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1 I n t r o d u c t i o n  

Propositional Linear Time Temporal Logic (TL) was introduced in [Pnu77] as a formal system for reason- 
ing about concurrent programs. Since then it has been widely used for specification and verification of 
concurrent systems. 

Most formal systems that allow temporal-like reasoning use the eventuality operator as the main modal 
operator. In this paper we consider a temporal logic that uses ~ (sometimes in the future) and O (sometimes 
in the past) as the only modal operator; we term this logic RTL (Restricted Temporal Logic). At first glance 
RTL seems to be a very limited language. Yet, if we are concerned with properties of concurrent programs, 
there are convincing indications that RTL is an adequate language: 

Owicki and Lamport, when giving proof rules for livensss properties, considered only formulae of the 
form mn(p ..~ Oq) ([OL82]) which are RTL formulae; Chandy and Misra conjectured that there is essentially 
one class of liveness properties of concurrent programs, namely, the class of progress properties ([CM86]); in 
their propositional version, progress properties are easily definable by RTL. Other specification techniques 
([LamB3]) use state transition systems to specify safety properties and RTL to specify liveness properties. 
It is hardly surprising that most temporal properties of distributed programs discussed in the literature are 
given in RTL. 

A natural problem associated with choosing a specification language for programs is how easy is it to 
verify that programs satisfy their specification. Ideally, we would like an automatic verifier that, given 
a program and its specification, would decide whether the program satisfies its specification. There are 
several model checking methods that are proposed in the literature for obtaining this goal which use (the 
full) temporal logic as the specification language (cf. [CES86, EL85, LP85 D. Recently, Wolper and Vardi 
([VW86]) have advocated the a~omata theoretic approach which is a variant of model checking. There, 
both the program and the specification are brought to the form of a finite-state graph, and model checking 
reduces to the emptiness problem for (w-) finite-state automata. 

All the model checking techniques that we are aware ofapply only to programs which are either finite- 
state or those that, for verification purposes, can be considered finite-state. Many programs for distributed 
systems are, however, infinite-state. In particular, systems of (possibly finite-state) processes that commu- 
nicate over unbounded message buffers are inherently infinite-state. 

A major obstacle in verifying properties of systems that use message buffers is the complexity of the 
axiomatization of the behavior of the buffers used. As shown in [SCFM84], the theory of unbounded fifo 
buffers in the full TL is H~ complete. Hence, one cannot hope to have a model-checking procedure for 
verifying TL properties of systems that use unbounded fifo message buffers. However, once TL is replaced 
with a version of RTL that has 4~ as a single modal operator, the theory of unbounded message buffers is 
co-NP-complete ([szg0 D. 

In this paper, we modify the result in [SZ90] and show that the theory of unbounded message buffers 
in KTL is also co-NP-complete. Based on this, we present a "simple" automatic verification method that 
applies to a certain class of RTL formulae and (not necessarily finite-state) programs of distributed systems 
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whose processes communicate by means of fifo message buffers. Our method is based on the principle tha t  
can he roughly stated as follows: 

Given a system of n processes, P I , . . . ,Pn  that communicate over unbounded message buffers and a 
formula ~b in an admissible logic L, then in order to show that ~ holds over all the executions of the s~lstem, 
it suffices to find n formulae ~ba,..., ~ ,  in L such that: 

1. each Pi satisfies ~bt, and 

~" (Ai ~bi "" ~b) is in the theory of the message buffers in the logic L. 

In order for the above idea to be applicable the logic L has to he admissible. Admissible logics are 
defined in section 2. RTL is an admissible logic and since the theory of fifo buffers in RTL is co-NP- 
complete, we can use the above principl e for proving I~TL properties of systems that  communicate through 
unbounded fifo buffers. Intuitively, we can think of the above method to be approximating the behavior 
of each process Pi by the formula ~ .  This gives us a sound proof method for proving KTL properties of 
systems that  communicate through unbounded fifo buffers. 

It can easily be shown that  the above method is complete for a class of processes if the logic L is expressive 
for this class. By taking the logic L to be the Propositional Temporal Logic without the "nexttime" operator 
and by considering unbounded unordered 1 , we can use the above method for proving properties of systems 
of processes that  communicate through unbounded anordered buffers whose message alphabet is finite. 
In this case, it can easily he shown L is admissible and the theory of unbounded unordered buffers in L 
has been shown to be decidable in [SCFM84]. If we are only considering finite state processes then L is 
expressive for this class, and we get a complete and fully automatic proof method for this class of processes.. 

Temporal logics are usually interpreted over sequences of states, and formulae that  express properties 
of message buffers use the send and receive actions to the buffers as atomic propositions. We therefore 
have to interpret the logic over both states and actions. Consequently, we consider executions sequences 
that  explicitly have the two. A natural such model is the I /O automaton model (cf. [LT87, LT89]). This 
model also allows to abstract away the (application) programs run by the processes and to concentrate on 
the interaction between the buffers and the processes. Finally, the model has inherent compositionality 
properties. We therefore chose it as the model on which to demonstrate our ideas. We would like to stress 
tha t  this choice is for purposes of convenience of exposition, and our results do not depend on the I /O 
automaton model. 

2 T h e  Formal  F r a m e w o r k  

2 . 1  A d m i s s i b l e  L o g i c s  

Let ~ be a finite set of state assertions. We are interested in logics for specifying properties of computations 
which include states as well as actions. With this as our motivation, we assume tha t  the set �9 is partit ioned 
into two nonempty disjoint sets, denoted by ~ and ~a. Intuitively, the members of ~ ,  can be true only in 
states tha t  represent states of processes and those in <I,~ can be true only in states tha t  represent actions. 

We define admissible logics, which are logics that  satisfy certain properties defined later in this section. 
The formulas of such logics are constructed from state assertions in II using the boolean connectives -1 and 
V, and some other operators (e.g., temporal ones), and are interpreted over sequences of subsets of ~.  

Let L he such a logic. For a formula ~o of L (an L-formula), let prop(~o) denote the set of state assertions 
in ~o. A model .Ad for a logic is a triple (H, S, I) where II _C &, S is a (possibly infinite) set of states and 
I:  S ~ (2 n - 0 )  is an evaluation mapping each state s G S to a nonempty set l (s) ,  the set of state assertions 
true in s and such tha t  either l(s) N ~,  is empty or l ( s )h  ~a is empty. We say that  a state s E S is regular 
if I(s)N ~,  is nonempty; we say that  a state s G S is action if l (s )N ~ is nonempty. It should be clear tha t  
every state in S is either regular or action. Given a model Ad = (II, S, I),  a computation ~r is an infinite 
sequence of states, i.e., 

~r : s0, S l , . . .  s i q S .  

We assume that  a satisfiahility relation ~L,  between a model J~d = ( I I ,S , I ) ,  a computation or, and an 
L-formula ~0, where prop(~o) C II, is defined so that  the following properties are satisfied: 

�9 (.Ad, 0") ~/ .  true and (.Ad, ~) ~L false for every cr E S ~ �9 

1In unordered buffers the meamages can be delivered in any order. 
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* For a state assertion Q E ~, (A4,a) ~t. Q iff Q e l(so). 

�9 (~ ,  a) ~ ,  -,~ iff (~ ,  ~) ~L ~. 

�9 ( ~ ,  a) ~L ~l V ~3 iff (A~, a) ~L ~ or (~ ,  ~) ~L ~ .  

�9 For every model .hal* = (II' _~ prop(~o),St, F )  and computation a t = s ~ , . . . , s ~ , . . ,  over S ~ such tha t  
It(s~) N prop(~o) = I(8i) N prop(~o) for every i >_ 0, 

(~,~)  ~ ,  v iff (~ ' ,~ ' )  ~ ,  ~. 

In other words, the satisfaction of a ~o by a only depends on the evaluation of l(~r) f3 prop(~o). 

(Additional boolean connectives (such as A, --*, *-*) are defined in the usual way.) 
If (.Ad,~r) ~ / .  ~o, we say that  ~r satisfies ~o in Ad. 
For any sequence r whose elements are from a set A, we let alA' denote the restriction of a to A t. In 

other words, a[A'  is the subsequence of a that  includes all the A ~ elements of a .  
Let .k4 = (II, S, I)  be a model. For any s ~ S and IV C H, we say tha t  s is a IV-state if I(s) n II' ~ ~. 

We use a[IV to denote a ' s  restriction to the II~-states, that  is, 

qlII '  = al{s G S : s is a IIt-state}. 

We say that  L has projection property if for every L-formula ~o and every finite set II such tha t  12 C_ O, 
there exists a formula t0(iD such that  for every model A4 = (if ~, S, I)  where 1II D (prop(~o) t3 II) and every 
computation ~r such that  a l i i  is infinite and the first state in a is a If-state, 

(A~, ~) ~L ~,(n) ifr(~, ~lii) ~ 

The logic L is admissible if it has the projection property. In the sequel we will only consider admissible 
logics. The projection property does not imply a unique projected formula to(ri). However, we fix such a 
formula and let in(n) denote it. It easily follows from the definition that  for every L-formula ~, to *-* ~(n) 
holds in every model A4 whose states are all II-states. 

Let cr = so ,s l , . . ,  be a computation over S. If a I is obtained from q by possibly duplicating some of 
the regular states in a, then we say that  a '  is a stuttered exlension of or. We say tha t  an L-formula ~o is 
invariant under stuttering if for every model J~,  a computation ~ satisfies t0 (in .hal) iff every stuttered 
extension of ~r satisfies ~o (in Ad). 

2.2 I / O  A u t o m a t a  

A concurrent system is often described by the specification of its possible interactions with the environ- 
ment, i.e., its observable behavior. In the I /O automaton model, the interface between the system and its 
environment is described as interleaved sequences of actions which are called behaviors. When the system 
r u n s i n  a certain environment, certain behaviors may arise. The specification says which are the allowed 
behaviors. 

Actions at  the interface between the system and its environment are of two kinds. Input actions originate 
in the environment and are imposed by the environment on the system. This  means tha t  they can occur 
at  any time and are not under the control of tile system. Output actions are generated by the system and 
are imposed by it on the environment. 

Formally, given two disjoint sets of actions, inp(S) and out(S), a specification S is a subset huh(S) of 
the set of (finite or infinite) sequences over acts(S) = inp(S) U out(S). 

While a specification describes the interaction of a system with its environment, an I / 0  automaton 
is a state machine which models the system. An I /O automaton A therefore has input actions, inp(A), 
and output  actions, out(A). In addition, it has internal actions, int(A), which are not observable by 
the environment. Let acts(A) denote the union of these three (mutually disjoint) sets of actions. The 
automaton also has states, states(A)), transitions, trans( A ) C states(A) x acts(A) • stales(A), initial stales, 
i-slate(A) C slates(A), and a fairness condition, fair(A), described as a parti t ion on out(A) t9 int(A). See 
[LT87, LT89, AAF +] for an elaborate discussion. 

An ezecufion ~l of ,4 is a (possibly infinite) sequence of the form: 

8o, a l , s l ,a2 , . . .  
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where 80 is an initial state of A and for every i _> 0, ( s i , a i+ l , s i+ t )  is a transition of A. The execution 
1/is fair if it is infinite, and for every set of actions acts ~ E fair(A), either actions from acts ~ are taken 
infinitely many times in ~/ (i.e., for infinitely many i's, al E acts~), or actions from acts n are disabled 
infinitely many times in i 7 (i.e., for infinitely many i's, for all actions a E acts ~, there is not s ~ such tha t  
(s~, a, s') ~ t~us(A))~. 

If A and B are both I /O automata  whose only mutuai actions are input of one and output  of the other, 
then the composition of A and B, A o B, is an I /O automaton such that:  

1. out(A o B) = out(A) U out(B), int(A o B) = int(A) U Jut(B), and inp(A o B) : inp(A) tJ inp(B) - 

(out(A) u outCB). 

2. states(A o B) = states(A) • stales(B), and A o B's initial states are the cartesian product of its 
components '  initial states. 

3. A o B's  transitions are such tha t  only the components to which the action belongs is affected, i.e., 
((s~t ,sB),a,(s~,s 'B))  E trans(A o B) if (sA,a,s~)  E trans(A) when a E acts(A) and sA = s~t 
otherwise, and similarly for s~. 

4. The fairness condition on A o B is the union of the fairness conditions of its components. 

The definition of composition of two I /O-automata  is extended in the obvious way to the definition of 
the composition of and n I /O automata.  

Let ~ be an execution of the composition of A t , . . . , A , .  For every i = 1 , . . . , n ,  let ~[z~ denote the 
execution of Ai which is defined by ~. Tha t  is, ~[i] is obtained from ~ by eliminating all the actions which 
are not in acts(At), eliminating states which are not preceded by actions, and replacing each remaining 
state with its i th component. 

3 C o m m u n i c a t i o n  S y s t e m s  

Consider a distributed network of n processes, PI . . . . .  Pn that  communicate by means of k message buffers 
B1 . . . .  , Bk. Each process Pi is an I /O automaton and each message buffer Bj is aspecification. Let acts(B) 
denote the union U~ftacts(Bj).  In the next section we define (specification of) message buffers precisely. 
For the purpose of this section, message buffers are specifications that  share actions with the processes. 
The actions of the processes, however, are assumed to be mutually disjoint. 

Let P denote the composition P1 o . . . o P n .  From the definition of fair executions it follows that  in every 
fair execution of P,  each process has infinitely many actions. Since the processes communicate through 
the message buffers, we only want to consider executions of P tha t  obey the buffers' specification. Let 7~B 
denote this set, i.e., 

7~B = {~:~ / i s  a fair execution of P and (~lacts(Bj)) E beh(Bj) for every j = 1 . . . .  ,k}. 

Fix some admissible logic L. For any model ~ -- (H, S, I), we say that  M is acceptable if for every 
s E S, if s E acts(B) then I(s)  -- ~s}, otherwise I(8) N acls(B) = 0. 

We now interpret L-formulae over the executions ill 7~8. With each process Pi we associate an acceptable 
model 

~ = (ill _c r s~ = acts(P~) u states(P~), x~) 

such that  each for every s E statss(Pi), Ii(s) C_ ~,  and for every a E acts(Pi), I~(a) C_ ~ , .  Given an 
L-formula ~, we say that  ~ is i-valid if for every fair execution 11 of Pi, (.Adt, 7) ~ ~. We assume that  the 
His are mutually disjoint. Let .Ad ~- (11, S, I)  be the model where: 

1. H -- U~ftii~, 

2. S = states(P) u acts(P), 

3. for every ( s t , . . . , a n )  E stales(P), l (s)  : U~=lli(s/). 

4. for every a E acts(P), if a E acts(Pi), then l(a) = Ii(a). (Recall tha t  each action is "owned" by a 
unique Pi.) 

2Thht definition of falrne~ dlvergea from the usual one which allows for finite fair executions 
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Obvioulsy, A4 is an acceptable model. Also, each s G states(P) is a regular state and each a E acts(P) 
is an action state. We say that an L-formula ~o is 7~n-valid if (M/I, r/) ~t.  ~o for every execution r /of 'Pa .  

We next define the theory of B- - the  set of L-formulae that are valid over all executions of systems 
of processes that communicate through B1, . . . ,Bk .  The theory of B, denoted by T ( B ) ,  is the set of all 
formulae ~o such that for all acceptable models A4' = (H', i f ,  I ' ) ,  where H' ~ (prop(~o) U acts(B)) and 
(S' N acts(B)) ~ 0, and for all ~ E (S') ~ such that (~lacts(Bj))  E beh(Bj) for j = 1, ..., k, (J~d',r I=L ~o. 
Obviously, ~ is "Pt3-valid for every ~o E T(B).  

We now formally state and prove our main theorem. Roughly speaking, the theorem states that if 
every process satisfies some local L-specification, and if the formula "X: the conjunction of the local L- 
specifications implies ~b" is in the theory of B, then the whole system satisfies ~b. Since we want to guarantee 
that the "local" specifications above are indeed local, we replace their occurrence in X by their projected 
form (see Section 2). 

T h e o r e m  3.1 Given L-formulae ~b , 9~1, . . . ton over H, H1 . . . .  , Ha, respectively, which are invariant under 
stuttering, such that: 

1. to i is i-valid for every i = 1 , . . . ,  n, and 

i ~. the formula (Anfl ~o(n,) ---, ~b) is in T ( B ) .  

Then ~b is 7~n-valid. 

P r o o f  Let ~/= r/0,.., be an execution in 7~ .  Our goal is to show that (Md, I/) ~/;  ~b. We first show that 
(.h/l, r/) ~t.  Io(n0i for ever i = 1,. . . ,  n, and then show how this implies that (At, r/) ~t .  lb. 

Assume 1 < i _< n. Let 7/' = r/~,.., be the sequence obtained from r/by deleting every action which is 
not in acts(Pi), and let 7/" = r/~ . . . .  be the sequence obtained from r/' by replacing every state by its i *h 
component. Since ~i is/-valid, (Adi,r/[i]) ~t; ta i. Since ~i is invariant under stuttering and since r/" is a 
stuttered extension of r/[:~, we have 

( ~ ,  r/") ~L ~i. 
/,From the definition of Mis  and M/I, it follows that I(r/~) (3 prop(to i) = Ii(r/~') FI prop(to) for every j >_ 0. 
Hence, it now follows from the assumption on ~L that 

(~, r/') l=z ~i. 

The sequence 77' is exactly the sequence r/IHi. Since 0 is an execution of P,  I/0 6 states(P).  From the 
definition of I it now follows r/0 is a Hi state. Consequently, r/~ is also a Hi-state. Moreover, since r/ is  a 
fair execution of P,  it has infinitely many Hi states, hence rf is infinite. It now follows from the projection 
property that 

(~ , r / )  ~L ' ~O(n,). 

The above argument shows that (.M, r/) ~L ~O(n,)i for every i = 1 , . . . ,  n. Consequently, 

~(n,). 
i----I 

Since (A~=~" ~(n,)i ---, ~b) ~ T(B) ,  it follows that 

i (A - 

i = l  

We can therefore conclude that 
(.,~, r/) ~L ,~. 

For each i = 1 , . . . ,  n, we say that �9 formula to i characterizes the process Pi with respect to the model 
~4i if 9~ i is invariant under stuttering and for any r E S~i, ( ~ i ,  ~r) ~ to i iff either ~r is am execution of 
Pi or it is a stuttered extension of such an execution. Now the following theorem states that if the logic L 
is expressive enough to characterize the processes P h . . . ,  P ,  then any L-formula that is 7~a-valid can be 
proven so by using the method given in theorem 3.1. 
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T h e o r e m  3.2 l f  ~b ,~ , . . .~n  are L-formulae such that: 

I. ~b , ~x . . . .  ~n are invariant under stuttering, 

,$. 9~ i characterizes Pi with respect to .A41 for every i, and 

3. ~b is 7~a-valid 

n i _ . ,  then (Ai=~ ~(n,) ~b) is in T(B) .  

4 T e m p o r a l  L o g i c s  a n d  M e s s a g e  B u f f e r s  

In Section 2 we introduced admissible logics. In Section 3 we defined communication systems and showed 
how to verify some properties of admissible logics in them. In this section we show that two variants of 
temporal logic, termed here PTL and RTL, are admissible. PTL is the usual propositional temporal logic 
with past operators. RTL is PTL without the Until, Since and Nexttime operators, i.e., a temporal logic 
that uses only the (past and future) eventuality operators. 

4.1 PTL and RTL 

Propositional Temporal Logic (PTL) is one of the logics defined in Section 2. In addition to the boolean 
connectives, PTL-formulae can include the temporal operators U (until), S (since) and 0 (he. t ime)  
operators. 

Before defining the satisfiability relation ~PT/. (denoted by ~p) ,  we define an auxiliary satisfiahilit'y 
relation, ~ ,  between a model .Ad = (II, S, I), a computation ~ = s0, sx, . . ,  over S, and a PTL-formula ~. 
The relation ~l  is defined inductively as follows: 

(.Ad, r j )  ~ true and (.Ad, ~, j )  ~=~ false for every ~ E S ~ and j > 0. 
For a state assertion Q EII ,  (Ad, ~, j)  ~ Q iff Q E I(sj ). 

(.~, q, j)  ~' -,~ ig (.~, ~, j) ~' ~,. 
( .~ ,o ' , j )  [:=t ~1 Vcp2 i f f  ( j ~ ,o ' , j )  [::t ~Pl or ( j~[ ,o ' , j )  [:=t ~P2. 
(A4,~r,/) ~ ' ~ i U ~ 2  iff for some j '  >_ j, (Ad,a, j ' )  ~ '  ~2 and for all i, j _< i < j ' ,  

(.M, a, i) ~ '  ~ol. 
(Ad,~r,j)~'~olS~o2 iff for some j '  such that O <_ j '  < j, (.h4,a,j') ~ '  ~o~ and for all i, 

j '  < i _< j ,  (.h4, ~r, i) ~ '  ~o~. 
(~,~,J)  ~' O~ ig (.~,,~,~ + a) ~' ~. 

Additional boolean connectives (such as A, --*, ~ )  can be defined in the usual way. We define addi- 
tional temporal operators, ~ (eventually in the future), its dual ~1 (always in the future), and their past 
counterparts, ~ (eventually in the past) and El (always in the past) by: 

~'~ *-* trueU~o 

The satisfiability relation [=p is defined by: 

(g ,  ~) ~p ~ ifr 

O~p *-~ trueS~ 

(~,  ~, 0) ~' ~. 

RTL (Restricted Temporal Logic) formulae are PTL formula that only do not use the U, S and O 
operators, that is, they only use the ~ ,  O, and their duals as temporal operators. We denote ~RTL by 

4.2 Admissibility of PTL and RTL 

We now show that both PTL and RTL are admissible logics. We first note that both ~ ,  and ~R trivially 
satisfy all the five requirements of a satisfiability relation of admissible logics listed in Section 2. We next 
show that both logics have the projection property. 

T h e o r e m  4.1 PTs has the projection property. 
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P r o o f  We prove the claim by defining, for every PTL-fornmla ~p and set II C_ ~, a projected formula ~o(n) 
and showing that the defined ~o(rl) satisfies the requirements of a projected formula. 

For every finite set II C_ II, let H denote the formula V,en  r" Given a PTL-formula ~o, we define ~(n) 
by induction on the structure of ~ as follows: 

�9 If ~o E �9 or ~ E {true,false}, , then ~o(n ) = ~. 

�9 I f  ~o = -~o', then ~o(n) = -%O~n ). 

�9 If ~ = ~'  V ~o", then ~(n) = ~O~n) V ~ ) .  

�9 If ~o = ~r then ~o(n) = (H --~ ~O~H))U(H ̂  ~o~n)). 

�9 If ~o = ~'S~o", then ~O(n ) = (H --* ~O~n))S(H ̂  ~o~h)). 

�9 If ~o = O~d, then ~(n) = Q)(-~HU(H A ~n) ) )  

It remains to show that for every model A4 = (H', S, I) where II' D (prop(~)UH) and every computation 
= so, sx, . . ,  such that #[H is infinite and so is a H-state, 

Let A4 = (IF, S, I) such a model and a be such a computation. Let h be a mapping between indices of r 
to indices of a states such that alH = sn(0),snO) . . . . .  We claim that for every i > 0, 

(A4, o', h(i)) ~ '  ~o(n) iff(.M, r  i) ~ '  ~,. 

The proof of the claim is by induction on the structure of ~o and is left to the render. Since so is a II-sta~e, 
h(0) = 0, we therefore conclude that 

(A4,o.) ~ e  ~'cn) iff(~a, al rl) ~P  'P. 

T h e o r e m  4.2 RTL has the projection property. 

P r o o f  The proof is similar to that of Theorem 4.1. The only difference is thedefinition of the projected 
formula: Since RTL formula do not have U and $ operators, neither should projected formulae have them. 
We therefore add to the definitions given in the proof of Theorem 4.2 the following: 

�9 If ~ = 4Y~ ~ then ~(n) = ~ ( H  ^ ~n))" 

�9 If ~ = ~ then ~(n) = ~(-H ^ ~n))" 

The proof that ~(n) as defined above satisfies the requirements from a projected formula follows immediately 
from the proof of Theorem 4.1. �9 

We can therefore conclude: 

T h e o r e m  4.3 Both PTL and RTL are admissible logics. 

5 Message Buffers 

In Section 3 we considered message buffers to be arbitrary specifi.cations. In this section we study four 
examples of unbounded message buffers with finite message alphabets: first-in-first-out (fifo) buffers, fifo 
buffers with deletions, unordered buffers without liveness, and unordered buffers with liveness. As we show, 
the theory of the first two message buffers in RTL is decidable (in fact, in co-NP), and the theory of the last 
two message buffers in PTL is decidable. Hence, Theorem 3.1 can be used to prove properties of systems 
that communicate through these buffers. We should note that the theory of fifo message buffers in the full 
temporal logic is H~-complete and thus not axiomatizable ([SCFM84]). 
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5 .1  S p e c i f i c a t i o n s  o f  M e s s a g e  B u f f e r s  

A message buffer is characterized by the sequences of read/write actions it admits. These sequences depend 
on the properties of the buffer (e.g., fifo) and on the message alphabet. We denote a message buffer of type 
x with message alphabet M by x(M). For every x(M), we have 

inp(x(M)) = {write(m) : m e M} and out(x(M)) = {read(m) : m e M}. 

Since all the buffers of type x over M have the same input and output actions, we omit 'x' when discussing 
these actions. 

Recall the system presented in Section 3. There we assume k message buffers of the same type whose 
actions are mutually disjoint, hence their message alphabets are mutually disjoint. Given such k dis- 
joint message alphabets Ma , . . . ,  Mk, we denote by x(M) the joint system of the k buffers of type x that 
communicate over these alphabets. We also assmne that: 

�9 inp(l~I) = [.J~fx inp(Mi)), 

�9 out(~I) = U~=l ont(Mi), and 

�9 beh(x(I~I)) = {a E (acts(l~I)) ~176 : c~lacts(x(Mi)) is in beh(x(Mi)) for every i = 1 , . . . ,  k). 

For every buffer type x, (mutually disjoint) message alphabets M r , . . . ,  Mr, and admissible logic L, let 
T/.(x(M)) denote the theory of x(M) in L. That is, the set of L-formulae ~o such that for every acceptable 
model .M t = (H I, S t, 1 I) (III _~ (prop(~0)t9 acts(~I))), for every computation a over f f  such that (a[acts(A:l)) 
is in beh(• (]~4 I, o') ~ ~. 

We abbreviate TpTr.(x(M)) tr Tp(x(~/)) and 7"RTL(X(~/)) to TR(x(/~/)) 
We now describe the four buffer types and some results about their theories. 

Fifo Buffers  

Fifo buffers are message buffers where every read operation returns the value of the oldest unread message. 
Moreover, in every sequence of observable behaviors, if there are infinitely many write actions in the 
sequence then there are also infinitely many read actions in the sequence. Formally, for every message 
alphabet M, beh(fdo(M)) is the set of all sequences ~ over acts(M) such that the following holds: 

1. for every finite prefix a '  of c~, al[out(M), is a prefix of aqinp(M), and 

2. if the a[inp(M) is infinite, then a[out(M) is infinite. 

In the full version of the paper we prove the following theorem, which is an extension of a similar 
theorem of [SZ90]. 

T h e o r e m  5.1 TR(fifo(A~/)) is in co-Np, i.e., there exists a procedure in NP that decides whether a given 
RTL formula ~o is not in 7-R(fifo(J~)). 

Fifo Buffers  w i th  De le t ions  

Fifo buffers with deletions (fifod buffers) are fifo buffers that can delete messages. From such buffers we 
require that every message that is written infinitely many times is read infinitely many times. Formally, for 
every message alphabet M, beh(fifod(M)) is the set of all sequences a over acts(M) such that the following 
holds: 

1. for every finite prefix a '  of a,  cJlout(M), is a subsequence ofc/l inp(M), and 

2. for every m E M, if the a[write(m) is infinite, then c~[read(m) is infinite. 

In the full version of the paper we prove tile following theorem, which is an extension of a similar 
theorem of [szg0]. 

T h e o r e m  5.2 Ta(fifod(M)) /s in co-NP, i.e., there ezists a procedure in NP that decides whether a given 
RTs formela ~o is not in TR(fifod(M)). 
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U n o r d e r e d  Buffers  

Unordered buffers (unor) ~re buffers that can deliver messages in any order. As before, let M denote a 
message alphabet. Formally, for every message alphabet M, beh(unor(M)) includes all the sequences c~ over 
acts(M) such that there exists a one-to-one mapping, ha, that maps each read(m) event in a to a wrlte(m) 
event in c~ that precedes it. 

The following theorem is proven in [SCFM84]: 

T h e o r e m  5.3 Tp(unor(2~l)) is elementary decidable. 

U n o r d e r e d  Buffers  w i t h  Liveness  

Unordered buffers with livenness (unorl) are unor buffers cannot read finitely many messages if infinitely 
many messages were written. Formally, for every message alphabet M, beh(.norl(M)) includes all the 
sequences a in beh(unor(M)) such that if there are infinitely many write events in c~, then there are infinitely 
many read events in a.  

The following theorem can be proved using the techniques as those given in [SCFM84]. 

T h e o r e m  5.4 T/,(unorl(M)) is decidable. 

5 .2  A N o t e  a b o u t  F i n i t e  S y s t e m s  

Let A be an I /O automaton such both states(A) adn acts(A) are finite. Following the method preseted 
in Section 3, we can associate with A a model .Ad = (II,S, I) such that every s E states(A) (reap., 
a E acts(A)) is mapped to a distinct unique state assertion in II. It is now possible to give aPTL-formula 
which characterize~ the A's behavior with respect to ~ .  Ilence PTL is expressive for the process P with 
respect to the model ,At[. 

Using Theorems 3.2, 5.4, and 5.3, it is easily seen that the method presented in Theorem 3.1 gives 
us complete and fully automatic proof methods for proving temporal properties of systems of finite state 
concurrent processes that communicate through unordered buffers with and without liveness properties. 

6 Alternating Bit Protocol 

Assume a two process system, where one process, the sender tries to reliably communicate a sequence of 
data items X over a domain D of data items, to another process, the receiver. The receiver has to write 
the data items into Y. The sender and the receiver communicate via fifod message buffers. 

The Alternating Bit Protocol (ABP), introduced in [BSW09], offers a solution to the problem, namely, 
protocols for both sender and receiver that guarantees that at any given time, Y is a prefix of X, and 
that eventually Y = X. Presented in the terminology introduced in the previous sections, ABP uses two 
message buffers, one from sender to receiver with message alphabet M ,  = D x {0,1}, and the other from 
receiver to sender with a message alphabet IV/,, = {0, 1}. Let A, denote the sender's automaton, and let 
Ar denote the receiver's automaton. ABP proceeds as follows: 

If = z0, . . . ,  then, for every A, writes ( z i ,~  messages onto its outgoing buffer (] denotes the parity of 
i), until it reads a --] message, at which point it knows that Ar had set yi := zt and is awaiting zt+x. A, 
then increments i and proceeds to the next data item. Ar is similar. 

Formally, A, 's  states include the input sequence z0 . . . .  and an index i, initially 0, denoting the index 
of the data item currently transmitted. Similarly, Ar's states include the output sequence y0, . . ,  and an 
index j ,  initially 0, denoting the index of the data item that Ar is waiting for. 

The code for the sender and receiver appears in Figure 1. 
Although we cannot express (and, consequently, prove) all the properties of the Alternating Bit protocol 

in KTL, we can use the fifod version of Theorem 3.1 to show some of its properties. Recall that the evlauation 
of any buffer action is the action itself. We use the following abbreviations for every d E D: 

i#p, ..~ VaEinp(A,)a inPr = VaEinp(A,)a 
Oa|, = VaEout(A,)a OUtr .~ Vof.out(A~)a 
acts, = inp, V out, a c t s r =  inp r V outr 
past0,(d) = ~3(out, --* write(d, 0)) past0r(d) = ~3(inp r --* read(d,0)) 
first,(d) = O(wrlte(d,0) A past0,(d)) first,(d) = ~(read(d, 0) A past0r(d)) 
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A, 

write(z, b) ((z, b) E M,r): 
p recondi t ion :  

z = z l  a n d b = ]  

read(b) (b E Mr,): 
effect: 

if b ~ ~ then 
i:=iq-1 

.dr 

write(b) (b E Mr,): 
p recondi t ion :  

b = ~  

read(y, b) ((y, b) E M~r): 
effect: 

if b = ~ then 
yj := y; j := j + l 

Figure I: The Alternating Bit Protocol 

The formula 
r : first,(x) -~ firstr(x) 

therefore asserts that the first message read by the received is same as the first message written by the 
sender. Using Theorem 3.1, we can prove r by setting ~,J to: 

~((wrlte(z,O)ApastO.(z)) ~ ((~3(ac,s. ~write(~,O))A~3~)acts.)) V~,(read(1)ApostO.(x)))) 

and ~ to 
V(wrlte(1) �9 O( V read(d,O)) 

(IED 

If II~ and IIr denote all the propositions of the sender and the receiver, it can be shown that ~o ~ and 
Ior can be replaced by (la~n,) and ~o~N,) ) respectively. It can also be shown that (io ~ ̂  ~r) ._, r is in the 
theory of the system of two buffers with deletions connecting the sender and receiver in the two directions. 

7 Conclusions 

In this paper we have presented a formal model for processes that communicate through fifo message buffers 
and have given a sound automatic proof system for verifying l'tTL definable properties of such systems. The 
proof method is modular. Although our method is not complete, we feel, as illustrated by the example, 
that it can be applied to some practical examples. Theorem 3.1 holds for any fragment L of temporal 
logic as long as the formulae in L do not distinguish between two computations one of which is a stuttered 
extension of the other. In this case, we can use our approach for proving properties given by formulae in 
L as long as the theory of fifo buffers in the logic L is decidable. 
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