
Model Checking and Boolean Graphs*

Henrik Reif Andersen

Department of Computer Science, Aarhus University
Ny Munkegade 116, DK-8000 Aarhus C, Denmark

E-malh henrikan@ daimi.aau.dk

Abstrac t

This paper describes a method for translating a satisfaction problem of the modal
p-calculus into a problem of finding a certain marking of a boolean graph. By giving
algorithms to solve the graph problem, we present a global model checking algo-
rithm for the modal p-calculus of alternation depth one, which has time-complexity
]AIIT h where IAI is the size of the assertion and IT] is the size of the model (a
labelled transition system). This algorithm extends to an algorithm for the full
modal p-calculus which runs in time (IAI]TI) ad, where ad is the alternation depth,
improving on earlier presented algorithms. Moreover, a local algorithm is presented
for alternation depth one, which runs in time IAIIT] log(IAIITI) , improving on the
earlier published algorithms that are all at least exponential.

1 I n t r o d u c t i o n

Model checking is the problem of deciding whether a given structure constitutes a valid
model for a logical assertion. Viewing the structure as describing a system of for example
interacting processes and the logical assertion as a specification, model checking can be
viewed as the process of verifying that a system meets its specification. We will use
a generalisation of the modal p-calculus presented by Kozen [Koz83] as the assertion
language and as models we take labelled transition systems (essentially equivalent to
labelled Kripke models). The modal #-calculus is a very expressive modal logic (see
e.g. [Koz83], [EL86], and [Dam90]) allowing a wide range of properties to be expressed,
including what is often called liveness, safety, and fairness properties. Examples of such
expressible properties axe 'eventually an a-action will happen', 'it is always possible to do
a b-action', and 'infinitely often a c-action can happen'. Labelled transition systems arise
naturally in for example the operational semantics of process algebras as describing the
behaviour of communicating concurrent systems.

This paper presents four results. Firstly, it shows that the problem of finding the
sets of states in a finite labelled transition system satisfying a given formula with just
one fixed-point operator, can be reduced to the problem of finding a fixed-point of a

*This work is supported by the ESPRIT Basic Research Action CEDISYS and by the Danish Natural
Science Research Council.

monotone function on a boolean lattice consisting of a product of simple two-point lattices.
Secondly, it is shown how this fixed-point can be found in linear time using a simple graph
algorithm, thereby giving an IAI ITI model checking algorithm. Thirdly, this algorithm will
be extended to the full calculus, giving an algorithm running in time (IAIIT I) ,a, ad being
the alternation depth - a measure of how intertwined minimal and maximal fixed-points
are. Finally, a local algorithm, searching potentially only a part of the transition system,
will be presented for the modal #-calculus of alternation depth one. This algorithm will
run in time]A[[T I log(IA]lTI).

Related work can be found in Emerson and Lei [EL86] which describes an ([A[IT]) "a+a
algorithm and defines the notion of alternation depth, in Arnold and Crubille [AC88]
which describes an IA[21TI algorithm for the case of one simultaneous fixed-point, in
Cleaveland and Stirling [CS91] which describes an]AI]T] algorithm for alternation depth
one, and finally in Larsen [Lar88], Stirling and Walker [SW89], Cleaveland [Cle90], and
Winskel [Win89] which all describe local model checkers that are at least exponential -
even for alternation depth one.

2 Logic and mode l s

We will consider a version of the modal u-calculus with simultaneous fixed-points. The
expressive power will be equivalent to the modal v-calculus with just unary fixed-points, in
the sense that every assertion in our calculus has a logical equivalent containing only unary
fixed-points. The simultaneous fixed-points will, however, be central to the development
of efficient model checking algorithms as they allow to express sharing of subexpressions.

The version of the u-calculus we will use is given by the following grammar:

A ::= T I F I Ao ^ A~ I Ao V Aa [[a]A I (a)A I X I (uX.A.)i I (#X.A)I

The assertion variable X ranges over a set of variables Vav. The usual notions of free
variables and open and closed assertions will be used. The notation X__ is shorthand for
(Xx, . . . ,X~), A for (A1, . . . , A~), where n should be clear from context. The assertion
(uX.A)i will denote the i 'th component of the simultaneous maximal fixed-point uX.A.
Dually (#X.A)I denotes the i'th component of the minimal fixed-point ~X.A. The usual
unary fixed-point uX.A corresponds to the case where n = 1, and for notational conve-
nience we simply write uX.A instead of (vX.A)I.

As models we take labelled transition systems T = (S, L,--*) where S is a set of
states, L a set of labels, and ~C_ S • L • S a transition relation. Given a transition
system T, an assertion A will denote a subset of the states S of T. Recall that the set of
subsets ordered by inclusion (~(S), C_) forms a complete lattice which by taking pointwise
ordering extends to a complete lattice (P(S)", C h) on the n-ary product of P(S) . Let
~r~ : 7~(S) '~ --. P(S) denote the projection onto the i'th component.

Due to the possibility of free variables the interpretation of assertions will be given
relative to an environment p assigning a subset of S to each variable. We will use p[U/X] to
denote the environment which is like p except that X is mapped to U. The interpretation

of A denoted [A]T p is defined inductively on the structure of A as follows:

~T~T p = S
[F] rP = 0
[Ao ^ A~I~ p = ~Ao~ p n [A~]~ p
~Ao v A~I~ p = ~AoIr p u [A~r p
~[a]A]T = {8 6SIVs'6 S. s -%s ' =~ s'6 ~A~TP}
~(a)A]w = { s 6 S I q s ' 6 S . s - % s ' & s ' 6 ~ A] w p }
[x l r p = p(x)
~(vX.A)I]]Tp = ri(ur

where r (U1,... ,Us) ~ ([AI]Tp',..., ~A~]Tp'),
and p' = p[Ux/X,,..., U=/X=]

[(# X . A) i] T P = ri(gr
where r is as above

For the fixed-points we notice that the map r on 7~(S) ~ is monotonic in all variables.
According to Tarski's theorem [Tar55] then r will have a maximal postfixed point given
by

U{U 6 79(S)" I U _c" r (1)

which we denote ur Similarly r will have a minimal prefixed point #r given by

A { u �9 7,(s)- Ir c_- u) . (2)

Given a transition system T = (S, L, 4) we will say that a state s �9 S satisfies the
closed assertion A, if s �9 ~A]T p for all environments p and write s ~W A.

For the rest of this section we will concentrate on unnested fixed-points and describe
how to transform the problem of satisfaction into a problem of finding a marking of a
particular kind of graph. The transformation proceeds in three steps: First the unnested
fixed-point is transformed into an equivalent simple fixed-point. Secondly this fixed-point
is transformed into a modality free fixed-point from which we eventually construct a
boolean graph.

We will say that uX.A is an unnested fixed-point if no fixed-points appear in the body
A. Furthermore we will say that an unnested fixed-point uX.A is simple if each of the
components Aj of A contains at most one operator, i.e. Aj is on one of the forms

F, T, Xj0 V Xjl, Xjo A Xj,, [a]Xj,, (a)Xj,, Xj,.

Any unary, unnested fixed-point assertion uX.A can be translated into an equivalent
simultaneous simple fixed-point assertion, where n =]A] is the size of A, measured as
the number of operators. The translation proceeds as follows: To each subexpression we
associate a variable. This gives n variables {Xx,.. . ,X~}. Define the n-ary fixed-point
uX.A by

Ai =
the expression associated with Xi where all proper
subexpressions are replaced by their associated variables
and X is replaced by X1,

assuming that X1 is associated with A. Using Bekid's theorem [Bek84] one can show the
following proposition.

4

Proposition 1 Let uX.A be a closed unnested fized-point and let uX.A be the translated
simple fized-point. Then

~(vX.A),]T P = ~vX.A]r p

for all environments p.

As an example vX.[a]X A </~)T will give raise to the 4-ary simple fixed-point

I
x l
X~
X3
X4

�9

T

The translation and proposition 1 generalises easily to unnested fixed-points of arbi-
trary arity. The number of variables of the resulting simple fixed-point will still be equal
to the size of the original fixed-point assertion.

Given a transition system T and an assertion A, we will for each state s describe a
method for finding an assertion B without modalities, which intuitively (when ignoring
variables) has the property that s ~T A if and only if B denotes t rue) In order to
state this formally, we will interpret assertions without modalities - assertions built from
the propositional fragment of our calculus - over the trivial one-state transition system
�9 = ({�9 0, 0) with no transitions. Hence, every closed assertion A will either denote {�9
or 0 of the complete two-point lattice T'({�9 The lattice P({�9 is nothing else than
a distinct copy of the well-known Sierpinski space O = {0,1} with the partial ordering
0 < 0,0 < 1,1 < 1, so we will often use 0 and 1 instead of 0 and {�9

Assume that the set of states of T is numbered such that S = {Sl , . . . ,s,~}. Observe
that the Sierpinski space O extends to a complete lattice O" by extending the ordering
pointwise, and note that there is an obvious isomorphism on lattices in : 0 ~ ~- P(S)
defined by in(x1, . . . , x,~) = {si E S I xi = 1}.

Given a closed assertion A we will find modality free assertions (A / s , , . . . , A/s , 0 such
that

H T p = in(A/ d, p , . . . , lA/s], p)

for all environments p. Having found such assertions we have by the definition of the
in-map that sj E ~A] T p if and only if ~A/sj]~ p = 1, hence we have found modality free
assertions with the wanted property.

We will define A/si by structural induction on A, so due to the fixed-points we will
be confronted with open assertions, In order to handle these open assertions we will need
a notion of change of variables which will relate the variables of A to the variables of the
A/si's. Consider an assertion A with variables { X ' , . . . , X '~} and assume that to each
variable X i, a assoicates a new set of variables a (X i) = (X~, . . . , X~,) such that there are
no name clashes between any of the new and any of the old variables. Say that a pair of
environments (p, p') is appropriate for in and the change of variables cr if p : Vat ~ P(S)
and p' : Vat ~ O, and

p(X) = i n (/ (X ,) , . . . , / (X o))

tLarsen and Xinxin [LX90] describes a similar translation.

for all variables X with a(X) = (X 1 , . . . , An). For two such appropriate environments
assume inductively that we have found A/si 's such that

r = ino O,

where r = [a]w p[U/X] and

O(Vl , . . . , V,) = (~A/s,]. p ' [U , /XI , . . . , Un/X, ,] , . . . , [A/s .] . p ' [U, /X1, . . . , U J X .]) .

We can then by the reduction lemma below conclude that #r = in(tO), hence

~IJX.A]T P = in([(t~X__.A)l], p', . . . , ~(/~X.A),]. p'),

and we have found the modality free assertions corresponding to #X.A.

L e m m a 2 (Reduction lemma.)
Suppose D and E are complete lattices of countable height, and in : D ---} E an w-
continuous function with in(.kD) = -LE. Suppose r : E --+ E and 0 : D -+ D are both
monotonic and have the property

We can then conclude that

r in= ino&

= i , @ o) .

We are now able to state the full definition of A/s, .
quotient A/s i by structural induction on A as follows:

F/s , = F
T/s i = T
(Ao V Ai) l s , = (A0/si) V (Ails ,)
(Ao A A,) / s i = (Ao/si) h (Ax/si)
([a]A)lsi = h{Sl,,_~,i}(A/sj)

((a)A)lsl = V{jl,,2.o~}(Alsj)
=

where (Xj) = (X , : , . . . , x . j)

Define for each state si the

For the k-ary fixed-point vX .A , assume that we have a change of variables a with a(X__j) =
(X I j , . . . ,X____~j), and let the nk-ary fixed-point v X . A be defined by

&j
w h e r e l < i < n , l < j < k . Take

(X_.A)jls = (gX.A__)j,,

and similarly for the maximal fixed-point2 We have:

~We use double underlining as in A to indicate matrices of assertions, which of course in this context
is just a convenient way of writing large vectors.

T h e o r e m 3 (Quotienting theorem)
For an arbitrary assertion A, association of variables a and appropriate pair of environ-
ments (p, pt) we have

[A]T p = in([A/sx], p',. . . , [A/s,]. p').

The original problem of deciding whether a particular state sj satisfies the closed assertion
A can now be recast by applying the quotienting theorem:

sj ~W A iff sj E [A]T p for all p
iff sj e in([A/si], p ' , . . . , lA/sn], p')
iff l a l s j] . p '= 1,

where (p, p') is appropriate for a and in. In other words, model checking can be reduced
to deciding whether the assertion A/s~ denotes the top element of O. An important
point about the quotienting is that the resulting assertion consists entirely of disjunctions,
conjunctions, variables, and fixed-point operators (viewing F and T as empty disjunctions
and conjunctions). In particular, for an unnested k-ary fixed-point/~X.A, we end up with
an unnested fixed-point ~t.X.A in the lattice O klsl. Moreover, if #X.A is simple, the
total size of I~X.A will be bounded by IAIITI, where ITI = ISi + ILl + 141, as simple
calculations show:

I X.AI v.lSl v.k
~--" /--.,j=l /--~i----1 [~ i l

= ~k=l ~S=[I [~/Sj[
<: ~-~k=l ~-~S_--[1 max(I, [{j'[3a. sj -% sy}[)
< E ~ = I l T I = k lT I = IAI IT I

If ~tX.A is not simple, this bound would not hold. As an example consider the assertion
#X. (a)[a] . . . (a)[a]X (l diamond- and box-modalities), and assume that T is a transition
system with n states, all connected to each other by a-transitions. Then the size of a
single righthand-side of the resulting assertion will be:

I (a) [4 . . . (a) [4 X / s j l = I V A . . . V A x , , I = n'.
il i~ fi-1 iz

The significance of making the fixed-points simple is that values of subexpressions are
shared across the disjunctions and conjunctions. In this example, we will get a resulting
assertion of size 21n 2 - and not n z - which is less than IAIIT].

In the analysis of time and space complexities we will make use of some general assump-
tions about the representations of assertions and transition systems. Firstly, variables will
be assumed to be represented by natural numbers, which in turn will be assumed to be
representable in a constant amount of memory. 3 Secondly, functions from an interval of
the natural numbers to a set of 'simple' values, e.g. numbers, will be represented effi-
ciently s.t. access to the value at one particular element in the domain can be performed
in constant time (like 'arrays' in many programming languages). Thirdly, the transition

SAs usual in complexity analysis we make the assumptions that integers can be stored in a constant
amount of memory and that an arbitrary memory address can be accessed in constant timed, although
it rather should be in time the logarithm of the size of the integer or memory address.

relations are represented as functions from the set of states (assumed to be an interval
of natural numbers) into sets of pairs consisting of a label and a state. Labels are also
assumed to be represented in a constant amount of memory.

Often we will use statements like 'this algorithm runs in time and space K(n)', where
it actually should be 'in time and space asymptotically bounded by K(n)'. All these
assumptions and slight abuses of language are standard in complexity analysis.

With these assumptions it is easy to see that the translations into simple fixed-points
and boolean graphs can be performed in time and space IAIITI.

3 Boolean graphs

In the previous section we described how to transform an unnested fixed-point pX.A (of
arity 1 or higher) into first a simple k-ary fixed-point #X.A and then, given a transition
system with n states, into a nk-ary fixed-point #X.A consisting of only conjunctions and
disjunctions. By these transformations we have reduced the problem of finding a fixed-
point over the lattice 7~(S) to a problem of finding a fixed-point of a boolean function
over the lattice O nk. Viewing the variables as vertices of a graph and the dependencies
between variables as directed edges, the body A defines a directed boolean graph, which
essentially is nothing else than another representation of the function defined by A.

Formally, a boolean graph G is a triple (V, E, L) where V is a set of vertices, E C_ V x V
a set of directed edges, and L : V ~ {V, ^} is a total function labelling the vertices as
disjunctive or conjunctive. The set S(v) of successors and the set P(v) of predecessors of
a vertex v are defined by S(v) = {w[(v,w) E E} and P(v) = {w[(w,v) E E}. Given a
simple boolean k-ary fixed-point gX.A we can define a graph GA_ = (V, E, L) where

V = { i l l < i < k }

E = {(i,j) l (A i = V X l o r A i = A X z) & j E I }
lfiI 1El

L(i) = {
V ff Vl iXt
^ if Ai = Az~z Xl

Note that there is an edge from i to j iff Xj is one of the disjuncts/conjuncts in Ai,
expressing the fact that the value of Xi 'depends' on the value of Xj.

A marking of a boolean graph G is a function m : V --* {0, 1} assigning values 0 and 1
to the vertices. The graph G induces a function g taking a marking m to a new marking
g(m) which is 'what can be computed from m', i.e. for a marking m define the marking
g(m) as

1 ilL(v) = ^ & Vw E S(v).m(w) = 1
g(m)(v) = or L(v) = V & 3w 6 S(v) .m(w) = 1

0 otherwise

When G is constructed from a fixed-point #X.A the function g is exactly the function
defined by the body of the fixed-point #X.A, and m is nothing else than an element of
O n, but thinking of m as a marking will be helpful in the development of the algorithms.
As 0 v is just an isomorphic copy of O n, 0 v will be a complete lattice with the same
ordering as O n, i.e. the pointwise extension of the Sierpinski ordering. The problem we

have to solve is now: Given a boolean graph G defining the monotonic map 9 : O v ~ O v,
what is the minimal prefixed point/z9 E oV?

4 Algorithms

In this section we will describe two algorithms for computing the minimal fixed-point
of a boolean graph. The first will be global in the sense that it computes the complete
fixed-point of the graph, and it will on a graph G have time and space complexity IGI. If
G is constructed from an unnested fixed-point formula I~X.A and a transition system T
as described in the previous section, the size of G will be IAIITh hence we have a global
model checking algorithm that in the worst-case is linear in the size of the assertion and
linear in the size of the transition system.

The second will be local, in the sense that starting from a particular node z, it will only
compute an approximation to the fixed-point, and in doing so only traverse a necessary
subset of the graph. The approximation will be correct on z and on all nodes visited. This
algorithm will on a graph G have worst-case space complexity [GI and time complexity

IGI log IGI.
Both algorithms will be presented in the version for finding minimal fixed-points, the

case of maximal fixed-points being completely dual.

4.1 A global algorithm
The global algorithm will start with the bottom element of the lattice O V and gradually
increase it until eventually the minimal fixed-point will be reached. Pictorially one can
think of the algorithm as chasing ones around the graph; starting with nodes that are
trivially forced to be one (conjunctive nodes with no successors), it will look for dependent
nodes that are forced to be one, continuing until no further nodes can be forced to one -
thereby having found the minimal fixed-point.

Figure 1 describes the algorithm. The function st : V --+ Z, where Z is the set of
integers, denotes the 'strength' of a node, i.e. the number of successors that must be one
before this node will be forced to be one. The function g induced by G can be extended
to a function on strengths by taking for all v E V:

IS(v) n st>01 i lL(v) = A
g(st)(v) = 1 - IS(v) n st_<ol i l L (v) = V

where st>0 = {vlst(v) > 0}, i.e. the set of nodes which still n~ds some successors to
become one, and st<o = {v]s t (v) < 0}, i.e. the set of nodes which have enough successors
that are one (the negative value indicates the 'excess' of ones). A strength defines a
marking s't by

1 i / s t (v) <_ o
; t (v) = o iys t (v) > o.

.It is now easy to see that if 9(s t) = s t then 9(~'t) = ~'t, implying that s't is a fixed-point
of# .

The set A denotes an 'active' set of nodes marked with ones, for which the consequences
of becoming one has not yet been computed. Correctness can be shown from the invariant
I:

I = A C_C_ st<_o &

st < gg &

IS(v) n (st>0 u A)I
Vv ~ V. st(v) = 1 - IS(v) n (st<_o \ a) l

i l L (, ,) = A

i l L (v) = V

Input: Boolean graph G = (V, E, L), defining the function g.
Output: A marking m : V --* {0, 1} equal to/~g.

{ IS(v)l i fL (v) = ^
for all v E V do st(v) := 1 if L(v) = V

A := st<_o
while A # 0 do

choose some v E A; A := A \ {v}
for all w E P(v) do

st(w) : = st(w) - 1
if st(w) = 0 then a := a U {w}

m := ~t

Figure 1: A global algorithm: Chasing l's.

Theorem 4 The algorithm of figure 1 correctl 9 computes the minimal riced-point I~g and
it can be implemented to run in time O(IGI).

Proof : It is a simple exercise to show that the invariant I holds immediately before the
while-loop, and that it is preserved by the body. When the while-loop terminates we have
A = 0 which from the invariant implies that st = 9(st) and st is a fixed-point, which
by the second conjunct of the invariant is less than or equal to the minimal fixed-point,
hence s't = PC.

For the time complexity, first notice that whenever a node has been removed from
the set A, it will never be inserted again as this only happens when its strength equals
zero, and strengths always decrease. Hence the body of the outermost while-loop, will at
most be executed once for each node v of the graph. Each execution of the innermost
while-loop takes time proportional to the size of P(v) , i.e. the number of predecessors for
the node v. In total the outermost while-loop takes time proportional to the sum of the
number of predecessors, i.e. the total number of edges in G, and is thus bounded by]G].
The first loop and the last assignment are also bounded by]G]. []

4 . 2 A l o c a l a l g o r i t h m

Model checking is usually involved with deciding satisfaction for just one particular state,
so it might seem overwhelming to have to compute the complete fixed-point in order to

10

decide the value at just one particular state. This observation is central to the develop-
ment of local model checkers with the idea being that starting from one particular state,
only a 'necessary' part of the transition system will be investigated in order to determine
satisfaction. Larsen [Lar88] describes such an algorithm for the case of one fixed-point,
which in an improved version is used in the TAV system [LGZ89]. Stifling and Walker
[SW89] and Cleaveland [Cle90] describes a similar method for the full modal p-calculus
based on tableaux, which has been used in the implementation of the Concurrency Work-
bench [CPS89]. Using a single key-property of maximal fixed-points Winskel, in [Win89]
develops a very similar and quite simple model checker. Unfortunately, they all have very
bad worst-case behaviours. Even for the fixed-point free subset of the modal p-calculus
they have worst-case time complexity which is at least exponential in the size of asser-
tions, and for formulas with one fixed-point, worse than exponential in the number of
transitions.

In this section we present a local algorithm for finding a fixed-point of a boolean
graph, which will only visit a subset of the graph in the search for deciding the minimal
fixed-point value for one particular node. This will be done in time proportional to the
size of the subset being visited, hence in the worst-case it will be IGI. Unfortunately, in
the initialisation phase the algorithm will need to visit each node in the graph once, and
the running-time will then always be linear as for the global algorithm. Nevertheless the
algorithm seems interesting as it works very differently from the global algorithm and still
solves the same problem. Moreover after presenting the algorithm, we discuss a way of
using the algorithm in a slightly revised version - avoiding the costly initialisation - as a
basis for a local model checker, which will run in time IBI log IBI where B is the subset of
the graph being traversed. Thus the worst-case behaviour will be I AIITI log(IAIITI), and
we have a local model checker which in the worst-case is only a logarithmic factor worse
than the global model checker.

Input : Boolean graph G = (V, E, L), and a node x E V.
Ou tpu t : A marking m : V ~ {0, 1} and a set B C_ V with x E B

such that m equals #g on B.

Ini t ia l i sat ion:
B , A : = O m , p : = O d:=0_

Method :
visit(z, 0)
while A # 0 do

choose some y E A; A := A \ {y}
for all w E d(y) do

if L(w) = Y & m(w) = 0 then
m(w) := 1 A := A U {w}

f f L(w) = A then
p(w) := p(w) + 1
fwtn(w , 0)

fi

Figure 2: A local algorithm: Avoiding l's.

11

visit(x, P) =

i f x r B t h e n
B : = B U {z}
i f L(x) = V t h e n

ok : = false
while p(x) < IS(x)l -ok do

w : = S(x)p(~)
visit(w, P U {x})
i f re(w) = 0 t h e n d(w) : = d(w) U {x)
ff rn(w) = 1 t h e n ok : = true
fi

i f ok t h e n m (x) : = l A : = A U { x }
ff L(z) = A t h e n

fwtn(x, P)
fi

p(x) : = p(x) + 1

Figure 3: Visit.

fwtn(x, P) =

ok : =
whi le

i f -,ok

false
p(z) < IS(x)l S~ -,ok do
w : = S(z)p(x)
visit(w, P U {x})
if ra(w) = 0 t h e n d(w) :---- d(w) U (x} ok :-- true
ff m(w) = 1 t h e n p(x) :-- p(x) + 1
fi
t h e n m (x) : - - I A : - - A U { x }

Figure 4: Fwtn: 'find a witness'.

The local algorithm 'Avoiding l 's ' is presented in figures 2, 3, and 4, and works as
follows: Initially all nodes will be marked with a zero. We start with the node of interest,
x say, and try to verify whether its minimal fixed-point marking is really a zero (the task
of the visit procedure). This involves inspecting the successors each in turn, finding their
minimal fixed-point markings, until, in the case of a conjunctive node, a zero is found, or
in the case of a disjunctive node, a one is found, or all successors have been inspected.
For this purpose we assume that the successors of each node v have been numbered from
0 to (I S (v) l - 1), i.e. S(v) = {S(v)0, . . . ,S(v)ls(,)l_l }. The function p : V ~ JN is used in
order to keep track of which successor p(v) of v is being examined, or must be examined
next.

Due to cycles in the graph, a node that at one point is found to be marked with zero,
can later be changed into being marked with one, hence all nodes that were assigned a
marking based on this particular node being zero might have to be changed as well. In
order to be able to perform this updating efficiently, we keep for each node v a list of

12

nodes d(v) that should be informed in case the marking of v will change from zero to one.
Thus d : V ~ 79(V) will for each node v denote a subset of its predecessors P(v), and
this set will grow as the algorithm proceeds.

T h e set A C V contains nodes v that have changed marking from zero to one, and
for which this information has not yet been spread to the nodes in d(v). The set B C V
contains all nodes that have been visited. The procedure fwtn (short for 'find witness'),
will for a conjunctive node v search the successors starting from number p(v) for one with
a zero marking, that 'witnesses' that v should have the marking zero. If no such exists,
the node v will have to be marked with a one.

At any point in the execution of the algorithm, the situation will be as sketched in
figure 5.

O's or l ' s

O's

l ' s

Figure 5: A typical situation of Avoiding l 's

Using a more involved invariant expressing essentially just the relationship between the
variables explained above, and amortised time analysis (see f.ex. [CLR90]) it is possible
to show the following theorem.

T h e o r e m 5 Given a boolean graph G with the induced function g. The algorithm de-
scribed in figure 2 correctly computes an element m of 0 v and a set B C V, such that

mlB = (.g)iB,

and it can be implemented to run in time O(IGI).

As an alternative to the linear t ime initialisation, we could just omit it. Instead
we would have to somehow remember the nodes that had been visited and the check
'z E B' should be implemented by a search for x in the data structure representing B.
Representing B as a balanced binary search tree this search could be done in logarithmic
time. Moreover one could imagine the graph being constructed from the assertion and
the transition system in a demand-driven fashion. Even the transition system could be
build in a demand-driven manner from for instance a process algebraic term.

Assuming that each node x will be associated with a memory address a~ on which the
values of d, p, d, and m at x will be stored, we have the following sketch of an algorithm.

The initialisation is changed to:

13

B, A := 0

The procedure visit is changed to:

visit(x, P) =

if x r B then
allocate a new memory cell with address a~
initialise d on x to ~, p on x to O, m on x to 0
insert the pair (x, ax) in B
find S(x) by performing the division
i f . . .

. . . as before, where all accesses to m, d etc.
are through the addresses stored in B . . .

fi

The procedure fwtn will not be changed, except that all access to the variables m, p
etc. will be through their addresses stored in B. The number of primitive steps performed
by this algorithm will be as before, but we have to take into account the logarithmic factor
coming from the searches in B. Hence the running time will be [B I log IBI, which in the
worst-case is]G] log]G].

5 E x t e n s i o n s to the full m o d a l # -ca lculus

In this section we will describe how the global algorithm Chasing l 's can be extended to
yield a model checker for the full p-calculus which has the running time (IAIITI) ,d, where
ad is the alternation depth of the assertion A. For the precise definition of alternation
depth, the reader is referred to [EL86].

Actually the algorithm will be slightly better than stated. Given an algorithm - like
Chasing l's - that can find a simultaneous unnested fixed-point in time IAIITI, we show
that we can compute an arbitrary assertion of alternation depth k in time IAIk[S[k-IlTI.
As IT I = ISI + ILl + 1 4 1 the resulting algorithm will be linear in the number of transi-
tions, although, when the alternation depth is unbounded, exponential in the size of the
assertion and the number of states. When the alternation depth is bounded, it will yield
a polynomial time algorithm with a polynomial degree one less than the algorithm by
Emerson and Lei [EL86].

T h e o r e m 6 Given an algorithm that can find a simultaneous unnested fized-point (p X . A
and u X . A) on a transition system T in time IAIITI. There exists an algorithm that will
compute an arbitrary assertion A of alternation depth k in time IAIklSIk-llTI and space

IAIITI.

The proof can be found in appendix A.
This algorithm only assumes the presence of an efficient algorithm for handling the

unnested case, and then by applying this at appropriate places handles the general case.
Boolean graphs are not used, except in the base-case. Another attempt of extending the

14

global algorithm to the full #-calculus, could be through a generalisation of the boolean
graphs. Assume that we are interested in computing the set denoted by the assertion
A. First simplify all fixed-points appearing in A, then perform the division, and finally
construct a boolean graph from the resulting modality-free assertion where the vertices
are partitioned into disjoint sets {Vx,..., V,~} - one for each fixed-point. Now, a certain
marking of this partitioned graph, reflecting the minimal and maximal fixed-points, would
correspond to the element representing A. It is currently being investigated to what extent
this approach can lead to new algorithms.

However, one application, which is described here, is in the generalisation of the local
algorithm to alternation depth one.

The constructing of a partitioned boolean graph proceeds as follows: Given an assertion
A. If the top-level operator is not a minimal or maximal fixed-point, change A into # X . A
for an arbitrary variable X (taking u X . A would also do). Transform A into a normal
form, where consecutive sequences of minimal (maximal) fixed-points are replaced, by one
minimal (maximal) fixed-point (as in the proof of theorem 6 in appendix A). Simplify
all fixed-points. Assume that all variables appearing in different fixed-points of A are
different, otherwise rename the variables so this is the case. Perform the division with
respect to a change of variables a and call the resulting assertion X. Let A~ be the right-
handside corresponding to the variable Xi. Define the boolean graph GA, = (V, E, L) as
follows:

V = the set of all variables appearing in A'

{ } (Ai = V M or A i = A M) & Xj �9 M
E = (X , Xj) I or A~ = (/~X.A)k & Xj is the k'th variable in X

or A~ = (uX.A)k & Xj is the k 'th variable in X

L(i) = {
V iI = V M
^ ifA = A M ora = (,X.B_)k ora = (X.B)k

Note that there is an edge from X~ to Xj if Xj is one of the disjuncts/conjuncts in A~, or
if A~ is a projection of a fixed-point, Xj is the variable of the fixed-point corresponding
to that projection.

Assume that the fixed-points of A' are numbered from 1 to n and let V/be the variables
in the i 'th fixed-point. Let ~A' = (GA,, V, s be defined by:

v =

J" # if the i 'th fixed-point is a minimal one s
i u if the i 'th fixed-point is a maximal one

We will call such a GA, a partitioned boolean graph.
Cycles in this partitioned boolean graph will be of a special kind if A has alternation

depth one:

Proposition 7 Let A be an assertion of alternation depth one. Then the partitioned
boolean graph constructed from A as above will have the property that all cycles of the
underlying boolean graph will consist of nodes that are all consistently labelled with only
i ~ 's or only u 's. Moreover, due to the transformation into normal form, they will all belong
to the same component.

15

Proof : (Sketch)
Assume that there exists a cycle with a node labelled # and a node labelled v. These
nodes must belong to two different elements of the partitioning, V/and V~. Then either the
i'th fixed-point contains the j ' th fixed-point and the j ' th fixed-point refers to a variable
from the i 'th fixed-point, or the other way around. In both cases these fixed-points could
only come from an assertion of alternation depth at least two.

Assume that two nodes labelled # belong to two different components of the parti-
tioning. Then we would have a sequence of two minimal fixed-points, which contradicts
the fact that A has been put into normal form. []

Using this property, it is possible to give a local algorithm for alternation depth one:

T h e o r e m 8 There exists a local algorithm that for an assertion A of alternation depth
one and a transition system T with a state s, determines whether s satisfies A in worst-
case time-complexity [A[IT I log([A[[T[).

The proof can be found in appendix B.

6 C o n c l u s i o n

The translation of a model checking problem into a problem of finding markings in boolean
graphs shows the way to a rich world of algorithms. In this paper we have presented two
graph algorithms to solve the problem, but considering the wealth of graph algorithms
around, there should be plenty of possibilities for finding other interesting algorithms.
Moreover the algorithms might have an interest on its own, as the graph problem - equiv-
alent to the problem of finding fixed-points in the lattice O n - is a very general problem.
As an example of this, the global algorithm Chasing l 's has a very close resemblance with
the pebbling algorithm in [DG84] for solving satisfiability of propositional Horn formulas
in linear time, and Chasing l 's actually gives a linear time algorithm for solving that
problem.

Another area of application is suggested by the Reduction lemma. Suppose you have
a finite lattice D, a monotonic function f on D, and an w-continuous function in from
D into O n for an appropriate n (we claim that such an n and function can always be
found). If it is possible to find a function g on O n which is related to f as required by
the lemma, i.e. in o f = g o in, then the minimal fixed-point of f can be found efficiently,
by computing/~g and applying in. The time to compute/zg will be bounded by the size
of the description of/~g as a simple fixed-point (in the sense of section 2), which might
be much better than using the method of computing increasing approximants, as it was
the case with the model checking problem.

The division idea, which is the key step in the translation from a fixed-point on a
powerset into a fixed-point on the lattice O n, arose in work on trying to find compositional
methods for reasoning about satisfaction. In [AW91] a general version of the division
operator was presented ([AW91] also introduced the reduction lemma). Given a process
term p and an assertion A, a method is described, which computes the assertion A / p with
the property:

x • iff x : A / p ,

]6

where x is a parallel composition operator and p : A is read as 'the process p satisfies
the assertion A'. The assertion A/p was constructed such that it belongs to the modal
#-calculus with just unary fixed-points, and for the fixed-points an exponential blow-up
could result from the application of Bekid's theorem. Currently we are investigating to
what extent the ideas of sharing through n-ary fixed-points, as used in this paper, can be
used in improving on these results.

Acknowledgements

I have had useful discussions with Glynn Winskel, Kim Skak Larsen, Gudmund Frandsen,
and others at DAIMI.

References

[AC881

[AW91I

[Bek841

[Cle90]

[CLR90]

[CPS89]

[cs911

[Dam90]

[DG84]

[EL86]

Andr6 Arnold and Paul Crubille. A linear algorithm to solve fixed-point equa-
tions on transitions systems. Information Processing Letters, 29:57-66, 1988.

Henrik Reif Andersen and Glynn Winskel. Compositional checking of satisfac-
tion. In Larsen and Skou [LS91]. To appear.

H. Bekid. Definable operations in general algebras, and the theory of automata
and flow charts. Lecture Notes in Computer Science, 177, 1984.

Rance Cleaveland. Tableau-based model checking in the propositional mu-
calculus. Acta Informatica, 27:725-747, 1990.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. McGraw-Hill, 1990.

Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The Concurrency
Workbench: A semantics based tool for the verification of concurrent systems.
Technical Report ECS-LFCS-89-83, Laboratory for Foundations of Computer
Science, Uni. of Edinburgh, August 1989.

Rance Cleaveland and Bernhard Steffen. A linear-time model-checking algorithm
for the alternation-free modal mu-calculus. In Larsen and Skou [LS91]. To
appear.

Mads Dam. Translating CTL* into the modal #-calculus. Technical Report
ECS-LFCS-90-123, Laboratory for Foundations of Computer Science, Uni. of
Edinburgh, November 1990.

William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the
satisfiability of propositional Horn formulae. Journal of Logic Programming,
1(3):267-284, 1984.

E. Allen Emerson and Chin-Luang Lei. Efficient model checking in fragments
of the propositional mu-calculus. In Symposium on Logic in Computer Science,
Proceedings, pages 267-278. IEEE, 1986.

17

[Koz83]

[LarSS]

[LGZ891

[LS91]

[LX90]

[SW891

[Tar55]

[WinS9]

Dexter Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27, 1983.

Kim G. Larsen. Proof systems for Hennessy-Milner logic with recursion. In
Proceedings of CAAP, 1988.

Kim G. Larsen, J.C. Godskesen, and M. Zeeberg. TAV-Tools for Automatic
Verification. Technical Report R 89-19, Aalborg Universitetscenter, 1989.

Kim G. Larsen and Arne Skou, editors. Proceedings of the 3rd Workshop on
Computer Aided Verification, Aalborg, LNCS. Springer-Verlag, July 1991. To
appear.

Kim G. Larsen and Liu Xinxin. Compositionality through an operational se-
mantics of contexts. In M.S. Paterson, editor, Proceedings of ICALP, volume
443 of LNCS, pages 526-539. Springer-Verlag, 1990.

Colin Stirling and David Walker. Local model checking in the modal mu-
calculus. In Proceedings of TAPSOFT, 1989.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5, 1955.

Glynn Winskel. A note on model checking the modal u-calculus. In Ausiello,
Dezani-Ciancaglini, and Rocca, editors, Proceedings of ICALP, volume 372 of
LNCS, 1989.

18

Appendices

A P r o o f o f t h e o r e m 6

The algorithm will be given along with the analysis of its time-complexity and proof of
correctness which is by induction on the size of the assertion A.
Proof : (Sketch)
Define the predicate P by

P(A) r Vp. [A]T p can be computed in time IAI~ISIk- ' ITI ,

where k = ad(A). Assume inductively that for all A', IA'I < IAI =~ P(A') . We show by
cases that P(A) holds.

Case (c~)A. Given a set U C ~(S) , the set {s E Sl3s' e s. s -~ ~' s~ ~' e u} can
obviously be computed in time IT I. By the induction hypothesis, [A]T p can be computed
in time]A]klSI k-1 IT], where k = ad(A). Then [(v~IA] T p can be computed in time

]AIklS]k-IIT I+ IT[< (IAI+ I)~ISIk-IIT]
= I@AlklSlk-XlTI

where k = ad(A) = ad(<c~>A).

Case X. Computing [X]] r p = p(X) takes time IS I by the assumptions on representa-
tions of sets. Trivially we have]S] <]X[~]SI~

Case I.tX.A. We just consider the case of a unary fixed-point, arbitrary arities being
similar but more cluttered up with indices. If gX.A contains closed proper subexpressions
A1, . . . , Am then, by the induction hypothesis, compute [A~]T p,..., [Am]T P in time

m m

~, IA, I~<A')ISI~<A')-'ITI < (~ IA, I)klSIk-'ITI,
i=1 i=1

where k = ad(A). Insert new constants Q1, . . . , Qm for At , . . . , Am in A denoting
~A1]TP,...,]Am]TP and call the new assertion B. Let {X1,. . . ,X,,} be the variables
bound by the top-level /t-operators in B, and let {B1,.. . ,B,,} be the corresponding
bodies. 4 Define

B ' = #

X1

s
) (B I [X 2 / # X 2 . A 2 , . . . , X n / # X , , . B , ~])

~',,[X,/~,X,.B,,..., X, ,_ , h ,X , ,_ , .B,,_,]

Using Bekid's theorem one can show that the first component of B' is equal to I.tX.A.
Notice that IB'I = IBI ___ IAI.

4Here the variables should be thought of as identifying occurrences instead of just names.

19

If B' is now an unnested fixed-point, compute it in time [B'IIT] by the efficient algo-
rithm for unnested fixed-points, hence [B']T p has been computed in time

<

m

IA, I)kISIk- ITI + IB'IITI
i=l

IAI ISIk- ITI .

If B' is a nested fixed-point, let B" denote the body of B'. Observe that B" defines
a monotonic function on P(S)". We will use the method of increasing approximants to
calculate B'. Define

U ~ = (O,...,O)
U v+l = [B"] Tp[U~/X1,...,U~/X,,].

Compute by iteration U p until U v = U v-1. The number of iterations is bounded by the
height of the lattice ~(S) ~, which is HIS [. Each iterate can, by the induction hypothesis,
be computed in time [B"[k"IS[k"-IlT h where k" = ad(B"). Hence the total cost will be
bounded by

(s]Bil)klSlk-l]Tl + nlS]]B"Ik"IS]k"-IIT]
i = l

< (s IB~I)klSIk-IITI + IB"lk"+*[S[k"IT[
i=1

m

< (IB"l + IBd)klSlk- lTh
i=1

as k" + 1 _< k by the definition of alternation depth

= IBIklSlk-*lTI .

The missing cases are very similar to the ones above. []

B P r o o f o f t h e o r e m 8

Proof." (Sketch) Start with a node x in V1. Run Avoiding l's or Avoiding O's (the dual of
Avoiding 1% corresponding to a maximal fixed-point) depending on whether s = p
or Z:(V1) = v, until at some point the marking of a node y in another set V~ is needed.
Suspend the evaluation and run Avoiding l's or Avoiding O's in Vj to find the value of this
y. At some point a value in yet another set Vk might be needed, and so on. But due to
the acyclic property of proposition 7 this process will stop at some point, when a node in
some V~ can be determined without looking into other Vi's, and the suspended evaluations
can then be resumed. Now, when the value of the node that started the search in a V~
has been determined, all the nodes visited in this search will have their correct markings,
and need not be visited any more! Hence, when building the graph in a demand-driven
fashion, the total execution time will be IB] log [B I where B is the subset of the graph
being visited. []

