
Detecting Determinate Computations by
Bottom-up Abstract Interpretation

Roberto Giacobazzi, Laura Ricci
Dipartimento di Informatica

Universits di Pisa
Corso Italia 40, 56125 Pisa

{giaco,ricci} @di.unipi.it

Abstrac t

One of the most interesting characteristics of logic programs is the ability of
expressing nondeterminism in an elegant and concise way. On the other hand,
implementation of nondeterminism poses serious problems both in the sequential
and in the concurrent case. If determinate computations are detected through a
static analysis, a noticeable reduction of the execution time may be obtained. This
work describes a static analysis to detect determinate computations. The analysis
does not require the knowledge of the activating modes of the predicate and it
derives determinacies which may be inferred from the success set of the program.

1 I n t r o d u c t i o n

One of the main features of logic programming is the ability to compute a set of output
bindings for each variable of a query. While this characteristic supports an elegant and
concise definition of non-deterministic behaviours, it poses serious problems both in a
sequential and in a concurrent implementation of the language. In several cases, the
ability of logic programs to compute multiple bindings is not exploited: in this case
a logic program has a determinate behaviour, i.e. it produces a single output value
for a given query, or for a class of queries satisfying some properties. Recently, some
analyses [6,4,11,10,12] have been proposed to statically detect when a computation is
determinate. The knowledge of determinate computations, i.e. determinacies, supports
optimization of the program execution time [5] end of bottom-up evaluators [10].

Even if the analysis to detect determinancies is related to the control features of the
language implementation, we show that determinancies may be inferred by a bottom
up analysis that does not require any knowledge of the type and activating modes of
a predicate. The analysis derives those determinacies that may be inferred from the
success set of the program. The definition of the analysis requires the investigation of the
relation between the input values of a predicate and those returned by the refutation
of the predicate itself. Some recent proposals [1,6,8,12] characterize such a relation
through the notion of dependence. This notion has been exploited, for instance, to

168

describe the relation between the groundness of a set of arguments of a predicate upon
invocation and the groundness of another set of arguments, after the refutation of the
predicate. We refine such notion through that of deterministic ground dependence. A
ground dependence from a set of input arguments to a set of output ones is deterministic
if, whenever the input arguments are ground, the refutation binds any output argument
to a single ground term. The definition of deterministic ground dependences supports
a refined notion of functionality, i.e. functionality is inferred with respect to subsets of
arguments rather than to whole predicates. The analysis has been defined and validated
through a bottom-up abstract interpretation technique. It integrates the theory of
hypergraphs with the semantics of logic programs in order to obtain a powerful program
analysis tool. The information useful to characterize deterministic computations is
produced by applying an abstract interpretation which returns an abstract model of the
program. This approximation is obtained by the finite computation of the least fixpoint
of an abstraction of the immediate consequence operator Tp. In order to have such an
abstraction, a suitable set of abstract domains and operators, supporting the definition
of Tp, is given.

Section 2 introduces some basic notions on hypergraph theory and semantics of logic
programs, Section 3 formally defines the abstract domains and abstract.operators for the
analysis and abstract fixpoint semantics for deterministic dependences analysis, Section
4 shows some significant examples, while Section 5 deals with some concluding remark.

2 P r e l i m i n a r i e s

We assume the reader familiar with the notions of lattice theory, hypergraph theory [2],
semantics of logic programs [7] and the basic concepts of logic programming [9].

In the following we will denote by S/{s} the set S where the element {s} has been
removed.

A hypcrgraph ~ is a pair (A/', s where A/" = {vl, ..., v,} is a (finite) set of nodes and
s = {el, ..., em} is a set of hypcrarcs, where for each i = 1,...,m, el = (T,H) such that
T C_ A/" (the tail) and H E A/" (the head). In the following we denote by Tail(e) and
Head(c) the tail and the head of any hyperarc c. The "tail" and "head" notions are
extended to deal with sets of hyperarcs. A hyperarc c is satisfied by a set of nodes A/"
iff Tail(e) C_ AP. A graph q2 is a hypergraph (Af,, s where Ve E Er [Tail(c)[= 1
(we denote by IT[the number of elements is T). Given a graph q2, the nodes n and
n' are connected in q2 iff there exists a path ~r C E~ where r = {cl,...,ck} such that
n = Tail(c1), n' = Head(ek) and Vj = 1 , . . . , k - 1, Head(ej) = Tail(ej+l). The
connection between the nodes n and n' (by means of a path It) in a graph �9 will be

n'. The graph, denoted by ~ , associated with the hypergraph denoted by: n ~
= (A/', s is obtained by reducing each hyperarc: ({s~, ..., s~}, h) E s in a set of arcs

{(s~,h)...,(sm,h)}. In the following we will denote by ~}v(n',n) = {Tr [n' ~ n} the
set of paths 7r defining a connection from n' to n in the graph ~I'~ associated with the
hypergraph ~.

Given a hypergraph G = (A/', s let s C_ f . The sets of nodes A/" and the node
n are connected in G, by means of the hyperarcs in s denoted by A/" --*~' n, iff all

169

the hyperarcs in s are satisfied by Af' U Head(E'), Vi �9 Af' : ~(~,e,)(i, n) # 0 and
Ve �9 s Vi �9 Tail(e) : i ~[Af', Sfi �9 Af' such that ~(~r i) # 0. We call E'
a connection from .Af' to n in g. A connection s from Af' to n in a hypergraph ~ is
minimal iN for each e �9 s Af' ~ ' /{~} n.

E x a m p l e 2.1 Let us consider the following hypergraph and some connections with v5

I t ~ -4
= vl v3 v, v, {v4} v , . {v3} v , . v ,

t r l Lc-jILdJ b J while VE'C_ {a,b,c,d,e}: {vl} 745' vs, {vs} 74~' vs.

Notice that the definition of connection requires that any node in the tail of a n hyperare
which is not in the set of starting nodes A f' can be reached from some starting node,
without using the hyperarc itself. This condition avoids considering, in a connection, a
hyperarc (e.g. a), such that each non.starting node (v~) in the tail can only be reached
from some starting node (vl) by means of a path using the hyperarc itself (the hyperarc
becomes auto-satisfied). As a consequence f i f f C {a,b,e,d,e} : {Vl} ---~' vs.

The declarative semantics of logic programs in [7] is based on an extended IIerbrand
Universe containing also non-ground terms. It allows to declaratively characterize the
ability of logic programs to compute answer substitutions (which are non-ground in
general). Let us consider the set Cons of term constructors, and a denumerable set V a t
of variables. The free Cons-algebra on Vat is denoted as Tco,o(Var). A substitution
0 is a mapping from Yar into Tvo,,(Yar), such that {x �9 Vat] O(x) # x} is finite.
e denotes the empty substitution, tgla denotes the restriction of the substitution 0 to
the variables occurring in G, which is extended as an identity, for any x �9 Vat(G)
such that tg(x) is undefined. We denote by mgu a total function which maps a pair of
syntactic objects (e.g. atoms, terms,...) to an idempotent most general unifier of the
objects, if such exists; fa i l otherwise. The eztended Herbrand Universe Up is defined
as Tvo,ov(Var)/ ~, where t 1 ~ t 2 iN 3 01,0~ [t101 = t2 A t2tg~ = tl. Let Pred be
a finite set of predicate symbols. An atom is an object of the form p(tl, . . . , t ,) where
tl, ...,tn �9 Tvonov(Var) and p is an n-ary predicate symbol (i.e. p �9 Pream). The set
of atoms is denoted Atoms. We denote by Vat(a) the set of variables in any syntactic
object a. The Base of interpretations Bp is Atoms/= where ~, extends to atoms in
the obvious way. An interpretation I is any subset of Bp. Standard results on model-
theoretic and fixpoint semantics apply to the extended domains as well as in the ground
case [7]. In particular, the fixpoint semantics for a logic program P (denoted as ~ ' (P))
is defined by means of an immediate consequences operator Tp [7]. It derives possibly
non-ground atoms by means of a bottom-up inference rule which is based on unification,
as in the top-down SLD resolution.

We assume the reader familiar with the basic notions of abstract interpretation as
defined in [3]. In the following an abstract interpretation supporting our analysis for
definite logic programs is developed according to a bottom-up technique [1] based on
an abstraction of the declarative and fixpoint semantics in [7].

170

3 A b s t r a c t D o m a i n s

This section introduces an analysis for ground and ground-deterministic dependences.
Informally, a ground dependence does exist between a set of arguments T of an atom
A and another argument h, iff whenever the arguments in T are ground, the refutation
of A produces a set of ground bindings for h. A ground dependence is determinate, i.e.
deterministic ground dependence, iff the refutation produces at most one binding for h.
Consider the logic program

append([], X , X) : - .

append([XlXs], Y, [XIYsl) : -append(Xs, Y, Ys).

the refutation of the goal append([al[]] , [bl[ll, Z) in the program produces only one bind-
ing for Z ({Z = [albl[ll}), while the goal append(X, Y, [aibl[]l) produces multiple bindings
for X and Y ({X = [al[ll,Y = [bl[]l}, {x = [albltll,r = tl}, etc.). In the first case the
groundness of the first two arguments uniquely determines the groundness of the third
one, while, in the second case, a non-deterministic dependence does exist between the
third argument and the first one and between the third and the second one.

Let P be a definite logic program, we denote by U~ = {g, rig} the abstract universe
of terms where g represents the ground term set, and ng the possibly non-ground one.
Two terms are ground-equivalent (~g,o=,d) iff both are ground or non-ground terms. As
a consequence, U~ can be considered as a set of abstract objects representing equivalence
classes of terms, modulo ground equivalency. It is trivial to prove that U~ is a finite
lattice since for each ground term there exists a non-ground term which is greater than
it (i.e. g <g rig). The elements in UUv will be denoted as t t.

Def ini t ion 3.1 A dependence representation ~P is a triple (A;, V, E), where

�9 (A/', E) is a hypergraph such that

X is a finite set o/symbols called the domain 0f the representation (Dora(19)),

E is a set of labelled hyperarcs of the form (T, h)t, where l e {d, ?,_L},

�9 r c N x such that I r l = IX I ^ e r , # s'.

A dependence is a hyperarc in a dependence representation. An autodependence is
a dependence (T, h)l such that h E T. Dependence representations which are defined
over the same domain Af are called homogeneous.

The hypergraph notation is useful to represent dependence information in a concise
way. Dependence representations are hypergraphs enhanced with a suitable set of la-
bels (for nodes and hyperarcs). Since both the elements of Y and the elements of E are
defined on the same set of nodes Af, we will often omit the reference to the underlying
set of nodes when this can be deduced by the context. Labels associated with nodes will
correspond to the mode information (a mode analysis is considered in our framework),
while the labels associated with the dependence notion represent the type of the corre-
sponding dependence (d and ? mean deterministic and don't know respectively, while 2.
means undefined). Hyperarc labels can be structured as a lattice, ({d, ?, _l_}, <d), where

171

h be a path from the d <d? and .l_ <d d. Let k~ be a graph with labelled arcs and 7%
h This notation node v to h in @. We denote by A(lr~) the set of labels in the path %.

naturally extends to sets of hyperarcs.

Definit ion 3.2 Given a dependence representation 7) = (Af, V, E), a hyperarc e E E is
redundant in :D iff e = (T, h)? and h E T, or e = (T, h)l and 3T' C T, T ~ 0, 3E' C E,
e ~E' such that T' g' --*(~.,~) h and lub<_d(A(s <_d l.

A hyperarc is redundant in a dependence representation if[it does not add any
information to the representation itself (i.e. either it is an autodependence labelled by
?, or there exists a connection with the same target which is more concise (T' C T)
and captures a stronger dependence relation). Notice that a connection is deterministic
iff all its labels are d. In the following we will use a suitable graphical notation for
dependence representations.

Example 3.1 s us consider the non-redundant dependence representation

I I I d
(~1, rig), (v~, rig), (v~, . g) .

~rote that the hyperares ({~ , ~ } , ~/~, <{~,, v~}, ~/d and the autodependence, <{~}, V~)d,
({~I,V2},V2)d, ({~,V2,~a},V,)d, ({Vl,V~,V3},V,)d, ({Vl,V~,Va},V~)e, ({Vl,V2},Vl)d,

are redundant g added to previous depen-
dence representation. As an example, ({v3}, Va)d is redundant since v3 can be reached
by the node itself without considering that autodependence. Of course, all the previous
dependences are redundant even if they are labelled with ?.

3 .1 A b s t r a c t A t o m s

Definition 3.3 An abstract atom is a pair of the .form (p, Dp) (usually denoted as
p(Dp)) where p is an n-ary predicate symbol in Pred and •p is a non-redundant depen-
dence representation such that Dorn(Dp) = {1, ..., n} (the nodes represent the argument
positions in the atom).

Definition 3.4 The abstract base, denoted as B~p, is the set of non-redundant abstract
atoms p(~)p), for each p E Pred.

Definition 3.5 An s-interpretation is any subset of the abstract base having at most
one occurrence for each predicate symbol. We will denote such a set as "~ (~J C 2B~).

To make the analysis more concise we will return non-redundant dependences and
we will approximate success patterns with their least upper bound, allowing in each
a-interpretation at most one abstract atom per predicate symbol [1,8].

Definition 3.6 Let p(Dp), p(Trp) be two abstract atoms, where T~p = ({1..n},Vv,s
= ({1..nl, V;,~;), v, = ((1,t~),...,(n, tS)} and V; = {(1,t~), . . . ,(~,t~)}.

172

p(Vp) E p (~) iff

�9 V i = l , . . . , n : t~<gt'i u

�9 V(T', h}l, G g either t h = ng, t~h = g and Ve E Ep: Head(e) # h or {T', h)t, is
redundant in ({1..n},Vp,~p U {(T',h),,}).

Propos i t i on 3.1 E is a partial ordering.

Let I~,I~ G E t, I~ <~ I~ iff Vp(V,) G I~, 3p(:/Yp) G I~: p(:D,) E p(T~p).

E x a m p l e 3.2

[~ ? 1 - - I - 7 , d I I I ;d
{ q(ng, rig, rig)} _<~ {q(~g, rig, rig)}, { p(ng, g, rig, rig) } <_o { ~ng, rig, rig, rig) },

~ ' ~ - - ~ d O]] ~ ?

Since each a-interpretation includes at most one atom for each predicate symbol,
it is easy to prove that <~ is a partial ordering and whenever I[C I~, then I[<~ I~.
Moreover, since Pred is finite and for each n-ary predicate symbol p E Pred there
always exists a finite set of abstract atoms in B~p defined on p, it is easy to prove that
(~", <~) is a finite lattice [1].

3.2 A b s t r a c t S u b s t i t u t i o n s

To develop an abstract interpretation based upon a declarative semantics, we also have
to reconsider the substitution notion within the abstract framework [1].

Given a finite set of variables V, we denote by Substy the set of substitutions t9
defined on V for each ~r _C V. Let r E 2 s~bav , ~1 <s ~2 iff
(v0 e ~1, 30' ~ ~ 1 o < 0') ^ (v0 ~ r 30' ~ r I o < 0' ~ ~1 c r
D e f i n i t i o n 3.7 An abstract substitution O" is a non-redundant dependence represen-
tation such that Dom(O ~) = V (the nodes are the symbols of variables in V).

Thus, an abstract substitution tg~ can be represented as a hypergraph of bindings of
the form (X / t ~) where X G V and t" E Utp.

Given a finite set V, of variable symbols {xz , . . . ,x ,} such that xi ~ xj for each
i ~ j: Subst~. denotes the set of abstract substitutions defined on the set of variables
Vk, for each Vk C V,. We can deal with a finite set of variables because of the bottom-
up approach. In fact, in this kind of analysis the meaningful substitutions are only
those referring the finite amount of variables occurring in program clauses. Let ~ , C

2s~'bst~, such that Vq'" E ~v., ~" contains at most one abstract substitution tgu such that
Dora(O") = Vk, for each Vk C V.. Note that any element in ~.~ can be handled as an a-
interpretation. As a matter of fact, abstract substitutions can be considered as abstract
atoms having a different predicate symbol of arity k for each V~ C V~. Thus, since
the preorder E can be defined between any homogeneous dependence representations,
independently from the domain, an ordering relation <r. can be defined by extending
the <~ on the domain of sets of abstract substitutions. It is easy to prove that [1] given
a finite set of variables V~, (~ . , <r.) is a finite lattice.

173

3.3 Galois C o nne c t ions

Let I E 2 Bp and p E Pred. In the following we denote by I ~ p the set of atoms in I
having the same predicate symbol p.

Let I ~ p = {P(t11, . , . , t l ,) , ...,p(t,~l, ..., trn.)}. We define an abstraction map
abs : 2 BP --~ •n such that abs(I) = U abs(I ~ p) where abs(I ~ p) = 0 if I ~ p =

p E P r e d

and abs(I ~ p) = p(Dp) such that :Dp = ({1..n}, Vp, s otherwise; where

�9 Vp = {(i,t~) [i = 1,. . . ,n} where t~ = { gng otherwise,iffVJ = 1,. . . ,m, Var(t~,) = ~,

�9 Let T = {i,, ..., ik}; (T, h), e s iff (T, h)t is non-redundant in Dp and

- Vj = 1,..., m, Var(tjh) C U Var(tj,),
- - i E T

- l = [d i f fVr , f E {1,.. . ,m}, r ~ f , m g u (t % , . . . , t r , k , t / , , , . . . , t f , ~) = f a i l ,
(? otherwise.

E x a m p l e 3.3 Let I = {q(a, b), q(b, b), q(c, d)}, then abs(I) = { q(g?, gl)}"

In this case, the groundness of the first argument of q uniquely determines the ground-
ness of itself, moreover it uniquely determines the groundness of the second one. Since
both the abstract arguments are ground, this information is relevant only because of the
deterministic label (d) associated with the hyperarc. The (non-redundant) dependence
from the second to the first argument is irrelevant and can be discarded by the analysis.

Autodependences allow to detect the source of determinism in an atom. As a mat te r
of fact, a deterministic autodependence represents a set of arguments containing at least
a deterministic term (i.e. a single choice term). The framework is designed in order
to handle general (possibly auto) dependences. However, in order to let the paper
more readable, in the following we will often omit any (possibly non-redundant) auto
dependence in abstract objects, thus showing only the inter-argument dependences,
which are more relevant for the analysis point of view.

F h%
E x a m p l e 3.4 Let I = {p(X, X, d),p(a, b, c)}, abs(I) = { p(ng, ng, g) }.

?l I
The non-redundant autodependences ({3},3}d, ({1,2},l)d and ({1,2},2}d (which are
not shown) show that the first two arguments and the third one deterministically de-
termines their own groundness (the sets of argument positions {1,2} and {3} are the
two sources of the determinism for the predicate p in I). As a matter of fact, for any
concrete atom p(tl, t2,t3) having either the first two arguments or the third one ground,
there ezists at most one possiblity of unifying it with atoms in I.

Let I = {p(f (X, Y), Z, g(X, Y, Z)), p(a, b, c)}, the dependence representation associ-
ated with abs(I) is shown in ezample 8.1, where Vl = 1, v2 = 2 and v3 = 3.

Analogously we can define a monotonic abstraction map abs~ : 2 s'b'tv ~ Z~v. There
are no concretization maps conc such that (abs, conc) is a Galois connection between

174

interpretations and a-interpretations. Thus, in order to define a Galois connection
between the concrete and the abstract domain of computation, we have to consider
sets of interpretations as single objects. Let us consider the following partial ordering
relations defined on sets of interpretations and a-interpretat ions respectively:

�9 VDx, D2 6 2 (2B~'), D1 -'< D2 iff (VI1 e D1 3I~ e D2 [11 G 12) A
(VI2 6 D2 31, 6 D1 [abs(I2) <~ abs(I~) =:, DI c_ D2),

�9 V D~, D~ 6 2"=', D~ __.~ D~ iff
e e D l l I [___o ^ 6 3I[e DI I _<o I[c

It is easy to prove that (2 (~nP), ___) and (2 ~', _-%) are complete lattices.

P r o p o s i t i o n 3.2 The pair

�9 a : 2 (2sP) ---* 2 -=' where

�9 3' : 2-'-' --* 2 (2sp) where

holds the conditions on the

of functions (a, 7) such that

a(D) = {abs(I) I / 6 D},

7(D u) = { I I 3 I m e D ~ A abs(I)=I~} ,

Galois insertion M between (2 ('s~'), -'<) and (2-'-', "<~).

3 . 4 A b s t r a c t U n i f i c a t i o n (~ - r n g u)

The abstract most general unifier a-mgu : B~ • B~" --* SubstUv U {fail} , takes two n-
tuples of concrete and abstract atoms respectively and returns an abstract substi tut ion
which is defined on the set of variables of the concrete atoms. It spreads ground infor-
mation on the variables of the concrete atoms and it generates a dependence between
a set of variables T and a variable x iff there exists a connection, in the abstract atom,
between the nodes corresponding with the variables in T and the node corresponding
with a term having x as variable. The resulting dependence is deterministic if such
a connection contains only deterministic labels. Furthermore, it is enough to have a
deterministic connection to return a deterministic dependence.

Def in i t ion 3.8 Let C' be a connection between a set of nodes Af' and a node n 6 .AI" in
a dependence representation T)= (Af, V, E). C' is relevant iff lub<d(A(C')) # 1.

The notion of minimality naturally extends to relevant connections (i.e. a minimal
relevant connection is any connection C' such that Ve 6 E', C'/{e} is not a relevant
connection). Let us consider the concrete and the abstract atoms, p(tl,. . . , t~) and p(:Dn)
respectively, where :Dp = ({1..n}, Yp, s and let R C {1, ..., n} be the set of indexes such
that Vi 6 R, Var(ti) = 0. We define a dependence representation associated with the
unification process: :D~_,~g~ = (Af~-mg~, Y~-mgu, s where

�9 .M'c,_.~g~, ---- {1, ...,n} U Var(p(t, , ...,tn)) U {| I i e n} ,

�9]),~-mgu = "12, U {(| I 3i 6 {1..n} : Var(ti) = @} U {(x, n9) I �9 Var(*, . . t ,)};

�9 g,~_,~,,, = Ep u {({|174177 [3i 6 {1..n} : Var(ti) = 0} U
{({xl, ..., xk}, i)• ({i}, xi)• ..., ({i}, xk)• [3i 6 {1..n} : Var(tl) = {xl, ..., xk}}.

175

The abstract unification process works on this dependence representation and con-
sists of the following two steps:

. Ground inforraation propagation
It is an iterative process on the hypergraph ~._.~g. = (Af.-mg.,ga-,~g~) which
changes the labels in V~-mg.. The process replaces any labelled node (v, ng) E
1)._,~a~ with (v, g) iff there exists a hyperare e E s such that Head(e) = v
and Yvi E Tail(e) : (v,, g) E 1)._.~g. [1]. The process halts when no more labels
can be changed.

2. a-substitution definition
This process considers the transformed hypergraph and returns an abstract sub-
stitution 0 ~ = (Vat(t1,..., tn), 1)~, Eo) such that
v~ = fix, t~) e vo_mg~ I z ~ vat(t,,..., t,)},
k/xk E Var(tz,...,t,), (T, xk)t E Co iff (T, xk)t is non-redundant in tg~ and if -
g is the set of minimal relevant connections from T to xk, then E r 0 and
l= glb_<,{ lub_<,(A(C'))} E' }.

The condition lub<d(A(Tr)) # _L avoids the introduction of irrelevant hyperarcs,
labelled by _L. As a mat ter of fact, we are only interested in those connections g'
containing at least a hyperare in gp. Notice that D,~-mg,, can be redundant .

(x, rig)

E x a m p l e 3.5 Let D._~g. = (1,ng) , and ~ = {({X},1)z , ({1} ,X)• E~ =
{ ({ X } , l) • L_I?
Note that u = 1,2 : {X} ~ ' X, but since ~ contains only undefined (J_) ~a-mga
hyperarcs, only ~ is "relevant" in the unification process.

E x a m p l e 3.6 The ground information propagation applied to the dependence represen-
tation associated with the abstract unification of p(f (X, Y), a) and p(ng , ng) is (• labels
are omitted):

(X, ng) (Y, ng)(| (X,g) (Y,g) (|

\5// I = \Y/ I
(1, ng) (2,-g) (1, g) (2, g)

?~ I ?f I

f 17

It is easy to extend the previous abstract unification algorithm to any n-tuple (n > 1)
of atoms, as shown in the following example.

E x a m p l e 3.7 Let us consider the abstract unification of the concrete and abstract
atoms

p(x, YI, q(Y, z, w), r(Z, X) and p(ng,.g), q(,~g,.g, rig), r(,~g,.g).
t I?

176

Since there ezist shared variables between the concrete atoms p(X, Y), q(Y, Z, W), r(Z, X),
the unification hypergraph contains multiple connections between the corresponding vari.
ables and the abstract terms (the predicate symbol is subscripted in any corresponding
argument position). The corresponding dependence representation is

(X, rig) (Y, ng) (Z, ng) (IV, rig)

/ \ / \ / \ I
(2., ~g) (z,, .g) (2,, ~g) (z,, .g) (2,, .g) (z., .g) (3~, .g)

:1 l
The resulting abstract substitution is: (Zing, Y/ng, X/ng, Wing).

Id I Id
Proposition 3.3 (~-mgu m o n o t o n i c i t y)

Let A be an atom. Given a pair of abstract atoms A u, A 't such that {A ~} <,~ {A't},
a-mgu(A, A t) <z a-mgu(A, A'U).

3.5 S u b s t i t u t i o n A p p l i c a t i o n (a - a p p l y)

In order to develop a deterministic ground dependence analysis we have to define the
application of abstract substitutions (returned by the abstract unification process) to
concrete atoms, i.e. a-apply : 2(BP•) --* Et. Given a set of pairs of concrete atoms
(having the same predicate symbol) and abstract substitutions, it returns an abstract
a tom which collects the deterministic ground information belonging to this set.

Let S E 2 (sP• such that S ~ p = {(p(t11,..., u t l .) , 01), ..., (p(t~a, ..., t,n,), d~)},
and let A/~, = {x(j) I x E Var(ti ,)} be the set of variables in ti,, indexed according to
the corresponding argument position.

For each pair (p(til, ..., t , .) , tg~) where ~9~ = (A/a,, V~,, ~a,), we generate a dependence
representation T) ,~-~ppty, = (A/,~-~ppt~ , l~ ~,-~ppt~, , $~,-~,pvt~,) such that:

�9 " 1 %

�9 A/o-.~t~, = A/0, u tju, ~ ,) ;

�9 Y~_~pp,~, = Y~, U {(x(j) ,ng) I 3j = 1..n: z(j) E A/~,};

�9 s = s U {({x(j)},x)• ({z},x(j)).Ll3(x,t t) E Va,,3j = 1. .n: x(j) E A/i,}
(if 3(x, t t) E Ya,, qj = 1..n : x(j) E A/~,, x(j) is a linked variable).

E x a m p l e 3.8 The dependence representation associated with the pair

I ~d ~ d
(p(f(x, Y), z, y(x, u)), (z/~g, u/~g, Y/g)) is:

at I

177

(X(1), ng) (Y(1),ng) (Z(2) ,ng) (X(3) ,ng) (U(3), ng)

(y,g) (Z, ng) (u, ng)
I td d ~ td

Let us consider a ground information propagation on {7~-~ppt~, = (A/'~,-appt~,, E,~-,ppt~,),
i = 1, ..., m, which is analogous to the a-mgu case. We define

a-apply(S) = U a-apply(S ~ p)
pEPred

0 where a-apply(S ~ p) = p(Dp)

�9 V(j,t~) 6 Vp: tJ = { g

ng

if S i p = 0
otherwise

, such that :Dp = ({1..n),l;p,s and

iff

otherwise,

Vi = 1,..., m : AZl, = 0
(the term was already ground)
or the nodes in A//, are labelled g,

�9 e = ({rl,. . . , rk}, h)t 6 s iff e is non-redundant in :Dp and for each i = 1, ..., m:

- Free(A/'ih) C ~ Free(Afi~), where Free(Af b) is the set of variables z such ~=rl
that x(j) is not linked with any node in the hypergraph ~;~-~m,t~,;

- for each linked node y(h) 6 A/'ih, there exists T C [3 Af/. such that , if ~T
--u=rl I~(h)

is the set of minimal relevant connections from T to y(h) in ~,~_~pp~,, then
f f r *u(n)

d iff Vz, f 6 {1, ..., m}, z # f : mguft,, , , . . . , t,,,, f lu , . . . , tl, .) = fail,
?y(h) 6 Afi,, qT C "O A/i. : gT • O A

- - : v (h)

-T d=glb<_,{ lub_<,(A(e')) I e' e ei.,.)) },
? otherwise.

E x a m p l e 3.9 The following ezamples show the results of the application of the a-apply
operator in some interesting cases:

dl ; dl t
$1 = {(p(X, g), (X/ng, Zing)), (p(f (X) , K), (X/ng, King))}, a-apply(S1) =

?1 ;
{ p(ng, ng) };

I ;d N d
$2 = {(p(f(X, Y), Z, f (X , U)), (Zing, U/ng, Y/g)), (p(O, X, X), 0)}, a-apply(S2) =

{ p(ng, ng, ng) } (ee , ample S.S).
t t-J?l?

178

Let I be a finite set of atoms, and S = I x {0}. By a-apply definition we have
a-apply(S) = abs(Z).

Proposition 3.4 (a-apply monotonicity)
Given two sets of pairs of concrete atoms (having the same predicate symbol) and

abstract substitutions {(A1,0~), ..., (Ak, 0~)} and {(A1,0•), ..., (A,, 0~)}, such that Vi =
1, ..., k: O~ <~ O'i t, it follows that

a-apply({(Ai, 0[) I i = 1, ..., k}) <,~ a-apply({(Ai, O'i ~) I i = 1, ..., k}).

3.6 Abstract Interpretation

The approximation of the concrete fixpoint semantics is given in terms of the fixpoint
of a finitely converging monotonic operator defined in terms of a-mgu and a-apply.

Definition 3.9 Given a logic program P, let I ~ be an interpretation. The abstract
immediate consequence operator associated with the program P, TUB : ~U __. "~u, is defined
as follows

r (p) = a-apply((p(,o") = a -).
0 ~ r fail

The correctness of TUp (abs(Tp(I)) <o T~p(abs(I))) follows by the correctness of a-
mgu and a-apply. Let Ifp(f) denote the least fixpoint of a given function f . Since
the lattice (E ~, <0) is finite, there exists a finite positive number k such that .T~(P) =
Ifp(T~p) = T~ T k.

Let us consider the concrete and the abstract operators

�9 Yp : 2 (2"v) --. 2 (2By), such that Tp(D) = {Tp(I) I Z e D},

�9 TRY: 2 -=' --* 2-=' such that TUp(D ~) = {TWp(I ~) [I ~ e D~}.

It is esay to prove that for each logic program P, {~'(P)} and {~ l (p)} axe fixpoints
of Tp and Tp ~ respectively (Tp T w = {~'(p)} and Tp ~ T k = {9r~(P)}). Thus, by Tp ~
correctness: a(Tp ~ w) ~_~ T~p T k (or equivalently [3] Tp T w "~ 7(T~ T k)).

4 Applications

In the following example [14] we show the overall analysis by describing the composition
of the operators defined in Section 3. Consider the predicate v defined as follows

r(g(X),g(X)) : - .

r (f (X) , g (r)) : - r (Y , X).

179

Let us examine the behaviour of our analysis:

d V - 3
T~' (0) = a-apply({(r(g(X), g(X)), 0)}) = { r(ng, ng)}.

t Id
In the first step, the abstract unification returns the pair (r(g(X), g(X)), 0) only. A
ground dependence is detected between the first and the second argument and on the
other way round by a-apply. Since the argument of a-apply is a set of pairs including
only one element, the resulting dependences are labelled as deterministic.

T~(O) = a-apply({(r(g(X), g(X)), 0), (r (f (X) , g(r)), (Xlng, Ylng))} = { r(ng, ng)}.
t Id t I?

In the second step, a-apply considers two pairs: the one returned by the previous
step and the one produced by the abstract unification of the abstract atom returned by
the previous step with the concrete atom in the body of the non-unit clause of r. Since
the second arguments of the concrete atoms in the pairs unify, this step returns a single
deterministic dependence from the first argument to the second one.

?1 $?1 ;
T~3(O) = a-apply({(r(g(X), g(X)), 0), (r(f(X), g(f)), (X/ng, Y/ng))} = { r(ng, ng)}.

t Id t IT
The third step (fixpoint) detects that the dependence between the first and the second
argument is a non-deterministic one. As in the previous steps, the first two arguments
do not unify, but, since no deterministic dependence exists between the abstract terms
associated with the variables X and Y, no deterministic dependence is returned. Let
us consider the program

sumlist([], 0): - .

sumlist([X]Xs], S): -sumlist(Xs, Ss),plus(X, Ss, S).

se lec t (X , [XlXs], xs): - .

select(X, [YIYs], [Y I Z s]) : -select(X, Ys, Zs).

check(X, Y): -select(Y, X, R), sumlist(X, Y).

The predicate sumlist(X, Y) is such that Y is the sum of the elements of the list X. The
predicate plus is assumed to be a predefined one. The dependences of plus relevant for
the analysis axe a deterministic one from the first and the second argument to the third
one and a non-deterministic one from the third argument to the first and the second,
respectively. The list X includes relative numbers. The predicate select(X, La, L2) is
such that L2 is the list L1 where exactly one occurrence of X has been removed. The
predicate check(X, Y) is such that Y is an element E of the list X and E is equal to the
sum of the elements of X. The dependences detected by the analysis of sumlist and of
select may be easily deduced from the declarative meaning of the predicates (only some
dependences of sumlist and select are shown):

dl ~ I - - - [~] ?
sumlist(ng, ng) select(ng, ng, ng).

t 17 t_7_J

180

The dependences of sumlist and select are propagated, through abstract unification, to
the body of check. In the hypergraph built by abstract unification, the variable Y is the
target of two paths. Both of them have the variable X as source node, but only one is
labelled by d. In this case, a deterministic dependence between the variables X and Y is
returned. Therefore, there exists a deterministic dependence between the first and the
second argument of check. As a matter of fact, since the sum of the elements in the list
is uniquely determined, all the elements selected from the list are equivalent, hence the
dependence may be considered as a deterministic one. The analysis infers deterministic
dependences among arguments rather than determinacy of whole predicates. Let us
consider the following modified version of predicate check:

check(X, Y, R): - ,e tea(Y, X, R), ,u~ti ,~(X, Y).

In this case also a non-deterministic dependence is detected between the first argument
and the third one. As a matter of fact, if a list includes several elements equal to its
sum, distinct lists are returned even by removing the same element.

r--]d ~ ?
check(ng,ng), check(.g,ng, ng).

t 71 t 71

The two former examples show that our analysis can return deterministic dependences
not detected by previous analyses. In particular, the last example shows the impor-
tance of defining deterministic dependences among arguments rather than for the whole
predicate.

Let us finally consider the classical example:

append(O, X, X) : -.

append([X lX s], Y, [XlYs]) : -append(X s, Y, Y s).

The analysis detects the following dependences: append(ng, ng, ng) (see Example 3.8

and 3.9). t t 1717

5 C o n c l u s i o n s

Our analysis of determinate computations extends previous proposals in several direc-
tions. The ground dependence notion, introduced in the database framework [11], has
been extended in order to handle recursive clauses. Hence, the analysis returns signi-
ficative results not only in the case of database programming, but also in other eases,
such as programs manipulating recursive data structures. We recall that determinacy is
inferred with respect to arguments rather than to whole predicates. This means that a
ground instance of a set of arguments may uniquely determine another set of arguments
of a predicate, while producing multiple bindings for other arguments. With respect
to [14], our proposal can detect both ground and ground deterministic dependences in
a single step, and requires no knowledge of the types of the predicates nor of the acti-
vating modes of a predicate. Our abstract interpretation can be easily integrated with

181

further analyses, such as depth-k [13], type and general functional ones. By pairing our
analysis with a term structure one (e.g. depth-k), dependences among subterms may
be detected. Furthermore, it is possible to relax the ground dependences condition in
order to obtain a more general analysis of functional dependences.

References
[1] R. Barbuti, R. Giacobazzi, and G. Levi. A General Framework for Semantics-based Bottom-

up Abstract Interpretation of Logic Programs. Technical Report TR 12/91, Dipartimento
di Informatica, Universit~ di Pisa, 1991. To appear in ACM Transactions on Programming
Languages and Systems.

[2] C. Berge. Graphs and Hypergraphs. North-HoUand, 1973.

[3] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Proc. Fourth
ACM Syrup. Principles of Programming Languages, pages 238-252, 1977.

[4] S. Debray and D.S. Warren. Functional Computations in Logic Programs. ACM Transac-
tions on Programming Languages and Systems, 11-3:451-481, 1989.

[5] B. Demoen, P. VanRoy, and Y.D. WiUems. Improving the Execution Speed of Compiled
Prolog with Modes, Clause Selection and Determinism. In H. Ehrig, R. Kowalski, G. Levi,
and U. Montanari, editors, Proc. TAPSOFT 1987, volume 250 of Lecture Notes in Computer
Science, pages 111-125. Springer-Verlag, Berlin, 1987.

[6] P. Deraasart and J. Maluszynski. Relating Logic Programs and Attribute Grammars.
Journal of Logic Programming, 2:119-156, 1985.

[7] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling of the Oper-
ational Behavior of Logic Languages. Theoretical Computer Science, 69(3):289-318, 1989.

[8] R. Giacoba~zi and L. Ricci. Pipeline Optimizations in AND-Parallelism by Abstract Inter-
pretation. In D. H. D. Warren and P. Szeredi, editors, Proc. Seventh Int'l Conf. on Logic
Programming, pages 291-305. The MIT Press, Cambridge, Mass., 1990.

[9] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Second
edition.

[10] M.J. Maher and R. Ramakrishnan. D~j~ Vu in Fixpoints of Logic Programs. In E. Lusk
and R. Overbeck, editors, Proc. North American Conf. on Logic Programming'89, pages
963-980. The MIT Press, Cambridge, Mass., 1989.

[11] A.O. Mendelzon. Functional Dependencies in Logic Programs. In Proc. of the Eleventh
International Conference on Very Large Data Bases, pages 324-330, 1985.

[12] L. Ricci. Compilation of Logic Programs for Massively Parallel Systems. PhD thesis,
UniversitY. di Pisa, Feb. 1990. T.D. 3-90.

[13] T. Sato and H. Tamaki. Enumeration of Success Patterns in Logic Programs. Theoretical
Computer Science, 34:227-240, 1984.

[14] J. Zobel and P. Dart. On Logic Programs, Functional Dependencies, and Types. Technical
report, University of Melbourne, 1990.

