
ELIOS-OBJ
Theorem proving

in a specification language

I. Gna~dig
I N R I A Lor ra ine - CRIN

Technop61e de N a n c y - B r a b o i s - B P 101
54600 Vil lers- l~s-Nancy

France
E-maih gnaedig@lor ia . f r

A b s t r a c t

In the context of the executable specification language OBJ3, an order-sorted completion
procedure is implemented, providing automatically convergent specifications [rom user-given
ones. This feature is of first importance to ensure unambiguity and bermination of the
rewriting execution process. We describe here how we specified a modular completion design
in terms of inference rules and control language, using OBJ3 itself. On another hand, the
specific problems encountered to integrate a completion process in an already reduction-
oriented environment are pointed out.

1 I n t r o d u c t i o n

OBJ3 is a programming language based on equational logic: programs are given in terms of
abst ract da ta types and their semantics relies on order sorted algebras, which enables inclusion
of types. The problem approached here is the correctness of axiom sets, in the following sense.
The operational semantics of OBJ3 is rewriting, which means tha t when a program is executed
on a given value, the set of axioms is interpreted and used as a set of rewrite rules that reduces
the value to its normal form. We have to establish whether computations are correct with
respect to validity in initial models, whether results are unique and - last but not least - whether
computat ion always terminates.

The completion process of a rewrite rule set is able to ensure the previous requirements.
Start ing from any axiom set, it provides, when it succeeds (this is a semi-decidable problem),
an equivalent set of rules with the same deduction power, confluent (the result of rewriting an
expression does not depend of the way the rules are applied: it is unambiguous), and terminating
(there is no infinite rewrite chain). Hence, it can be seen as an automat ic prover of program
correctness. We intend here to design and implement an integrated programming environment,
named ELIOS-OBJ, allowing programming and proving in the same context.

Our goal here has three aspects: to provide the user with a tool for proving correctness of
specifications in the context of OBJ3, namely with an order-sorted semantics; to propose an
implementat ion of order-sorted completion described and proved in [6]; and to point out some
problems arising in integrating theorem proving aspects (completion here) with programming
aspects (the OBJ3 language).

183

We describe completion in a high-level formalism allowing modularity and general expres-
siveness, using inference rules. This approach, first presented for completion in [1], has also be
implemented in [13]. A control language is proposed, to combine these inference rules in any kind
of strategy. In this formalism, completion can be considered as a particular instance of general
deduction mechanisms, described by inference rules and control, as equational proofs, inductive
proofs, equation solving by unification, disunification... The specification of our implementation
is given in OBJ3 itself.

The main definitions and the algebraic context are given in Section 2. Section 3 recalls
results on order sorted completion established in [5, 6], expressed in terms of inference rules
and control. Section 4 describes the control language for expressing and implementing different
completion strategies. Section 5 presents the features of the orientation engine, transforming
axioms into rules. Section 6 presents an investigation towards the integration of a theorem prover
into a programming context. It points out the technical problems encountered in implementing
completion in OBJ3. They are mainly due to the fact that features for an efficient rewrite
engine (as integrated in OBJ3) are not necessarily compatible with completion mechanisms.
Some examples of completion in ELIOS-OBJ are given and illustrated in Section 7.

2 Order -Sor ted Algebra

In this section the basic notions about order-sorted algebras are shortly summarized [7].
Given an index set S, an S-sorted set A is just a family of sets, one for each s E S; we will

write {Asls E S}. Similarly, given two S-sorted sets A and B, an S-sorted function a : A --+ B
is an S-indexed family a = {as : As --+ Bs[s E S}. Assume a fixed partially ordered set (S, <),
called the sor t set.

An o r d e r - s o r t e d s i g n a t u r e is a triple (S, <, ~) where S is a sort set, ~ is an S* x S
-indexed family {E~,~Iw E S*,s E S}, and (S ,<) is a partially ordered set. Elements of
are called operators. When the sort set S is clear, we write ~ for (S, ~). Similarly, when the
partially ordered set (S, <) is clear, we write ~ for (S, <, ~). For operators, we write f : w ~ s
for f E ~, ,s . We say that the rank of f is w ~ s. An important special case is when w is A, the
empty string; then f E ~]~,s denotes a constant of sort s. Note that the ordering < on S extends
to strings of the same length in S* by sl...s,~ < s 1' ...s n' iff si 5 s i' for i = 1, ..., n; similarly, _<
extends to pairs (w, s) E S* x S by (w, s) < (w', s') iff w < w' and s < s ' .

Let (S, <, ~) be an order-sorted signature. A (S, <, ~) - a lgeb ra A consists of a family
{As[s E S} of subsets of A, called the ca r r i e r s of A, and a function fA : A~ --+ As for each
f E ~w,s where A~, = As1 x ... • As, when w = Sl...s~ and A~ is a one point set when w = A,
such that:

1. s < s ~ in S implies As C_ As, and

2. f E ~ , s n ~ , , s , with s' _< s and w' < w implies fA : A~ ---, A~ equals fA : A~, ---+ A~, on
A~,.

Following [7], we define the order-sorted Z-term algebra T~. as the least family {T~.,sis E S}
of sets satisfying the following conditions:

* ~':~,s C_ T~,~ for s E S;

, T~,s, C_ T~,s if s' < s;

�9 if f E ~,,~ with w = sl...s,~ # ,~ and if t~ E T~,s~ then (the string) f (t l . . . tn) E T~,s.

184

* for f E ~ , s , let 7) : 7",, --+ 7s map tl , . . . , tn to (the string) f (t l . . . t~) .

Following [9], we denote by T~(t) the set of occurrences of t i.e. the domain of the term t
viewed as a partial function from A/'* to Z. We denote by tl~ the subterm of t at occurrence
w and by t[w *-- t'] the result of the replacement by t ' of tl~ for w E D(t). Clearly 7-r. is an
order-sorted ~-algebra.

We restrict to the class of regular signatures. Essentially, regularity asserts that overloaded
operations are consistent under restriction to subsorts, so that each well-formed expression on
the function symbols has a least sort. An order-sorted signature Z is r egu la r if[for any w0 E S*
such that there is a f E]C",s with w0 _< w, then there is a least (w ~, s ~) E S* x S such that
f E Z",,s, and wo <_ w ~. Under that condition, Tr. is an initial order-sorted)"..-algebra [7]. In
this case, for any t E 7-~, there is a least s E S, called lowest sor t of t and denoted LS(t) .

2.1 E q u a t i o n s a n d r e w r i t e r u l e s

An S - so r t ed var iab le set is an S-indexed family X = {Xs l s E S} of disjoint sets. A variable
x of sort s is also denoted (x : s). Given an order-sorted signature (S, _<, Z) and a variable set
X that is disjoint from ~., (S, _<, ~ (X)) is defined by ~.(X)~,s = ~,~,s U X, and ~.(X)",, = Z",8
for w ~ A.

Note that if Z is regular, so is Z(X) . We can now form 7"~(x) and then view it as a Z-algebra;
let us denote this Z-algebra by 7-r.(X). It is the free Z-algebra generated by X. 12(t) denotes
the set of variables of the term t.

To get an adequate notion of satisfaction (see [11]), an additional hypothesis on the set of sorts
S must be satisfied: An order-sorted signature (S, <_, Z) is c o h e r e n t iff each of the connected
components of S for _< (i.e. each equivalence class under the transitive symmetric closure of _<)
has a maximum, and Z is regular. We will only consider here order-sorted signatures that are
coherent.

A Z-equa t i on is a triple (X, t, t ') where X is a variable set and t, t ' E 7"r.(X) with L S (t)
and L S (t ') in the same connected component of (S, _<). We will use the notation ((VX)t = t').

2 .2 O r d e r - s o r t e d r e w r i t i n g

For (S, _<, Z) a coherent order-sorted signature and X, Y two S-sorted variable sets, a subs t i t u -
t i on is an S-sor ted function a : X --* 7-r~(Y), extended in a unique way to a : Tr . (X) --~ 7"~(Y).

Operationally, order-sorted equations are used as rewrite rules. An order-sorted r ewr i t e
r u l e is aa order-sorted equation ((VX)I = r) satisfying r (r) C_ r (l) and denoted ((VX)I --* r).
A m a t c h from a term t E T ~ (X) to a term t' E Tr . (Y) is a substitution a such that a(t) = t'.

Let R be a set of rewrite rules. A term t E TE(Y) rewrites to t' with a rewrite rule ((VX)I ~ r)
in R at occurrence w, which is denoted t --+~ t ' = t[w ~ a(r)] whenever

1. there is a match a : X -~ 7-r.(Y) from l to t at occurrence w (a(1) = tl~)

2. there is a sort s such that, for x a variable of sort s, t[w ~- x] is a well-formed term and
a(l) , a(r) E T~, , (Y) .

The difficulty is that a(l) and a(r) may have different sorts, and the second condition in the
previous definition is needed to avoid that replacements produce ill-formed terms.

. R
We define -----*y to be the reflexive transitive closure of -----*~ and ~ ~ *~ to be its sym-

metric, reflexive and transitive closure. This last equivalence relation is called o r d e r - s o r t e d
r e p l a c e m e n t o f equals b y equals . For the notion of order-sorted replacement of equals by

185

equals to be correct and complete with respect to order-sorted deduction, the rewriting relation
.has to be confluent and sort-decreasing [11].

An order-sorted term rewriting system R is s o r t - d e c r e a s i n g iff Vt, t ~ E Tr . (Y) , t --*R r t ~
implies L S (t) >_ LS(t ') .

In order to give decidable criteria for this property to hold, we need the notion of special-
ization. A sorted set of variables X can be viewed as a pair ()(, ~u) where) (is a set of variable
names (i.e. unsorted variables) and #, the sort assignment, maps the variable names to the set
of sorts # :) (~ S. The ordering < on S is extended to sort assignments by

We then say that # ' spec i a l i z e s to # via the substi tut ion p : (z ' : # ' (x)) ~ (x : #(x)) called a
s p e c i a l i z a t i o n of X = () (, # ') i n t o p (X) = (f (, #).

The notion is then extended to equations and rewrite rules. A specialization of an equation
(V X) (l = r) is another equation (Vp(X)) (p (l) = p(r)) where p is a specialization of X . A
specialization of a rule (V Z) (l --, r) is the rule (Vp(X)) (p(1) ~ p (r)) where p is a specialization
of X .

If the set of sorts is finite, or if each sort has only a finite number of sorts below it, a finite
sorted set of variables has a finite number of specializations. This allows deciding the sort-
decreasing property. A set of rules R is s o r t - d e c r e a s i n g iff any rule of R is s o r t - d e c r e a s i n g ,
that is iff for any rule ((V X) / ~ r) of R, for any specialization p of X , the lowest sort of p(l)
is greater or equal than the lowest sort of p(r) . An order-sorted term rewriting system R is
sort-decreasing if R is a sort-decreasing set of rules.

The definitions R being con f luen t are similar to the unsorted case. Let R be an order-sorted
. R tl __~yR t" term rewriting system. R is con f luen t iff for any terms t, t ~, t" E T~(Y), t ----~y and t

implies there exists to such that t ~ . n t" . n - - -*r to and ----*y to. R is C h u r c h - R o s s e r iff for any
. R . R

terms t , t ~ E Try(Y), t ~ *~t ~ implies there exists to such tha t t ~y to and t ~ ---~y to.
When the variable set Y can be deduced from the context, we allow it to be omit ted and we

write t __._~n t ~ for t ___,yR t I.

2 .3 C r i t i c a l p a i r s

Two reductions applied to a same term can sometimes overlap, yielding critical pairs. Let ~(t)
be the set of occurrences ca in t such that the subterm of t at occurrence ca is not a variable. A
unifier of two terms t and t I is a substi tution a such that at = a t I.

A non-variable term t I and a term t o v e r l a p at occurrence w in G(t) with a subst i tut ion a
iff a is a unifier of rio ~ and t ~.

Given two rules g ~ d and l --* r such that 1](g) n P(l) = 0 and l and g overlap at occurrence
w of ~(g) with the substi tution a , then the pair (p = a(g[w ~ r]), q = a (d)) i s called a c r i t i c a l
p a i r of the rule l --* r on the rule g --* d at occurrence w (a trivial one if ca = e, 1 = g, r = d).

3 Completion in order sorted algebras

In [6] we describe the completion process in order-sorted algebras by a set of inference rules.
Although [6] presents results on equational completion, we implement here completion in the
empty theory. This more simple process enables us to focus on interaction and interface between
the completion and the language, instead of problems specific to completion.

Recall that an ordering on terms is compatible (with the term structure) if s ~- t implies
f (. . . s . . .) ~- .f(.. .t . . .), for all terms s , t and all contexts f (.) such that / (. . . s . . .) and .f(. . .t . . .)

186

are well-formed. A reduction ordering is a well-founded and compatible ordering. A reduction
ordering warrants termination of a rewriting system R, if al ~- ar for each rule l ~ r of It, and
every substitution a [2].

Let P be a set of equations and >- a reduction ordering. As pointed out previously, the
signature of the algebra, P is defined on, has to be coherent. The completion procedure
transforms, if possible, P into a confluent and terminating set of rules R, having the same
deduction power. This transformation can be described by a derivation chain of the form
(p 0 R 0) F (p1, R1)... F (P'~, R~)... F (BOO ROO) (that may be constant from a given rank n).
The completion transformation is based on the well known basic mechanisms: orienting an axiom
of P into a terminating and sort-decreasing rule, adding equational consequences named critical
pairs, and reducing the left-hand-side and the right-hand-side of axioms and rules. Order-sorted
completion can be expressed by the following inference rules:

1. Orienting an equation
P U {s : t) , R
P, R U {s ---* t} if s ~- t & s ---+ t sort - decreasing

2. Adding a critical pair
P~ R if u ~ R s & u--+n t

P u {s = t}, R

3. Simplifying an equation
P u = t) , R + R
P U { u = t } , R i f s u

4. Deleting an equation
P u {~ = ~},R

P, R

5. Simplifying the right-hand side of a rule
P, R U { s "* tul .~ R
P, R U {s ~ i f t u

6. Simplifying the left-hand side of a rule
P, R U {s ~ t} __.n
P U { u = t } , R i f s t - ~ r u & s t>l

where t> is the proper specialization ordering, defined by s I> l iff 3a, a(l) = sl~ with w ~ e,
or a(1) = s and a is not a renaming.

With respect to the completion procedure for unsorted rewriting described in [1], the mod-
ifications for the order-sorted completion are localized in the conditions of the first inference
rule, where the sort-decreasing test for a new rule must be performed. Remark that the sort-
decreasing test in the rule 5 is not needed since s --* t and t ~ u sort-decreasing implies s --* u
sort-decreasing (by definition of a sort-decreasing rule and by transitivity of the ordering _< on
sorts).

Furthermore, except for the sort-decreasing test, it appears that the specific sort problems
are hidden in the definition of rewriting and critical pairs: order-sorted matching, order-sorted
unification.

187

4 Specifying control for completion

The concept of inference rules previously chosen for describing the theoretical aspects of com-
pletion, will be completed by a control mechanism on these inference rules, to give particular
completion procedures. Control specifies the order in which inferenc~ rules are applied. As
required in [6], the control has to be fair, which means that all critical pairs of the resulting set
of rules R ~176 have to be computed, and the resulting set of pairs poo has to be empty. If the
completion is fair and does not fail, then R ~176 is Church-Rosser and sort-decreasing.

Here is developed a simple control language, aimed at expressing any "combination" of
inference rules and at providing effective completion procedures. Note that this control language
is general enough to be applied on any activity described with inference rules (and on any
working universe named UNIVERSE); it is not specific to completion since it doesn't depen~i
on the inference rules themselves.

The language used for describing control is OBJ3 itself. So, we at tempt in the same time
to test expressiveness of OBJ3 for describing an already complex problem. The effective imple-
mentation is made in Kyoto Common Lisp, like OBJ3.

Let us start from the definition of the specific completion universe. The working domain
COMP-UNIVERSE is a pair of sets: the set P of axioms to be oriented and the set R of current
rules generated by completion.

Note that the subsort mechanism of OBJ3 allows an elegant "error-handling" feature used
here when completion fails on a given universe: we just have to define a sort Comp-universe-with-
failure including the sort Comp-universe. Hence, when finishing with success, the completion
procedure gives a pair (E, R) of sort Comp-universe. When instead failing, it returns an error
result of sort Comp-universe-with-failure. The modules BOOL, PAIR, PAIRS and RULES used
in the following specify respectively the booleans, a pair, a set of pairs and a set of rules. They
are not detailed here.

obj COMP-UNIVERSE is

protecting PAIRS, RULES .

sorts Comp-universe Comp-universe-with-failure .

subsorts Comp-universe < Comp-universe-with-failure .

op <_,_> : Pairs Rules -> Comp-universe .

op P : Comp-universe -> Pairs ,

op R : Comp-universe -> Rules .

vat p : Pairs .

vat r : Rules .

eq P(<p, r>) = p .
eq R(<p,r>) = r .

jbo

The protecting feature is a mechanism for importing modules in OBJ3 (to become familiar
with the OBJ3 syntax, read [8]).

Let us now define strategies by a control on inference rules. The completion can then be
seen as the application of a chosen strategy (available for instance in a strategy library) on a
completion universe. This is a simple way to describe concisely a completion strategy, looking it
as independent of the data structures (axioms and rules), it is working on. In other words, the

188

strategy (specified in STRAT-COMP) is a constant with respect to the completion universe U,
as specified below:

obj COMPLETION is

protecting STRAT-COMP .

protecting COMP-UNIVERSE .
op comple t i on : Comp-universe S t ra t -comp -> Comp-universe .
v a t U : Comp-universe .
var s : Strat-comp .

eq : completion(U,s) = apply(s,U) .

jbo

We now have to define how the apply operation works on a strategy and a universe, intro-
ducing here our control language on inference rules. It is expressed in the module STRAT by
the classical basic instructions of imperative programming languages: a test if-then-else, a loop
while-do, a sequence operator concat, an iterator iter. This module is parametrized by the mod-
ules TE, expressing the notion of test, IT, expressing the notion of iterator, and INF, defining
inference rules written < U, U', C >.

obj STRAT[TE : TEST, IT : ITERATOR, INF : INFERENCE-RULE] is

protecting UNIVERSE B00L .

sort Strategy .

op empty-strategy : -> Strategy .

op while_do_ : Test Strategy -> Strategy .

op if-then-else : Bool Strategy Strategy -> Strategy .

op apply : Strategy Universe -> Universe .

op _concat_ : Strategy Strategy -> Strategy .

op iter : Strategy Iterator -> Strategy .

vats C : Bool .

vars S S' : Strategy .

vars U U' : Universe .

var I : Iterator .

var B : Test .

eq a p p l y (e m p t y - s t r a t e g y , U) = U .

eq apply(<U,U' ,C>) = i f C then U' e l s e U .

eq apply(while B do S,U) = if test-apply(B, U)

then apply(while B do S,

app ly(S ,U))
e l s e U .

eq apply((if-then-else(B,S,S'),U) = if test-apply(B, U)

then apply(S,U)

else apply(S' ,U) .

189

eq apply((S concat S'),U) = apply(S',apply(S,U)) .

eq a p p l y (i t e r (S , I) , U) = i f i t e r - a p p l y (I , U) d i f f e r r o r
then apply(iter(S, I),

iter-apply(I, apply(S, U)))

else U .

jbo .

The operation apply is itself defined through more specific operations: test-apply and iter-
apply, working respectively on tests and i terators defined in the following two specifications, for
the completion case.

obj COMP-TEST is

Protecting COMP-UNIVERSE, BOOL, PAIRS, PAIR, RULES .

Sort Comp-Test .

op non-empty-set-of-pairs : -> Comp-Test .

op is-trivial-pair : -> Comp-Test .

op orientable-pair : -> Comp-Test .

op non-empty-critical-pairs : -> Comp-Test .

op test-apply : Comp-Test Comp-Universe -> Boo1 .

var U : Comp-universe .

eq test-apply(non-empty-set-of-pairs, U) = non-empty(P(U)) .

eq test-apply(is-trivial-pair, U) = is-trivial(current(P(U))) .

eq test-apply(orientable-pair, U) = is-orientable(current(P(U)))

eq test-apply(non-empty-critical-pairs, U) = non-empty(critical-pairs(R(U))) .

jbo .

obj COMP-ITERATOR is

Protecting C0MP-~NIVERSE PAIRS RULES .

Sort Comp-I%erator .

op for-each-pair : -> Comp-Iterator .

op for-each-rule : -> Comp-Iterator .

op iter-apply : Comp-Iterator Comp-Universe -> Comp-Universe .

var U : Comp-universe .

eq iter-apply(for-each-pair, U) = <increment-on-set((P(U)), R(U)> .

eq iter-apply(for-each-rule, U) = <P(U), increment-on-set(R(U))> .

j b o .

Note that the operations used to define test-apply and iter-apply are working at lower level
than the previous ones, and on da ta structures, tha t we will not specify here: non-empty is a test
of non-emptyness of a set, current gives the current element of a set, is-trivial and is-orientable
are working on a pair of terms, increment-on-set manages the access to elements of a set, and
critical-pairs gives the critical pairs of a set of rules.

190

Then the specification of a strategy for completion can be designed, using the the mod-
ule STRAT instantiated by the parameters COMP-TEST, COMP-ITERATOR. and COMP-
INFERENCE-RULE.

The last parameter COMP-INFERENCE-RULE defines inference rules for completion, adap-
ted from those of Section 3: normalize-lhs-pair, normalize-rhs-pair, delete-pair, orient-pair-l-to-r,
orient-pair-r-to-l, normalize-rhs-rule, simplify-lhs-rule, failure-inf-rule, add-critical-pairs.

Remark that, in order to be used in an operational way, the first inference rule orienting an
equation has been splitted in orient-pair-l-to-r and orient-pair-r-to-l, the third rule simplifying
an equation has been splitted in normalize-lhs-pair and normalize-rhs-pair. Note also that the
orientation failure case is handled by a new inference rule: failure-inf-rule.

obj STRAT-COMP

Pro%ecting STRAT[COMP-TEST, COMP-ITERATOR, COMP-INFERENCE-RULE] .

Sort Strat-comp .

op sitar-simple : -> Strat-comp .

eq strat-simple = while non-empty-critical-pairs do

while non-empty-se t -o f -pa i r s do
normalize-lhs-pair concat
normalize-rhs-pair concar
if is-trivial-pair

then delete-pair
else if orientable-pair

then orient-pair-l-to-r concat
orient-pair-r-to-I concat
i t e r (normalize-rhs-rule concat

simplify-lhs-rule ,
f o r - each - ru l e)

else failure-inf-rule
endif

endif

end while concat
add-cmtical-pairs

end while .

jbo .

5 The orientation engine

The test orientable-pair includes the complete mechanism for orienting an axiom in order sorted
completion, depending on two criteria. First, the axiom has to be oriented in a sort-decreasing
way. Second, it has to be oriented according to some reduction ordering, to ensure termination
of the computed rewrite system.

A decidable criterion for sort-decreasingness is given through the notion of specialization
(see Section 2). For implementing the sort-decreasing test, the rule specialization computing

191

algorithm, already existing in OBJ3 for defining the rewrite engine [8], is used.
To handle the termination problem, an usual simplification ordering is chosen: the left-

to-right lexicographical path ordering (LPO in short) [10]. This ordering is based on a basic
ordering on the set F of symbols of the signature: the precedence (denoted by >F). In our sys-
tem, like in REVE [12, 3], the precedence is empty when the completion starts, and incrementally
enriched by interaction of the user, as new rules are oriented.

Termination of rewriting in an order sorted algebra can be proved without considering the
sort information of operators and terms in the algebra. If a rewriting relation terminates in the
homogeneous algebra, then it terminates in the corresponding order sorted algebra. Therefore,
the LPO is used, where the precedence, namely the ordering on operators, does not take into
account the sort information on operators, i.e. their rank. Let us give an example.

obj PRECEDENCE is

sorts Nat Int.

subsorts Nat < Int.

op _§ : Nat Nat -> Nat .

op _+_ : Int Int -> Int.

op - : Int -> Int.

vars x y : Nat .

eq - (x + y) = (-x) + (-y) .
eq -(-(x + y)) = x + y .

jbo

Let us try to orient both axioms into rewrite rules. For ensuring termination, we have to
prove - (x + y) >LPO (--x) + (--y). Let us note, the top symbol of the right hand side is
"+ : Int Int --+ Int". The unequality is true if we assume - >F +. We do not precise in the
precedence, what "+" of the signature, we are handling with. That means that " - " is greater
than any "-t-" of the signature. For the second axiom to be oriented, the previous precedence
hypothesis can then be used, although the "+" operator is "+ : Nat Nat --+ Nat" in both sides
of the axiom.

The choice made in our orientation engine is to treat sort-decreasingness, before termination.
If an axiom is not sort-decreasing, the user can reverse it or orient it by hand (in this last case,
correction of rewriting is not warranted, see Section 2). If however a given axiom is not orientable
for the current LPO, he can backtrack for chosing another precedence, before trying to reverse
it. The structure of our orientation engine, hidden in the test orientable-pair (already presented
in the STRAT-COMP module) looks like:

obj DRIENTATION-ENGINE is

Protecting PAIR .

op orientable-pair : Pair -> Bool .

op orientable-pair-l-to-r : Pair -> Bool .

op orientable-pair-r-to-I : Pair -> Bool .

Vat p : Pair .

eq orientab~e-pair (p) = if orientable-pair-l-to-r (p)

then true

else if orientable-pair-r-to-I (p)

then true

else false .

192

eq orientable-pair-l-to-r (p) = if sort-decreasing (p)

then if is-LPO-oriented (p)

then true

else false

else false .

eq orientable-pair-r-to-i (p) = orientable-pair-l-to-r (reverse(p))

jbo

where the reverse operation transforms an equality g = d into its symmetrical equality d = g,
and is-LPO-oriented is the orientation test using the LPO.

This algorithm is used interactively, each time a pair can be oriented into a rule. But the
orientation can also be "forced" "by hand", or the pair can be postponed in the current set of
axioms, or simply completion can be interrupted and the original set of axioms restored.

6 The technical problems of integrating completion in O B J 3

The goal of our work was to develop an order-sorted completion algorithm interfaced with OBJ3.
In order to rewrite a minimum amount of code and to have an integrated design of completion in
the language, we wanted to reuse already existing tools like the matching algorithm, the rewrite
engine, the specialization algorithm. For a given O B J specification, we have also chosen to
perform completion on the internal OBJ3 form of the axiom set obtained after compilation of
the given specification. Completion works directly on the same structures as the rewrite engine;
it modifies them to give directly the compiled O B J module, corresponding to the completed set
of axioms.

Recall that one goal of this work was to discover and solve the problems of integrating
a theorem prover in a programming language interpreter. As known, execution of programs
and theorem proving have very different requirements and the design of the first is not easily
compatible with the requirements of the second.

For instance, an operation like reduction of terms is used in two different ways, first in
the reduction process of the OBJ language, where it requires efficiency for applying the rules,
second in the simplification mechanism of the completion procedure, where instead it requires
efficiency for updating the set of rules. The problems encountered during the integration of a
completion procedure in OBJ3 are now enumerated, and the propc.~ed choices and compromises
are explained.

6.1 A d a p t i n g OBJ3 s p e c i f i c a t i o n s to completion c o n t e x t

OBJ3 provides a mechanism of order-sorted conditional rewriting. Until now, however, order-
sorted completion only works on unconditional rules. A filter has been implemented, for trans-
forming conditional specifications into unconditional ones, by discarding conditional axioms,
before a completion is started on an OBJ module.

OBJ3 allows manipulating booleans, in any user-defined module, adding implicitly an impor-
tation of an OBJ predefined module for booleans containing associative-commutative operators
like and, or, xor (exclusive or) [8]. Since our completion doesn't handle associative-commutative
axioms, and since this predefined module is already complete, we suppress this systematic im-
portation. Instead, booleans are explicitly imported by the user, only if desired.

193

Let us also take into account the general importation mechanism. For the evaluation of a
term in an OBJ3 module, all axioms of all recursively imported modules are used for rewriting.
Let us give an OBJ3 example.

obj NAT_S is

sort Nat_s .
op 0 : -> Nat_s .

op s : Nat_s -> Nat_s .

var x, y : Nat_s .

eq 0 + x = x . (1)
eq s(x) § y ffi s(x + y) . (2)
jbo

obj FIBO_S is

protecting NAT_S .

op _+_ : Nat_s Nat_s -> Nat_s .

op fib : Nat_s -> Nat_s .

var x, y : Nat_s .

eq fib(O) = 0 . (3)

eq fib(s(O)) = s(O) . (4)

eq fib(s(s(x))) ffi (fib(x) + fib(s(x))) . (5)

jbo

In the previous specification, the definition of the Fibonacci function is built on the integers
defined in NAT_S. So the rewrite mechanism of OBJ3 uses the axioms of NAT_S (interpreted
as rules) in addition to those of FIBO_S, to reduce terms of FIBO_S. For example, the term
fib(O + O) defined in FIBO_S is reduced in fib(O) using (1), before fib(O) is reduced in 0 using
(3).

The first possible alternative for completion would be to collect recursively all imported
axioms, adding them to those of the current module, and completing the resulting set. This
process causes problems with respect to the design of OBJ3. Any rule is attached to the module,
in which the top operator of left hand side has been declared. Provided new rules may appear
during completion, the question is to which module they must be attached. Theorem proving
would be involved to prove that the definitions of modules are not changed. Moreover, this
mechanism of putting together all the imported axioms for completion would be a contradiction
to the modularity of OBJ3. Our completion procedure thus applies on axioms of a module in a
modular way, without considering the eventually imported rules.

This fact emphasizes the difficulties for integrating a proof mechanism in a modular pro-
gramming language, and suggests to investigate a theory of modular proofs in the completion
context, related to the problem of preserving properties of rewrite systems when considering
their union. Results have already been given for confluence and termination of the direct sum
of two rewrite systems, that is the union of two rewrite systems having disjoint sets of function
symbols. In particular, it is shown in [15] that two term rewriting systems are left-linear, con-
fluent and terminating if and only if the direct sum of these systems is so. Let us also cite a
work concerning termination [14], and a work concerning confluence and termination in the case
of sorted rewrite systems [4].

6.2 C o m p l e t i o n and t he s t a t i c OBJ3 r e w r i t e eng ine

The first problem was to dynamically update the set of rules in the rewrite engine of OBJ3 during
the completion. Two solutions were possible: to write a new rewriting procedure independent

194

of OBJ, for ensuring reduction in completion, or to use the already existing engine of OBJ. The
second way was chosen for reusability and integration reasons. But the OBJ rewrite engine is
very close to the set of reducing rules itself. Let us present its mechanism. For efficiency reasons,
rules are specialized [11], and then installed in different data structures: for any operator f
appearing as top in a left-hand-side of rule is attached:

�9 a rule-ring for the rules which top of right-hand-side is also f (the "top-respecting" rules)

�9 a rule set for other rules whose top of left-hand-side is f .

Then the procedures for rewriting or normalizing a term strongly interact with this structure.
Installing such a reduction engine is quite expensive. But note that in OBJ, since axioms of a
module are interpreted as rewrite rules, the rewrite engine is installed once for all, at compiling
time. The problem is different with completion since the set of rules changes dynamically. The
rewrite engine has then to be redefined each time the set of rules has to be used (by applying
inference rules for rewriting), after it has changed. This is the part of the "rule generation"
process, inserted between inference rules in the completion strategy, as follows:

eq sitar-simple = while non-empty-critical-pairs do

while non-empty-set-of-pairs do

normalize-lhs-pair concat

normalize-rhs-pair concat

if is-trivial-pair

then delete-pair
else if orientable-pair

then orient-pair-l-to-r concat

orient-pair-r-to-I concat

rule-generation
iter(normalize-rhs-rule concat

simplify-lhs-rule concat

ru~-generation,
for-each-rule)

else failure-inf-rule

endif

endif

end while concat

add-critical-pairs

end while .

The second problem is also related to the rewriting process. Several features for improving
the reduction of a term to its normal form were integrated in OBJ3. The first one is concerned
with the rewriting strategy assigned to operators. For example, a strategy [2 1 O] given to the
operator f means that any term whose top is f will be normalized successively at the occurrences
2, 1 and 0. This strategy is given by the user, in defining the operators. By default, an algorithm
computes a strategy for operators during the compilation of modules. It is clear that a term
with f as top operator is not reducible at the top f if f is not the top of a left hand side of rule.
OBJ3 then assigns to such operators a rewriting strategy where the occurrence 0 never appears.

195

Then the matching test for rewriting terms at an f occurrence is avoided. Provided completion
can orient axioms in the right hand side direction, terms with f on top can become reducible,
and the previous O B J 3 feature leads the rewriting strategy to be incomplete. The completeness
of computations was restored by adding the [0] occurrence to any operator strategy.

The second optimizing feature of rewriting in O B J 3 consists in marking the terms in normal
form, for avoiding to try to reduce them in further computations. Again, since completion
dynamically changes the set of rules R, a normal form at a given step of completion can become
reducible further. The solution chosen here is to update the "normal form mark" of terms, by
deleting it each time R is modified.

All the previous features for improving efficiency of rewriting in OBJ3 fie on the fact that
the set of rules is not considered as evolving. The solution for a further prototype of such an
integrated programming environment could be the design of two different rewrite engines: one
flexible and dynamic with respect to the rewrite rules (for completion), the other one designed
for efficiency of rewriting and used only when executing programs (installed after completion
for example).

7 Examples of complet ion in ELIOS-OBJ

We now give examples of completion in ELIOS-OBJ. An O B J 3 program specifying the predicate
is-even on integers is given. Then a completion is performed on this program to give an equivalent
one, warranted to be terminating and unambiguous for any data. We also illustrate on this
example that an interreduced set of rules can lead to a more efficient execution. For obtaining
the same result, the program is executed on the data is - even(p(p(O))) in 5 steps before
completion, instead of 1 after.

tarsky.loria.fr~ cat even.obj

obj EVEN i s

sorts Zero NzNeg Neg NzPos Pos Int Boolean .

subsorts Zero < Neg < Int.

subsorts Zero < Pos < Int.

subsorts NzNeg < Neg .

subsorts NzPos < Pos .

op O : -> Zero .

op s : Pos -> NzPos .

op p : Neg -> NzNeg .

op true : -> Boolean .

op false : -> Boolean .

op is-even : Int -> Boolean .

op opposite : NzNeg -> NzPos .

var x : Pos .
v a r y : g z N e g .

eq is-even (O) = true .

eq is-even (s(O)) = false .

196

eq i s - e v e n (s (s (x))) = i s - e v e n (x)

eq i s - e v e n (y) = i s - e v e n (o p p o s i t e (y)) .

eq o p p o s i t e (p (O)) = s (O) .
eq o p p o s i t e (p (y)) = s (o p p o s i t e (y)) .

jbo

r elios-obj

~ ~ , ~ , ~ ~ ~ ~ ~

Welcome to ELIOS-0BJ, a sympathetic 0BJ with completion

Copyright 1988 SKI International

Copyright 19911. Gnaedig - INRIA Lorraine R CRIN

To have the list of available commands, do: 'help', 'h' or '?'

ELIOS-OBJ> in e x / e v e n

obj EVEN

ELIOS-0BJ> reduce is-even(p(p(O))) .

reduce in EVEN : is-even(p(p(O)))

rewrites: S

result Boolean: true

ELIOS-0BJ> complete EVEN .

"EVEN"

The starting equations for completion are those

of the current module:

Only UNCONDITIONAL equations are retained. They are:

is-even(O) = true

is-even(s(O)) = false

is-even(s(s(x:Pos))) = is-even(x:Pos)

is-even(y:NzNeg) = is-even(opposite(y:NzNeg))

opposite(p(O)) = s(O)

opposite(p(y:NzNeg)) = s(opposite(y:NzNeg))

.../...

197

The complete set of rules is:

is-even(O) -> true

iS-even(s(O)) -> false

is-even(s(s(vl:Pos))) -> is-even(v1:Pos)

is-even(opposite(v2:NzNeg)) -> is-even(v2:NzNeg)

opposite(p(O)) -> s(O)

opposite(p(v3:NzNeg)) -> s(opposite(v3:NzNeg))

is-even(p(O)) -> false

is-evsn(s(opposite(v7:NzNeg))) -> is-even(p(v7:NzNeg))

is-even(p(p(O))) -> true

is-sven(p(p(v9:NzNeg))) -> is-even(v9:NzNeg)

ELIOS-OBJ> reduce is-even(p(p(O))) .

reduce in EVEN : is-even(p(p(O)))

rewrites: 1

result Boolean: true

ELIOS-OBJ>

A second example is given below. It specifies an addi t ion on integers , themselves descr ibed

in t e rms of successors of zero and opposi tes of successors of zero.

tarsky.loria.frX cat addition.obj

obj ADDITION is

sorts Zero NzNat Nat Int.

subsorts Zero < Nat .

subsorts NzNat < Nat .

subsorts Nat < Int.

op 0 : -> Zero .

op s : Mat -> NzNat .

op _+_ : Nat Nat -> Nat .

op _+_ : Int Int -> Int.

op - _ : Int -> Int.

vars x y : Nat ,

eqO+x=x .

eqx+O=x .

eq x + s(y) = s(x + y)

eq s(x) § y = s(x + y)

eq--x=x .

eq-O=O .

eq (- x) + (- y) = - (x + y)

eq s (x) § (- s (y)) = x + (- y)

eq - s (x) + s (y) = - x § y .

jbo

198

ELIOS-OBJ> in ex/addition
=

obj ADDITION

ELIDS-OBJ> complete ADDITION .

...\...

The complete set of rules is:

0 + vl:Nat -> vl:Nat

v2:Nat + 0 -> v2:Nat

v3:Nat + s(v4:Nat) -> s(v3:Nat + v4:Nat)

s (v 5 : N a t) + v 6 : N a t -> s (v S : N a t + v 6 : N a t)

(- v7:Nat) -> v 7 : N a t

-0->0

- vS:Nat + - v9:Nat -> - (v8:Nat + vg:Nat)

s(vlO:Nat) § ~ s(vll:Nat) -> vlO:Nat + - v11:Nat

s(vl2:Nat) + s(vl3:Nat) -> - vl2:Nat + vl3:Nat

0 + - v27:Nat -> - v27:Nat

~ v28:Nat + 0 -> - v28:Nat

Acknowledgments

We would like to thank Claude and H~lhne Kirchner for fruitful discussions concerning the design
of completion in OBJ3, and Pierre Lescanne for carefully reading previous versions of this paper.

References

[1] L. Bachmair and N. Dershowitz. Completion for rewriting modulo a congruence. In Pro-
ceedings gad Conference on Rewriting Techniques and Applications, Bordeaux (France),
volume 256 of Lecture Notes in Computer Science, pages 192-203, Bordeaux (France), May
1987. Springer-Verlag.

[2] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1 & 2):69-
116, 1987.

[3] R. Forgaard and J. Guttag. Reve: A term rewriting system generator with failure-resistant
Knuth-Bendix. Technical report, MIT-LCS, 1984.

[4] H. Ganzinger and R. Giegerich. A note on termination in combinations of heterogeneous
term rewriting systems. Bulletin of European Association for Theoretical Computer Science,
31, February 1987.

[5] I. Gnaedig, C. Kirchner, and H. Kirchner. Equational completion in order-sorted algebras.
In M. Dauchet and M. Nivat, editors, Proceedings of the 13th Colloquium on Trees in
Algebra and Programming, volume 299 of Lecture Notes in Computer Science, pages 165-
184. Springer-Verlag, 1988.

199

[6] I. Gnaedig, C. Kirchner, and H. Kirchner. Equational completion in order-sorted algebras.
Theoretical Computer Science, 72:169-202, 1990.

[7] J.A. Goguen and J. Meseguer. Order-sorted algebra I: Partial and overloaded operations,
errors and inheritance. Technical report, SRI International, Computer Science Lab, 1988.
Given as lecture at a Seminar on Types, Carnegie-Mellon University, June 1983.

[8] J.A. Goguen and T. Winkler. Introducing OBJ3. Technical Report SRI-CSL-88-9, SRI
International, 333, Ravenswood Ave., Menlo Park, CA 94025, August 1988.

[9] G. Huet and D. Oppen. Equations and rewrite rules: A survey. In R.V. Book, editor,
Formal Language Theory: Perspectives and Open Problems, pages 349-405. Academic Pressr
New York, 1980.

[10] S. Kamin and J.-J. L~vy. Attempts for generalizing the recursive path ordering. Inria,
Rocquencourt, 1982.

[11] C. Kirchner, H. Kirchner, and J. Meseguer. Operational semantics of OBJ-3. In Proceedings
of 15th International Colloquium on Automata, Languages and Programming, volume 317
of Lecture Notes in Computer Science, pages 287-301. Springer-Verlag, 1988.

[12] P. Lescanne. Computer experiments with the REVE term rewriting systems generator.
In Proceedings of l Oth A CM Symposium on Principles of Programming Languages, pages
99-108. Association for Computing Machinery, 1983.

[13] P. Lescanne. Implementation of completion by transition rules + control: ORME. In
H. Kirchner and W. Wechler, editors, Proceedings 2nd International Workshop on Algebraic
and Logic Programming, Nancy (France), volume 463 of Lecture Notes in Computer Science,
pages 262-269. Springer-Verlag, 1990.

[14] M. Rusinowitch. On termination of the direct sum of term rewriting systems. Information
Processing Letters, 26(2):65-70, 1987.

[15] Y. Toyama, J.W. Klop, and H.P. Barendregt. Termination for the direct sum of left-linear
term rewriting systems. In N. Dershowitz, editor, Proceedings 3rd Conference on Rewriting
Techniques and Applications, Chapel Hill (North Carolina, USA), volume 355 of Lecture
Notes in Computer Science, pages 477-491. Springer-Verlag, April 1989.

