
Automatic Temporal Verification of Buffer Systems

A. Prasa~l Sistla
Dept of Electrical Engineering and Computer Science, Universi ty of Illinois at Chicago

e-address: sistla@uicbert.eecs.uic.edu

Lenore D. Zuck
Depar tment of Computer Science, Yale Universi ty

e-axldress: zuck@cs.yale.edu

October 16, 1991

1 I n t r o d u c t i o n

Propositional Linear Time Temporal Logic (TL) was introduced in [Pnu77] as a formal system for reason-
ing about concurrent programs. Since then it has been widely used for specification and verification of
concurrent systems.

Most formal systems that allow temporal-like reasoning use the eventuality operator as the main modal
operator. In this paper we consider a temporal logic that uses ~ (sometimes in the future) and O (sometimes
in the past) as the only modal operator; we term this logic RTL (Restricted Temporal Logic). At first glance
RTL seems to be a very limited language. Yet, if we are concerned with properties of concurrent programs,
there are convincing indications that RTL is an adequate language:

Owicki and Lamport, when giving proof rules for livensss properties, considered only formulae of the
form mn(p ..~ Oq) ([OL82]) which are RTL formulae; Chandy and Misra conjectured that there is essentially
one class of liveness properties of concurrent programs, namely, the class of progress properties ([CM86]); in
their propositional version, progress properties are easily definable by RTL. Other specification techniques
([LamB3]) use state transition systems to specify safety properties and RTL to specify liveness properties.
It is hardly surprising that most temporal properties of distributed programs discussed in the literature are
given in RTL.

A natural problem associated with choosing a specification language for programs is how easy is it to
verify that programs satisfy their specification. Ideally, we would like an automatic verifier that, given
a program and its specification, would decide whether the program satisfies its specification. There are
several model checking methods that are proposed in the literature for obtaining this goal which use (the
full) temporal logic as the specification language (cf. [CES86, EL85, LP85 D. Recently, Wolper and Vardi
([VW86]) have advocated the a~omata theoretic approach which is a variant of model checking. There,
both the program and the specification are brought to the form of a finite-state graph, and model checking
reduces to the emptiness problem for (w-) finite-state automata.

All the model checking techniques that we are aware ofapply only to programs which are either finite-
state or those that, for verification purposes, can be considered finite-state. Many programs for distributed
systems are, however, infinite-state. In particular, systems of (possibly finite-state) processes that commu-
nicate over unbounded message buffers are inherently infinite-state.

A major obstacle in verifying properties of systems that use message buffers is the complexity of the
axiomatization of the behavior of the buffers used. As shown in [SCFM84], the theory of unbounded fifo
buffers in the full TL is H~ complete. Hence, one cannot hope to have a model-checking procedure for
verifying TL properties of systems that use unbounded fifo message buffers. However, once TL is replaced
with a version of RTL that has 4~ as a single modal operator, the theory of unbounded message buffers is
co-NP-complete ([szg0 D.

In this paper, we modify the result in [SZ90] and show that the theory of unbounded message buffers
in KTL is also co-NP-complete. Based on this, we present a "simple" automatic verification method that
applies to a certain class of RTL formulae and (not necessarily finite-state) programs of distributed systems

60

whose processes communicate by means of fifo message buffers. Our method is based on the principle tha t
can he roughly stated as follows:

Given a system of n processes, P I , . . . ,Pn that communicate over unbounded message buffers and a
formula ~b in an admissible logic L, then in order to show that ~ holds over all the executions of the s~lstem,
it suffices to find n formulae ~ba,..., ~ , in L such that:

1. each Pi satisfies ~bt, and

~" (Ai ~bi "" ~b) is in the theory of the message buffers in the logic L.

In order for the above idea to be applicable the logic L has to he admissible. Admissible logics are
defined in section 2. RTL is an admissible logic and since the theory of fifo buffers in RTL is co-NP-
complete, we can use the above principl e for proving I~TL properties of systems that communicate through
unbounded fifo buffers. Intuitively, we can think of the above method to be approximating the behavior
of each process Pi by the formula ~ . This gives us a sound proof method for proving KTL properties of
systems that communicate through unbounded fifo buffers.

It can easily be shown that the above method is complete for a class of processes if the logic L is expressive
for this class. By taking the logic L to be the Propositional Temporal Logic without the "nexttime" operator
and by considering unbounded unordered 1 , we can use the above method for proving properties of systems
of processes that communicate through unbounded anordered buffers whose message alphabet is finite.
In this case, it can easily he shown L is admissible and the theory of unbounded unordered buffers in L
has been shown to be decidable in [SCFM84]. If we are only considering finite state processes then L is
expressive for this class, and we get a complete and fully automatic proof method for this class of processes..

Temporal logics are usually interpreted over sequences of states, and formulae that express properties
of message buffers use the send and receive actions to the buffers as atomic propositions. We therefore
have to interpret the logic over both states and actions. Consequently, we consider executions sequences
that explicitly have the two. A natural such model is the I /O automaton model (cf. [LT87, LT89]). This
model also allows to abstract away the (application) programs run by the processes and to concentrate on
the interaction between the buffers and the processes. Finally, the model has inherent compositionality
properties. We therefore chose it as the model on which to demonstrate our ideas. We would like to stress
tha t this choice is for purposes of convenience of exposition, and our results do not depend on the I /O
automaton model.

2 T h e Formal F r a m e w o r k

2 . 1 A d m i s s i b l e L o g i c s

Let ~ be a finite set of state assertions. We are interested in logics for specifying properties of computations
which include states as well as actions. With this as our motivation, we assume tha t the set �9 is partit ioned
into two nonempty disjoint sets, denoted by ~ and ~a. Intuitively, the members of ~ , can be true only in
states tha t represent states of processes and those in <I,~ can be true only in states tha t represent actions.

We define admissible logics, which are logics that satisfy certain properties defined later in this section.
The formulas of such logics are constructed from state assertions in II using the boolean connectives -1 and
V, and some other operators (e.g., temporal ones), and are interpreted over sequences of subsets of ~.

Let L he such a logic. For a formula ~o of L (an L-formula), let prop(~o) denote the set of state assertions
in ~o. A model .Ad for a logic is a triple (H, S, I) where II _C &, S is a (possibly infinite) set of states and
I: S ~ (2 n - 0) is an evaluation mapping each state s G S to a nonempty set l (s) , the set of state assertions
true in s and such tha t either l(s) N ~, is empty or l (s)h ~a is empty. We say that a state s E S is regular
if I(s)N ~, is nonempty; we say that a state s G S is action if l (s)N ~ is nonempty. It should be clear tha t
every state in S is either regular or action. Given a model Ad = (II, S, I), a computation ~r is an infinite
sequence of states, i.e.,

~r : s0, S l , . . . s i q S .

We assume that a satisfiahility relation ~L, between a model J~d = (I I ,S , I) , a computation or, and an
L-formula ~0, where prop(~o) C II, is defined so that the following properties are satisfied:

�9 (.Ad, 0") ~/ . true and (.Ad, ~) ~L false for every cr E S ~ �9

1In unordered buffers the meamages can be delivered in any order.

61

* For a state assertion Q E ~, (A4,a) ~t. Q iff Q e l(so).

�9 (~ , a) ~ , -,~ iff (~ , ~) ~L ~.

�9 (~ , a) ~L ~l V ~3 iff (A~, a) ~L ~ or (~ , ~) ~L ~ .

�9 For every model .hal* = (II' _~ prop(~o),St, F) and computation a t = s ~ , . . . , s ~ , . . , over S ~ such tha t
It(s~) N prop(~o) = I(8i) N prop(~o) for every i >_ 0,

(~,~) ~ , v iff (~ ' ,~ ') ~ , ~.

In other words, the satisfaction of a ~o by a only depends on the evaluation of l(~r) f3 prop(~o).

(Additional boolean connectives (such as A, --*, *-*) are defined in the usual way.)
If (.Ad,~r) ~ / . ~o, we say that ~r satisfies ~o in Ad.
For any sequence r whose elements are from a set A, we let alA' denote the restriction of a to A t. In

other words, a[A' is the subsequence of a that includes all the A ~ elements of a .
Let .k4 = (II, S, I) be a model. For any s ~ S and IV C H, we say tha t s is a IV-state if I(s) n II' ~ ~.

We use a[IV to denote a ' s restriction to the II~-states, that is,

qlII ' = al{s G S : s is a IIt-state}.

We say that L has projection property if for every L-formula ~o and every finite set II such tha t 12 C_ O,
there exists a formula t0(iD such that for every model A4 = (if ~, S, I) where 1II D (prop(~o) t3 II) and every
computation ~r such that a l i i is infinite and the first state in a is a If-state,

(A~, ~) ~L ~,(n) ifr(~, ~lii) ~

The logic L is admissible if it has the projection property. In the sequel we will only consider admissible
logics. The projection property does not imply a unique projected formula to(ri). However, we fix such a
formula and let in(n) denote it. It easily follows from the definition that for every L-formula ~, to *-* ~(n)
holds in every model A4 whose states are all II-states.

Let cr = so ,s l , . . , be a computation over S. If a I is obtained from q by possibly duplicating some of
the regular states in a, then we say that a ' is a stuttered exlension of or. We say tha t an L-formula ~o is
invariant under stuttering if for every model J~, a computation ~ satisfies t0 (in .hal) iff every stuttered
extension of ~r satisfies ~o (in Ad).

2.2 I / O A u t o m a t a

A concurrent system is often described by the specification of its possible interactions with the environ-
ment, i.e., its observable behavior. In the I /O automaton model, the interface between the system and its
environment is described as interleaved sequences of actions which are called behaviors. When the system
r u n s i n a certain environment, certain behaviors may arise. The specification says which are the allowed
behaviors.

Actions at the interface between the system and its environment are of two kinds. Input actions originate
in the environment and are imposed by the environment on the system. This means tha t they can occur
at any time and are not under the control of tile system. Output actions are generated by the system and
are imposed by it on the environment.

Formally, given two disjoint sets of actions, inp(S) and out(S), a specification S is a subset huh(S) of
the set of (finite or infinite) sequences over acts(S) = inp(S) U out(S).

While a specification describes the interaction of a system with its environment, an I / 0 automaton
is a state machine which models the system. An I /O automaton A therefore has input actions, inp(A),
and output actions, out(A). In addition, it has internal actions, int(A), which are not observable by
the environment. Let acts(A) denote the union of these three (mutually disjoint) sets of actions. The
automaton also has states, states(A)), transitions, trans(A) C states(A) x acts(A) • stales(A), initial stales,
i-slate(A) C slates(A), and a fairness condition, fair(A), described as a parti t ion on out(A) t9 int(A). See
[LT87, LT89, AAF +] for an elaborate discussion.

An ezecufion ~l of ,4 is a (possibly infinite) sequence of the form:

8o, a l , s l ,a2 , . . .

62

where 80 is an initial state of A and for every i _> 0, (s i , a i+ l , s i+ t) is a transition of A. The execution
1/is fair if it is infinite, and for every set of actions acts ~ E fair(A), either actions from acts ~ are taken
infinitely many times in ~/ (i.e., for infinitely many i's, al E acts~), or actions from acts n are disabled
infinitely many times in i 7 (i.e., for infinitely many i's, for all actions a E acts ~, there is not s ~ such tha t
(s~, a, s') ~ t~us(A))~.

If A and B are both I /O automata whose only mutuai actions are input of one and output of the other,
then the composition of A and B, A o B, is an I /O automaton such that:

1. out(A o B) = out(A) U out(B), int(A o B) = int(A) U Jut(B), and inp(A o B) : inp(A) tJ inp(B) -

(out(A) u outCB).

2. states(A o B) = states(A) • stales(B), and A o B's initial states are the cartesian product of its
components ' initial states.

3. A o B's transitions are such tha t only the components to which the action belongs is affected, i.e.,
((s~t ,sB),a,(s~,s 'B)) E trans(A o B) if (sA,a,s~) E trans(A) when a E acts(A) and sA = s~t
otherwise, and similarly for s~.

4. The fairness condition on A o B is the union of the fairness conditions of its components.

The definition of composition of two I /O-automata is extended in the obvious way to the definition of
the composition of and n I /O automata.

Let ~ be an execution of the composition of A t , . . . , A , . For every i = 1 , . . . , n , let ~[z~ denote the
execution of Ai which is defined by ~. Tha t is, ~[i] is obtained from ~ by eliminating all the actions which
are not in acts(At), eliminating states which are not preceded by actions, and replacing each remaining
state with its i th component.

3 C o m m u n i c a t i o n S y s t e m s

Consider a distributed network of n processes, PI Pn that communicate by means of k message buffers
B1 , Bk. Each process Pi is an I /O automaton and each message buffer Bj is aspecification. Let acts(B)
denote the union U~ftacts(Bj). In the next section we define (specification of) message buffers precisely.
For the purpose of this section, message buffers are specifications that share actions with the processes.
The actions of the processes, however, are assumed to be mutually disjoint.

Let P denote the composition P1 o . . . o P n . From the definition of fair executions it follows that in every
fair execution of P, each process has infinitely many actions. Since the processes communicate through
the message buffers, we only want to consider executions of P tha t obey the buffers' specification. Let 7~B
denote this set, i.e.,

7~B = {~:~ / i s a fair execution of P and (~lacts(Bj)) E beh(Bj) for every j = 1 ,k}.

Fix some admissible logic L. For any model ~ -- (H, S, I), we say that M is acceptable if for every
s E S, if s E acts(B) then I(s) -- ~s}, otherwise I(8) N acls(B) = 0.

We now interpret L-formulae over the executions ill 7~8. With each process Pi we associate an acceptable
model

~ = (ill _c r s~ = acts(P~) u states(P~), x~)

such that each for every s E statss(Pi), Ii(s) C_ ~, and for every a E acts(Pi), I~(a) C_ ~ , . Given an
L-formula ~, we say that ~ is i-valid if for every fair execution 11 of Pi, (.Adt, 7) ~ ~. We assume that the
His are mutually disjoint. Let .Ad ~- (11, S, I) be the model where:

1. H -- U~ftii~,

2. S = states(P) u acts(P),

3. for every (s t , . . . , a n) E stales(P), l (s) : U~=lli(s/).

4. for every a E acts(P), if a E acts(Pi), then l(a) = Ii(a). (Recall tha t each action is "owned" by a
unique Pi.)

2Thht definition of falrne~ dlvergea from the usual one which allows for finite fair executions

63

Obvioulsy, A4 is an acceptable model. Also, each s G states(P) is a regular state and each a E acts(P)
is an action state. We say that an L-formula ~o is 7~n-valid if (M/I, r/) ~t. ~o for every execution r /of 'Pa .

We next define the theory of B- - the set of L-formulae that are valid over all executions of systems
of processes that communicate through B1, . . . ,Bk . The theory of B, denoted by T (B) , is the set of all
formulae ~o such that for all acceptable models A4' = (H', i f , I ') , where H' ~ (prop(~o) U acts(B)) and
(S' N acts(B)) ~ 0, and for all ~ E (S') ~ such that (~lacts(Bj)) E beh(Bj) for j = 1, ..., k, (J~d',r I=L ~o.
Obviously, ~ is "Pt3-valid for every ~o E T(B).

We now formally state and prove our main theorem. Roughly speaking, the theorem states that if
every process satisfies some local L-specification, and if the formula "X: the conjunction of the local L-
specifications implies ~b" is in the theory of B, then the whole system satisfies ~b. Since we want to guarantee
that the "local" specifications above are indeed local, we replace their occurrence in X by their projected
form (see Section 2).

T h e o r e m 3.1 Given L-formulae ~b , 9~1, . . . ton over H, H1 , Ha, respectively, which are invariant under
stuttering, such that:

1. to i is i-valid for every i = 1 , . . . , n, and

i ~. the formula (Anfl ~o(n,) ---, ~b) is in T (B) .

Then ~b is 7~n-valid.

P r o o f Let ~/= r/0,.., be an execution in 7~ . Our goal is to show that (Md, I/) ~/; ~b. We first show that
(.h/l, r/) ~t. Io(n0i for ever i = 1,. . . , n, and then show how this implies that (At, r/) ~t . lb.

Assume 1 < i _< n. Let 7/' = r/~,.., be the sequence obtained from r/by deleting every action which is
not in acts(Pi), and let 7/" = r/~ be the sequence obtained from r/' by replacing every state by its i *h
component. Since ~i is/-valid, (Adi,r/[i]) ~t; ta i. Since ~i is invariant under stuttering and since r/" is a
stuttered extension of r/[:~, we have

(~ , r/") ~L ~i.
/,From the definition of Mis and M/I, it follows that I(r/~) (3 prop(to i) = Ii(r/~') FI prop(to) for every j >_ 0.
Hence, it now follows from the assumption on ~L that

(~, r/') l=z ~i.

The sequence 77' is exactly the sequence r/IHi. Since 0 is an execution of P, I/0 6 states(P). From the
definition of I it now follows r/0 is a Hi state. Consequently, r/~ is also a Hi-state. Moreover, since r/ is a
fair execution of P, it has infinitely many Hi states, hence rf is infinite. It now follows from the projection
property that

(~ , r /) ~L ' ~O(n,).

The above argument shows that (.M, r/) ~L ~O(n,)i for every i = 1 , . . . , n. Consequently,

~(n,).
i----I

Since (A~=~" ~(n,)i ---, ~b) ~ T(B) , it follows that

i (A -

i = l

We can therefore conclude that
(.,~, r/) ~L ,~.

For each i = 1 , . . . , n, we say that �9 formula to i characterizes the process Pi with respect to the model
~4i if 9~ i is invariant under stuttering and for any r E S~i, (~ i , ~r) ~ to i iff either ~r is am execution of
Pi or it is a stuttered extension of such an execution. Now the following theorem states that if the logic L
is expressive enough to characterize the processes P h . . . , P , then any L-formula that is 7~a-valid can be
proven so by using the method given in theorem 3.1.

64

T h e o r e m 3.2 l f ~b ,~ , . . .~n are L-formulae such that:

I. ~b , ~x ~n are invariant under stuttering,

,$. 9~ i characterizes Pi with respect to .A41 for every i, and

3. ~b is 7~a-valid

n i _ . , then (Ai=~ ~(n,) ~b) is in T(B) .

4 T e m p o r a l L o g i c s a n d M e s s a g e B u f f e r s

In Section 2 we introduced admissible logics. In Section 3 we defined communication systems and showed
how to verify some properties of admissible logics in them. In this section we show that two variants of
temporal logic, termed here PTL and RTL, are admissible. PTL is the usual propositional temporal logic
with past operators. RTL is PTL without the Until, Since and Nexttime operators, i.e., a temporal logic
that uses only the (past and future) eventuality operators.

4.1 PTL and RTL

Propositional Temporal Logic (PTL) is one of the logics defined in Section 2. In addition to the boolean
connectives, PTL-formulae can include the temporal operators U (until), S (since) and 0 (he. t ime)
operators.

Before defining the satisfiability relation ~PT/. (denoted by ~p) , we define an auxiliary satisfiahilit'y
relation, ~ , between a model .Ad = (II, S, I), a computation ~ = s0, sx, . . , over S, and a PTL-formula ~.
The relation ~l is defined inductively as follows:

(.Ad, r j) ~ true and (.Ad, ~, j) ~=~ false for every ~ E S ~ and j > 0.
For a state assertion Q EII , (Ad, ~, j) ~ Q iff Q E I(sj).

(.~, q, j) ~' -,~ ig (.~, ~, j) ~' ~,.
(.~ ,o ' , j) [:=t ~1 Vcp2 i f f (j ~ ,o ' , j) [::t ~Pl or (j~[,o ' , j) [:=t ~P2.
(A4,~r,/) ~ ' ~ i U ~ 2 iff for some j ' >_ j, (Ad,a, j ') ~ ' ~2 and for all i, j _< i < j ' ,

(.M, a, i) ~ ' ~ol.
(Ad,~r,j)~'~olS~o2 iff for some j ' such that O <_ j ' < j, (.h4,a,j') ~ ' ~o~ and for all i,

j ' < i _< j , (.h4, ~r, i) ~ ' ~o~.
(~,~,J) ~' O~ ig (.~,,~,~ + a) ~' ~.

Additional boolean connectives (such as A, --*, ~) can be defined in the usual way. We define addi-
tional temporal operators, ~ (eventually in the future), its dual ~1 (always in the future), and their past
counterparts, ~ (eventually in the past) and El (always in the past) by:

~'~ *-* trueU~o

The satisfiability relation [=p is defined by:

(g , ~) ~p ~ ifr

O~p *-~ trueS~

(~, ~, 0) ~' ~.

RTL (Restricted Temporal Logic) formulae are PTL formula that only do not use the U, S and O
operators, that is, they only use the ~ , O, and their duals as temporal operators. We denote ~RTL by

4.2 Admissibility of PTL and RTL

We now show that both PTL and RTL are admissible logics. We first note that both ~ , and ~R trivially
satisfy all the five requirements of a satisfiability relation of admissible logics listed in Section 2. We next
show that both logics have the projection property.

T h e o r e m 4.1 PTs has the projection property.

65

P r o o f We prove the claim by defining, for every PTL-fornmla ~p and set II C_ ~, a projected formula ~o(n)
and showing that the defined ~o(rl) satisfies the requirements of a projected formula.

For every finite set II C_ II, let H denote the formula V,en r" Given a PTL-formula ~o, we define ~(n)
by induction on the structure of ~ as follows:

�9 If ~o E �9 or ~ E {true,false}, , then ~o(n) = ~.

�9 I f ~o = -~o', then ~o(n) = -%O~n).

�9 If ~ = ~' V ~o", then ~(n) = ~O~n) V ~) .

�9 If ~o = ~r then ~o(n) = (H --~ ~O~H))U(H ̂ ~o~n)).

�9 If ~o = ~'S~o", then ~O(n) = (H --* ~O~n))S(H ̂ ~o~h)).

�9 If ~o = O~d, then ~(n) = Q)(-~HU(H A ~n)))

It remains to show that for every model A4 = (H', S, I) where II' D (prop(~)UH) and every computation
= so, sx, . . , such that #[H is infinite and so is a H-state,

Let A4 = (IF, S, I) such a model and a be such a computation. Let h be a mapping between indices of r
to indices of a states such that alH = sn(0),snO) We claim that for every i > 0,

(A4, o', h(i)) ~ ' ~o(n) iff(.M, r i) ~ ' ~,.

The proof of the claim is by induction on the structure of ~o and is left to the render. Since so is a II-sta~e,
h(0) = 0, we therefore conclude that

(A4,o.) ~ e ~'cn) iff(~a, al rl) ~P 'P.

T h e o r e m 4.2 RTL has the projection property.

P r o o f The proof is similar to that of Theorem 4.1. The only difference is thedefinition of the projected
formula: Since RTL formula do not have U and $ operators, neither should projected formulae have them.
We therefore add to the definitions given in the proof of Theorem 4.2 the following:

�9 If ~ = 4Y~ ~ then ~(n) = ~ (H ^ ~n))"

�9 If ~ = ~ then ~(n) = ~(-H ^ ~n))"

The proof that ~(n) as defined above satisfies the requirements from a projected formula follows immediately
from the proof of Theorem 4.1. �9

We can therefore conclude:

T h e o r e m 4.3 Both PTL and RTL are admissible logics.

5 Message Buffers

In Section 3 we considered message buffers to be arbitrary specifi.cations. In this section we study four
examples of unbounded message buffers with finite message alphabets: first-in-first-out (fifo) buffers, fifo
buffers with deletions, unordered buffers without liveness, and unordered buffers with liveness. As we show,
the theory of the first two message buffers in RTL is decidable (in fact, in co-NP), and the theory of the last
two message buffers in PTL is decidable. Hence, Theorem 3.1 can be used to prove properties of systems
that communicate through these buffers. We should note that the theory of fifo message buffers in the full
temporal logic is H~-complete and thus not axiomatizable ([SCFM84]).

66

5 .1 S p e c i f i c a t i o n s o f M e s s a g e B u f f e r s

A message buffer is characterized by the sequences of read/write actions it admits. These sequences depend
on the properties of the buffer (e.g., fifo) and on the message alphabet. We denote a message buffer of type
x with message alphabet M by x(M). For every x(M), we have

inp(x(M)) = {write(m) : m e M} and out(x(M)) = {read(m) : m e M}.

Since all the buffers of type x over M have the same input and output actions, we omit 'x' when discussing
these actions.

Recall the system presented in Section 3. There we assume k message buffers of the same type whose
actions are mutually disjoint, hence their message alphabets are mutually disjoint. Given such k dis-
joint message alphabets Ma , . . . , Mk, we denote by x(M) the joint system of the k buffers of type x that
communicate over these alphabets. We also assmne that:

�9 inp(l~I) = [.J~fx inp(Mi)),

�9 out(~I) = U~=l ont(Mi), and

�9 beh(x(I~I)) = {a E (acts(l~I)) ~176 : c~lacts(x(Mi)) is in beh(x(Mi)) for every i = 1 , . . . , k).

For every buffer type x, (mutually disjoint) message alphabets M r , . . . , Mr, and admissible logic L, let
T/.(x(M)) denote the theory of x(M) in L. That is, the set of L-formulae ~o such that for every acceptable
model .M t = (H I, S t, 1 I) (III _~ (prop(~0)t9 acts(~I))), for every computation a over f f such that (a[acts(A:l))
is in beh(• (]~4 I, o') ~ ~.

We abbreviate TpTr.(x(M)) tr Tp(x(~/)) and 7"RTL(X(~/)) to TR(x(/~/))
We now describe the four buffer types and some results about their theories.

Fifo Buffers

Fifo buffers are message buffers where every read operation returns the value of the oldest unread message.
Moreover, in every sequence of observable behaviors, if there are infinitely many write actions in the
sequence then there are also infinitely many read actions in the sequence. Formally, for every message
alphabet M, beh(fdo(M)) is the set of all sequences ~ over acts(M) such that the following holds:

1. for every finite prefix a ' of c~, al[out(M), is a prefix of aqinp(M), and

2. if the a[inp(M) is infinite, then a[out(M) is infinite.

In the full version of the paper we prove the following theorem, which is an extension of a similar
theorem of [SZ90].

T h e o r e m 5.1 TR(fifo(A~/)) is in co-Np, i.e., there exists a procedure in NP that decides whether a given
RTL formula ~o is not in 7-R(fifo(J~)).

Fifo Buffers w i th De le t ions

Fifo buffers with deletions (fifod buffers) are fifo buffers that can delete messages. From such buffers we
require that every message that is written infinitely many times is read infinitely many times. Formally, for
every message alphabet M, beh(fifod(M)) is the set of all sequences a over acts(M) such that the following
holds:

1. for every finite prefix a ' of a, cJlout(M), is a subsequence ofc/l inp(M), and

2. for every m E M, if the a[write(m) is infinite, then c~[read(m) is infinite.

In the full version of the paper we prove tile following theorem, which is an extension of a similar
theorem of [szg0].

T h e o r e m 5.2 Ta(fifod(M)) /s in co-NP, i.e., there ezists a procedure in NP that decides whether a given
RTs formela ~o is not in TR(fifod(M)).

67

U n o r d e r e d Buffers

Unordered buffers (unor) ~re buffers that can deliver messages in any order. As before, let M denote a
message alphabet. Formally, for every message alphabet M, beh(unor(M)) includes all the sequences c~ over
acts(M) such that there exists a one-to-one mapping, ha, that maps each read(m) event in a to a wrlte(m)
event in c~ that precedes it.

The following theorem is proven in [SCFM84]:

T h e o r e m 5.3 Tp(unor(2~l)) is elementary decidable.

U n o r d e r e d Buffers w i t h Liveness

Unordered buffers with livenness (unorl) are unor buffers cannot read finitely many messages if infinitely
many messages were written. Formally, for every message alphabet M, beh(.norl(M)) includes all the
sequences a in beh(unor(M)) such that if there are infinitely many write events in c~, then there are infinitely
many read events in a.

The following theorem can be proved using the techniques as those given in [SCFM84].

T h e o r e m 5.4 T/,(unorl(M)) is decidable.

5 .2 A N o t e a b o u t F i n i t e S y s t e m s

Let A be an I /O automaton such both states(A) adn acts(A) are finite. Following the method preseted
in Section 3, we can associate with A a model .Ad = (II,S, I) such that every s E states(A) (reap.,
a E acts(A)) is mapped to a distinct unique state assertion in II. It is now possible to give aPTL-formula
which characterize~ the A's behavior with respect to ~ . Ilence PTL is expressive for the process P with
respect to the model ,At[.

Using Theorems 3.2, 5.4, and 5.3, it is easily seen that the method presented in Theorem 3.1 gives
us complete and fully automatic proof methods for proving temporal properties of systems of finite state
concurrent processes that communicate through unordered buffers with and without liveness properties.

6 Alternating Bit Protocol

Assume a two process system, where one process, the sender tries to reliably communicate a sequence of
data items X over a domain D of data items, to another process, the receiver. The receiver has to write
the data items into Y. The sender and the receiver communicate via fifod message buffers.

The Alternating Bit Protocol (ABP), introduced in [BSW09], offers a solution to the problem, namely,
protocols for both sender and receiver that guarantees that at any given time, Y is a prefix of X, and
that eventually Y = X. Presented in the terminology introduced in the previous sections, ABP uses two
message buffers, one from sender to receiver with message alphabet M , = D x {0,1}, and the other from
receiver to sender with a message alphabet IV/,, = {0, 1}. Let A, denote the sender's automaton, and let
Ar denote the receiver's automaton. ABP proceeds as follows:

If = z0, . . . , then, for every A, writes (z i ,~ messages onto its outgoing buffer (] denotes the parity of
i), until it reads a --] message, at which point it knows that Ar had set yi := zt and is awaiting zt+x. A,
then increments i and proceeds to the next data item. Ar is similar.

Formally, A, 's states include the input sequence z0 and an index i, initially 0, denoting the index
of the data item currently transmitted. Similarly, Ar's states include the output sequence y0, . . , and an
index j , initially 0, denoting the index of the data item that Ar is waiting for.

The code for the sender and receiver appears in Figure 1.
Although we cannot express (and, consequently, prove) all the properties of the Alternating Bit protocol

in KTL, we can use the fifod version of Theorem 3.1 to show some of its properties. Recall that the evlauation
of any buffer action is the action itself. We use the following abbreviations for every d E D:

i#p, ..~ VaEinp(A,)a inPr = VaEinp(A,)a
Oa|, = VaEout(A,)a OUtr .~ Vof.out(A~)a
acts, = inp, V out, a c t s r = inp r V outr
past0,(d) = ~3(out, --* write(d, 0)) past0r(d) = ~3(inp r --* read(d,0))
first,(d) = O(wrlte(d,0) A past0,(d)) first,(d) = ~(read(d, 0) A past0r(d))

68

A,

write(z, b) ((z, b) E M,r):
p recondi t ion :

z = z l a n d b =]

read(b) (b E Mr,):
effect:

if b ~ ~ then
i:=iq-1

.dr

write(b) (b E Mr,):
p recondi t ion :

b = ~

read(y, b) ((y, b) E M~r):
effect:

if b = ~ then
yj := y; j := j + l

Figure I: The Alternating Bit Protocol

The formula
r : first,(x) -~ firstr(x)

therefore asserts that the first message read by the received is same as the first message written by the
sender. Using Theorem 3.1, we can prove r by setting ~,J to:

~((wrlte(z,O)ApastO.(z)) ~ ((~3(ac,s. ~write(~,O))A~3~)acts.)) V~,(read(1)ApostO.(x))))

and ~ to
V(wrlte(1) �9 O(V read(d,O))

(IED

If II~ and IIr denote all the propositions of the sender and the receiver, it can be shown that ~o ~ and
Ior can be replaced by (la~n,) and ~o~N,)) respectively. It can also be shown that (io ~ ̂ ~r) ._, r is in the
theory of the system of two buffers with deletions connecting the sender and receiver in the two directions.

7 Conclusions

In this paper we have presented a formal model for processes that communicate through fifo message buffers
and have given a sound automatic proof system for verifying l'tTL definable properties of such systems. The
proof method is modular. Although our method is not complete, we feel, as illustrated by the example,
that it can be applied to some practical examples. Theorem 3.1 holds for any fragment L of temporal
logic as long as the formulae in L do not distinguish between two computations one of which is a stuttered
extension of the other. In this case, we can use our approach for proving properties given by formulae in
L as long as the theory of fifo buffers in the logic L is decidable.

R e f e r e n c e s

[AAF +] Y. Afek, H. Attyia, A. Fekete, M. Fischer, N. Lynch, Y. Mansour, D.-W. Wang, and L. Zuck.
Reliable communication using unreliable channel, to appear in JACM.

[BSW69] K.A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable full-duplex trans-
mission over half-duplex links. Communca~ion of the ACM, 12:260-261, 1969.

[CES86] E .M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concur-
rent systems using temporal logic specifications. Transactions on Programming Languages and
Systems, 8(2), 1986.

[CM86] K.M. Chandy and J. Misra. Parallel Program Design: A Fnndation. (A draft), 1986.

[EL85] E.A. Emerson and C. L. Lei. Modalities for model checking: Branching time strikes back. In
Proc. l~h ACM Syrup. on Principles of Programming Languages, pages 84-96, 1985.

69

[LamB3]

[LP85]

[LT87]

[LT89]

[OL82]

[Pnu77]

[SCFM84]

[szg0]

[vw86]

L. Lamport. Specifying concurrent program modules. ACM TOPLAS, 5(2):190-222, 1983.

O. Lichtenstein and A. Pnueli. Checking that finite-state concurrent programs satisfy their
linear specifications. In Proc. 12th A CM Syrup. ou Principles of Programming Languages, pages
97-107, 1985.

N.A. Lynch and M. R. Tuttle. Hierarchical con'ectness proofs for distributed algorithms. In
Proc. 6th ACM Symp. on Principles of Distributed Computing, pages 137-151, 1987.

N.A. Lynch and M. R. Turtle. An introduction to input/output automata. CWI Quarterly,
2(3):219-246, 1989.

S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. TOPLAS,
4(8):455-495, 1982.

A. Pnueli. The Temporal Logic of programs. In Proc. 18th IEEE Syrup. on Foundation of
Computer Science, pages 46-57, 1977.

A. P. Sistla, E. M. Clarke, N. Francez, and A. R.. Meyer. Can message buffers be axiomatized
in linear temporal logic? Information and Control, 63(1/2):88-112, 1984.

A. P. Sistla and L. D. Zuek. Reasoning in a restricted temporal logic, submitted for publication,
parts appeared in [SZ87], 1990.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification
(preliminary report). In Proc. Ist IEEE Syrup. on Logics in Computer Science, 1986.

