for the rules which top of right-hand-side is also f (the "top-respecting" rules) 

�9 a rule set for other rules whose top of left-hand-side is f .  

Then the procedures for rewriting or normalizing a term strongly interact with this structure. 
Installing such a reduction engine is quite expensive. But note that in OBJ, since axioms of a 
module are interpreted as rewrite rules, the rewrite engine is installed once for all, at compiling 
time. The problem is different with completion since the set of rules changes dynamically. The 
rewrite engine has then to be redefined each time the set of rules has to be used (by applying 
inference rules for rewriting), after it has changed. This is the part of the "rule generation" 
process, inserted between inference rules in the completion strategy, as follows: 

eq sitar-simple = while non-empty-critical-pairs do 

while non-empty-set-of-pairs do 

normalize-lhs-pair concat 

normalize-rhs-pair concat 

if is-trivial-pair 

then delete-pair 
else if orientable-pair 

then orient-pair-l-to-r concat 

orient-pair-r-to-I concat 

rule-generation 
iter(normalize-rhs-rule concat 

simplify-lhs-rule concat 

ru~-generation, 
for-each-rule) 

else failure-inf-rule 

endif 

endif 

end while concat 

add-critical-pairs 

end while . 

The second problem is also related to the rewriting process. Several features for improving 
the reduction of a term to its normal form were integrated in OBJ3. The first one is concerned 
with the rewriting strategy assigned to operators. For example, a strategy [2 1 O] given to the 
operator f means that any term whose top is f will be normalized successively at the occurrences 
2, 1 and 0. This strategy is given by the user, in defining the operators. By default, an algorithm 
computes a strategy for operators during the compilation of modules. It is clear that  a term 
with f as top operator is not reducible at the top f if f is not the top of a left hand side of rule. 
OBJ3 then assigns to such operators a rewriting strategy where the occurrence 0 never appears. 
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Then the matching test for rewriting terms at an f occurrence is avoided. Provided completion 
can orient axioms in the right hand side direction, terms with f on top can become reducible, 
and the previous O B J 3  feature leads the rewriting strategy to be incomplete. The completeness 
of computations was restored by adding the [0] occurrence to any operator strategy. 

The second optimizing feature of rewriting in O B J 3  consists in marking the terms in normal 
form, for avoiding to try to reduce them in further computations. Again, since completion 
dynamically changes the set of rules R, a normal form at a given step of completion can become 
reducible further. The solution chosen here is to update the "normal form mark" of terms, by 
deleting it each time R is modified. 

All the previous features for improving efficiency of rewriting in OBJ3 fie on the fact that 
the set of rules is not considered as evolving. The solution for a further prototype of such an 
integrated programming environment could be the design of two different rewrite engines: one 
flexible and dynamic with respect to the rewrite rules (for completion), the other one designed 
for efficiency of rewriting and used only when executing programs (installed after completion 
for example). 

7 Examples of complet ion in ELIOS-OBJ 

We now give examples of completion in ELIOS-OBJ. An O B J 3  program specifying the predicate 
is-even on integers is given. Then a completion is performed on this program to give an equivalent 
one, warranted to be terminating and unambiguous for any data. We also illustrate on this 
example that an interreduced set of rules can lead to a more efficient execution. For obtaining 
the same result, the program is executed on the data is - even(p(p(O))) in 5 steps before 
completion, instead of 1 after. 

tarsky.loria.fr~ cat even.obj 

obj EVEN i s  

sorts Zero NzNeg Neg NzPos Pos Int Boolean . 

subsorts Zero < Neg < Int. 

subsorts Zero < Pos < Int. 

subsorts NzNeg < Neg . 

subsorts NzPos < Pos . 

op O : -> Zero . 

op s : Pos -> NzPos . 

op p : Neg -> NzNeg . 

op true : -> Boolean . 

op false : -> Boolean . 

op is-even : Int -> Boolean . 

op opposite : NzNeg -> NzPos . 

var x : Pos . 
v a r y  : g z N e g  . 

eq is-even (O) = true . 

eq is-even (s(O)) = false . 



196 

eq i s - e v e n  ( s ( s ( x ) ) )  = i s - e v e n  (x )  

eq i s - e v e n  ( y )  = i s - e v e n  ( o p p o s i t e ( y ) )  . 

eq  o p p o s i t e  ( p ( O ) )  = s (O)  . 
eq  o p p o s i t e  ( p ( y ) )  = s ( o p p o s i t e ( y ) )  . 

jbo 

r elios-obj 

~ ~ , ~ , ~ ~ ~ ~ ~  

Welcome to ELIOS-0BJ, a sympathetic 0BJ with completion 

Copyright 1988 SKI International 

Copyright 19911. Gnaedig - INRIA Lorraine R CRIN 

To have the list of available commands, do: 'help', 'h' or '?' 

ELIOS-OBJ> in  e x / e v e n  

obj EVEN 

ELIOS-0BJ> reduce is-even(p(p(O))) . 

reduce in EVEN : is-even(p(p(O))) 

rewrites: S 

result Boolean: true 

ELIOS-0BJ> complete EVEN . 

"EVEN" 

The starting equations for completion are those 

of the current module: 

Only UNCONDITIONAL equations are retained. They are: 

is-even(O) = true 

is-even(s(O)) = false 

is-even(s(s(x:Pos))) = is-even(x:Pos) 

is-even(y:NzNeg) = is-even(opposite(y:NzNeg)) 

opposite(p(O)) = s(O) 

opposite(p(y:NzNeg)) = s(opposite(y:NzNeg)) 

.../... 
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The complete set of rules is: 

is-even(O) -> true 

iS-even(s(O)) -> false 

is-even(s(s(vl:Pos))) -> is-even(v1:Pos) 

is-even(opposite(v2:NzNeg)) -> is-even(v2:NzNeg) 

opposite(p(O)) -> s(O) 

opposite(p(v3:NzNeg)) -> s(opposite(v3:NzNeg)) 

is-even(p(O)) -> false 

is-evsn(s(opposite(v7:NzNeg))) -> is-even(p(v7:NzNeg)) 

is-even(p(p(O))) -> true 

is-sven(p(p(v9:NzNeg))) -> is-even(v9:NzNeg) 

ELIOS-OBJ> reduce is-even(p(p(O))) . 

reduce in EVEN : is-even(p(p(O))) 

rewrites: 1 

result Boolean: true 

ELIOS-OBJ> 

A second example  is given below. It specifies an addi t ion  on integers ,  themselves  descr ibed 

in t e rms  of  successors of zero and opposi tes  of  successors of  zero. 

tarsky.loria.frX cat addition.obj 

obj ADDITION is 

sorts Zero NzNat Nat Int. 

subsorts Zero < Nat . 

subsorts NzNat < Nat . 

subsorts Nat < Int. 

op 0 : -> Zero . 

op s : Mat -> NzNat . 

op _+_ : Nat Nat -> Nat . 

op _+_ : Int Int -> Int. 

op - _ : Int -> Int. 

vars x y : Nat , 

eqO+x=x . 

eqx+O=x . 

eq x + s(y) = s(x + y) 

eq s(x) § y = s(x + y) 

eq--x=x . 

eq-O=O . 

eq (- x) + (- y) = - (x + y) 

eq  s ( x )  § ( -  s ( y ) )  = x + ( -  y) 

eq  - s ( x )  + s ( y )  = - x § y . 

jbo 
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ELIOS-OBJ> in ex/addition 
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  

obj ADDITION 

ELIDS-OBJ> complete ADDITION . 

...\... 

The complete set of rules is: 

0 + vl:Nat -> vl:Nat 

v2:Nat + 0 -> v2:Nat 

v3:Nat + s(v4:Nat) -> s(v3:Nat + v4:Nat) 

s ( v 5 : N a t )  + v 6 : N a t  ->  s ( v S : N a t  + v 6 : N a t )  

(- v7:Nat) -> v 7 : N a t  

-0->0 

- vS:Nat + - v9:Nat -> - (v8:Nat + vg:Nat) 

s(vlO:Nat) § ~ s(vll:Nat) -> vlO:Nat + - v11:Nat 

s(vl2:Nat) + s(vl3:Nat) -> - vl2:Nat + vl3:Nat 

0 + - v27:Nat -> - v27:Nat 

~ v28:Nat + 0 -> - v28:Nat 
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