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Abstract: We present a compositional method for deciding whether a process satisfies an 
assertion. Assertions are formulae in a modal u-calculus, and processes are drawn from a 
very general process algebra inspired by CCS and CSP. Wall-known operators from CCS, 
CSP, and other process algebras appear as derived operators. 

The method is compositional in the structure of processes and works purely on the syntax 
of processes. It consists of applying a sequence of reductions, each of which only take into ac- 
count the top-level operator of the process. A reduction transforms a satisfaction problem for 
a composite process into equivalent satisfaction problems for the immediate subcomponents. 

Using process variables, systems with undefined subcomponents can be defined, and given 
an overall requirement to the system, necessary and sufficient conditions on these subcom- 
ponents can be found. Hence the process variables make it possible to specify and reason 
about what are often referred to as contexts, environments, and partial implementations. 

As reductions are algorithms that work on syntax, they can be considered as forming 
a bridge between traditional non-compositional model checking and compositional proof 
systems. 

1 Introduct ion  

In this paper we present a compositional method for deciding whether a finite state process 
satisfies a specification. Processes will be described in a very general and rich process algebra, 
which includes common operators from process algebras as CCS and CSP. This algebra contains 
primitive operators to reflect sequentiality (by the well-known operation of prefixing), non- 
deterministic choice, asynchronous and synchronous parallel composition, recursion, relabelling, 
and restriction. Specifications will be drawn from a modal v-calculus with negation, in which 
a variety of properties can be specified. These include the usual liveness, safety, and fairness 
properties, as well as all operators from ordinary linear and branching time temporal logics (see 
e.g. [Sti91] and [Dam90]). 

The method we advocate is compositional in the structure of processes and works purely 
on the syntactical level without any explicit references to the underlying transition system. 
Compositionality is important for at least the following two reasons. Firstly, it makes the 
verification modular, so that when changing a part of a system only the part of the verification 
concerning that particular component must be redone. Secondly, when designing a system or 
synthesizing a process the compositionality makes it possible to have undefined parts of a process 
and still be able to reason about it. For instance, it might be possible to reveal inconsistencies 
in the specification or prove that with the choices already taken in the design no component 
supplied for the missing parts will ever be able to make the overall system satisfy the original 
specification. 

This approach is unlike traditional model checking where a transition system model of a 
process is built and the specification formula is checked by applying some algorithm to the 
transition system. There are several versions of this basic idea in the literature, e.g. Emerson and 
Lei [EL86], Clarke et al [CES86], Stirling and Walker [SW89], Larsen [Lar88], Winskel [Win89], 
Cleaveland [Cle90], and Arnold and CrubiUe [AC88]. ttecently there have been attempts to 
extend some of these methods based on transition systems to compositional methods by Clarke, 
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Long, and McMillan [CLM89] and Larsen and Xinxin [LXgO], but  none of these are compositional 
in the structure of processes. 

Our method consists of applying a sequence of reductions each of which removes the top-most  
operator  of the process, i.e. a reduction transforms a satisfaction problem for a composite process 
to satisfaction problems for the immediate subcomponents of the process - without inspecting 
these. Start ing with a process term one can repeatedly use the reductions until a trivial process, 
for which satisfaction is easily decided, or a variable remains. 

2 The Languages 

2.1 S y n t a x  

Assume given a set of state names Nam, and a finite set of actions Act. Processes are denoted 
by syntactic terms t constructed from the following grammar:  

t : :=  hill a t  I to + tl I to • tl I t [ A I t{ -=} I tee P.t I P, 

where P is an element in Nam, i.e. a s tate identifier. The usual notion of free and bound will 
apply to state identifiers P ,  so that  P will be bound in rec P.t  but free in P % nil. 

Nil is the inactive process, and at is the usual prefix and to + t l  the usual sum operations 
known from CCS. The product term to x t l  denotes a very general kind of parallel compo~,ition 
which allows the components to and t l  to proceed both synchronously and asynehronously. The 
exact semantics is defined below. 

A state identifier P in the body of rec P.t works as a recursion point, and in effect will behave 
as the normal recursion in CCS: A term rec P.t has the same behaviour as the unfolded term 
t[rec P.t/P] (the result of substituting tee P.t for all free occurrences of P in t). We impose 
the syntactic restriction on recursive terms, that  no product must appear  in the body, which 
ensures all definable processes are finite state,  and for technical reasons we also require every 
occurrence of P in tee P.t to be strongly guarded, i.e. appear  immediately under a prefix. 

In the prefix at, a denotes an action in Act. For a given set of actions Act we define a 
set of composite actions. Let , be a distinguished symbol not contained in Act. The symbol 
, is called the idling action and interpreted as 'no action'  or ' inaction' .  Define Act.  to be the 
least set including Act U {*} and such that  a,/~ E Act,  implies a x f l  E Act ,  taking , •  -- , .  
Now E : Act,  ~ Act, is a relabelling which is a part ia l  function, with finite domain, mapping 
non-idiing actions to non-idling actions. This rdabel l ing can be extended to a total  function on 
Act, by taking it to behave as the identity outside the domain. The term t [ A is a restriction 
where A is a finite subset of Act.. 

Properties of processes are denoted by assertions A from a modal  u-calculus: 

A ::= ~ a  I A0 v a ,  I (~)A I X I v X . A  I ( t : a ) ,  

where X ranges over a set of assertion variables. In the maximal fixed-point formula v X . A  amy 
free occurrence of X must be within an even number of negations in order to guarantee the 
existence of a unique maximal fixed-point. The action name a belongs to the set of composite 
actions Act,. The correctness assertion (t : A)  denotes true if t satisfies A and false otherwise. 
An assertion is said to be pure if it  does not contain any correctness assertions. 

A lot of derived operators can easily be defined in terms of the core language and will be 
used throughout the paper: 

[~]A = -~(a)-~A tzX.A = - , vX . -A[ -~X/Xl  
T = v X . X  A ~ B  = - ~ A V B  
F = -~T A ~ B  = ( A - - * B )  A(B-- -*A)  
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Here we have used the notation A[B/X]  which denotes the assertion resulting from substituting 
B for all free occurrences of X in A. We will say that an assertion A is closed if it contains 
no free variables. Furthermore for a finite set K C_ Act.  we define ( K ) A  = V~eK(a)A where 
disjunction over an empty set gives false (F).  

The correctness assertions (t : A) are atoms in a propositional logic which will be used to 
express reductions. A grammar for the logic is: 

L ::= T I -~L 1 L0 V L1 I (t : A) 

In the logical language L we axe able to express complex relationships between properties of 
different processes. For example 

(p + q :  (c~)A) ~ (p:  (a)A) V (q:  (a)A), 

expresses a very simple example of a reduction. It states that the process p + q can do an a 
and get into a state that satisfies A if and only if p or q can do an a and get into a state that  
satisfies A. It is a reduction because the formula is valid for all p's and q's, and the validity 
of (p + q : (a)A) is reduced to validity of correctness assertions over the subterms p and q. 
Although this reduction is almost trivial, in general, it might be quite difficult to get reductions. 
Consider for exampl e the problem of choosing a B such that 

(tee P.t : uX.A)  ~ (t : B)  

holds. The aim of this paper is to describe a method for supplying such a B and analogous 
assertions for all the other operators. 

2 .2 S e m a n t i c s  

In order to define the semantics we first recall some well-known definitions of transition systems. 

Def in i t ion  1 A transition system T is a triple (S, L,--*) where S is a set of states, L a set of 
labels, and --.c_ S x L • S a transition relation. The set of reachable states Rp from a state 

p E S is defined as the least subset of S containing p and closed under ~ ,  where ~ = UteL -~/�9 
A pointed transition system T is a quadruple (S, L, -% i) where (S, L, ~ )  is a transition system, 
i E S is an initial state, and all states in S must be reachable from i, i.e. S must equal R/. 

Given a pointed transition system T = (S, L, ~ ,  i) the rooting of T is a pointed transition 
system T = (S U {_/}, L, --+',_/) where i is a new state assumed not to be in S, and the transition 
relation -~' C_ (S U {~}) • L x (S U {i)) is defined by: 

- ~ '  = - ,  u {(i, a, q) I i -% q}. 

Pictorially the rooting of a pointed transition system is constructed by adjoining a new initial 
state with the same out-going transitions as the old initial state. 

The rooting of a transition system T is just as good as T with respect to satisfaction in our 
logic. A claim made precise by the rooting lemma below. 

The semantics of process terms is given by the transition system T = (8, Act,, ~ ) ,  where ~g 
is the set of closed process terms, Act. the set of composite actions, and --.C ~r • Act, • 8 is 
the transition relation given as the least relation satisfying the following rules. 

p -% p, q -% ql 
p .5, p a p .5, p ...p T q -% p~ P T q -% q~ 

p _5, i] q Z q' t[rec P.t/P] -% t' 
tee P.t -% t' P • q ax_~p, x q' 



27 

p -% p' p & p' 

p{Z} L p'{E} S(a) =/~ p ~ a -% p' t h 
a6A 

Note in particular the rule for product. One of the components in the product may idle by 
means of the idling ac t ion ,  allowing the other component to proceed independently, as in the 
transition 

P ~.~x. p, 

where the left component of p performs an a-action and the right component ides. 
For a transition system T = (S, L, 4 )  an assertion A denotes a property of T which we 

take to be a subset of S, hence the set of all properties of T is the powerset P(S). As asser- 
tions may contain fl'ee variables we introduce the notion of an environment which describes the 
interpretation of the variables. An environment of assertions for T is a map 

r :Vara - ,  P(S) 

which azsigns properties to assertion variables. The environment ~[U/X] is like ~b except that 
the variable X is mapped to U. 

Formally, relative to the transition system T = (S, L, --*) the assertion A denotes the property 
[[A]T r defined inductively on the structure of A. 

[-4o V A1]T ~ = [AO]T r U I[A1]T r 
[(a)A]r r = {s ~ S 13s' ~ S. s -% s' ~ s' ~ la ir  r 
IX] r e  = r 
[~x .a] r  r = ~u c s. r  

where r  U ~-~ [.4]] T ~[U/X] 
s / I t ~ [ A ] T  

[(t : A)] r r = r otherwise 

The powerset 79(S) ordered by inclusion is a complete lattice and as we require all variables to 
appear under an even number of negations the map r will always be monotonic, so by Tarski's 
lemma [Tar55] Ib will have a maximum fixed-point (the largest postfixed point) which we denote 
by ~ c S. r 

Define [[A~ ~b = [A]T r This ~ves the standard global interpretation of assertions over all 
states 8. 

For a transition system T = (S, L, 4 ) ,  and a subset Q of S we have the induced transition 
system 

T o = (Q, L, ~ N(Q x L x Q)), 

which is T restricted to the set of states Q. Writing [A]Q ~ for [A]7 ~ ~b we get a local interpreta- 
tion of A. For particular choices of the subset Q the local and globaI interpretations coincide, as 
is captured by the locality lemma below. Let CQ denote the environment which on the variable 
x gives r n O. 

Lemma 2 (Locality lemma.) 
Let T = (S, L, --*) be a transition system. Given an assertion A, an environment r and a subset 
Q of S. Suppose Q satisfies the closedness criterion: Q is closed under ~ ,  where K is the set 
of actions appearing inside diamonds in A. Then the following equality holds 

[A]T ~ CQ = lAIr  r N Q. 
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With the transition system • one particularly interesting choice of Q is the set of reachable 
states Rp from a state p which by definition satisfies the closedness criterion of the locality 
lemma. Suppose we wanted to check whether a particular state p belongs to the set of states 
denoted by an assertion A, then by the locality lemma we obtain: 

p E ~ A ] r  iff p E ~ A I C N R  p 
iff p e ~A]R p CRp 

As mentioned previously, the rooting of a transition system T is 'just as good as' T with 
respect to satisfaction in our logic - which is the intuitive content of the following lemma. 

L e m m a  3 (Rooting lemma.) 
Given a pointed transition system, T = (ST, LT, ~T ,  iT), with the rooting T_. Let r : P(ST) 
79(ST_) be the map on properties that take the initial state of T to the two copies of it in T and 
take all other states to their obvious counterparts. Let r : VarA ~ P(S)  be an environment of 
assertions. Then 

r(iA]T r = [A1]T_(r o r 

The connection given by the rooting lemma between pointed transition systems T and their 
roofings T is very useful: The set of states satisfying an assertion will be the same in both 
interpretations up to application o f  the map r. In particular the initial state of T will satisfy 
A if and only if the initial state of T satisfies A; an observation central to our development of 
reductions in section 3. 

There is another technical lemma stating a close relationship between syntactic and semantic 
substitution on assertions which will be used frequently in the proofs. 

L e m m a  4 (Substitution lemma.) 
For B a closed assertion, X a variable, A an arbitrary, pure assertion, and ~b an environment 
for T, we have 

[A[B/X]] T r = [A]T r [[B]T r 

For the propositional logic we define the satisfaction predicate [=~ relative to an environment 
r 

~r T always 
~r -~L iZ not ~ L 
~r Lo V L~ iff ~ ,  Lo or ~ L~ 
~ t : A iff t e [A]r 

Furthermore we define the derived predicate I= as: 

~- L iff for all r ~r L. 

Taking ,  to be the trivial transition system with one state (denoted ,) and no transitions, we 
observe that the set of assertions built from correctness assertions, negations, and conjunctions 
when interpreted over �9 is essentially a copy of the logic L, i.e. for such an assertion A we have 
~A1]. r = { , )  if and only if ~ A where A is interpreted as a formula in the propositional logic. 

3 Reductions 

Our method for compositional checking of satisfaction is based on the notion of a reduction, 
which we explain in terms of the prefix operator. 
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Given a pure and closed assertion A and a prefix at  we would like to find a proposit ional  
expression B over atoms (t : Bi) such that  the following holds: 

(at: A) ,-, B 

Having found such a B the validity of (at : A) has been reduced to validity of a propositional 
expression containing only atoms on the subterm t. In order words: /3 is a necessary and 
sufficient condition on the subterm t ensuring that at satisfies A. By the word reduction we will 
henceforth understand an algorithmic description of how to find B given A and at. 

It is not obvious that such a B exists. Although we can easily express the set of processes 
that will make the correctness assertion valid as 

{t~sl I= at : a } ,  

it is not necessarily the case that this set can be expressed within the logic as an assertion B 
over atoms (t : Bi) such that  

{ t e s l ~ B )  = { t e S l k - a t : A ) .  

In general, the ability to do so, will depend on the expressive power of the logic, and the kind 
of operation for wlfich we are trying to find a reduction. We will show that  for our modal  l og i c  
and all operators of our process algebra, such a B does indeed exist, and furthermore we give 
for each operator an algorithm that  computes one part icular  choice of B. 

In providing this B the most difficult part  concerns - not surprisingly - the fixed-points. The 
single most important  property of fixed-points around which all the reductions are centered, is 
expressed by the reduction lemma. Recall that  a map on a complete meet semilattice is w- 
anticontinuous if it preserves meets of all decreasing w-chains. 

L e m m a  5 (Reduction lemma.) 
Suppose D and E are powersets over countable sets, and in : D ~ E an w-anticontinuous 
function with in(YD) = TE. Suppose r : E ~ E and 0 : D ~ D are both monotonic and have 
the property 

. C o i n =  inoO. 

We can then conclude that 
uC = in(u#). 

To understand the role of the reduction lemma, take E to be the latt ice of properties of a 
compound process and D to be a latt ice built from properties of immediate subprocesses. The 
lemma allows us to express a fixed-point property of the original compound process in terms of 
fixed-points of functions over properties of its immediate subcomponents via the transformation 
in. 

For example, the properties of a process at can be identified with certain subsets of the s tates  
S~ in the rooting of the transition system pointed by at, and the properties of t with subsets of 
the states St of the transition system pointed by t. Now we take the transformation to be 

in: ~(S,) x PC{.)) -- V(S~) 

where in(Vo, VI) = V0 kJ {at [ �9 E VI}. The role of the extra product component is to record 
whether or not the property holds at the initial state at of Sa_t. (The rooting is required to 
ensure that the initial state at is not confused with later occurrences.) I 

a Because of the isomorphism P(A0) x . . .  x • (A . )  x . . .  c~ P(Ao + . . .  + A n  +. . . )  we can still meet the conditions 
of the reduction lemma when D is a countable product of powersets of countable sets. 
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An assertion with a free variable occurring positively essentially denotes a monotonic function 
r : P(Ss_~.) --* :P(Sa_~.). The definition of the reduction is given by structural induction on 
assertions ensuring that  assertions denoting such functions r  and their reductions denoting 
monotonic functions 8 : 7~(St) x 7)({.}) --* P(S~) • 7)({,}) are related by in in the manner 
demanded by the transformation lemma. The lemma then allows the reduction to proceed for 
fixed-points. As this case of prefixing makes clear reductions of fixed-points can be simultaneous 
fixed-points. However the use of Bekid's theorem ([Bek84]) replaces the simultaneous fixed-polnts 
by fixed-points in the individual components. In the case where these individual components lie 
in powersets of singletons they end up being replaced by boolean values for closed assertions. 

In the course of tlfis definition by structural induction we will be faced with the problem 
of giving a reduction for assertion variables. One solution to this problem can be found by 
introducing a syntactic counterpart of in called IN and define a change o/ variables a to be a 
map taking all variables X to IN(Xo, X1). An application of such a substitution to an assertion 
A has to satisfy certain technical requirements: It should be fresh i.e. for an assertion A 
when (i) for all variables X at which a is defined the free variables in a(X)  are disjoint from 
those in A, and (ii) for distinct variables X and X I, at which a is defined, the free variables 
in a(X) and a(X I) are disjoint. It is emphasised that while the syntactic counterparts IN of 
the transformations play the important  part  in reductions of expressing relationships between 
variables they do not appear in the reductions themselves. 

Reductions for all operators can be established along the lines sketched. Each operator 
involves a judicious choice of in, which IN is to denote. In the following sections we present this 
choice and the accompanying reductions. 

3.1 P r e f i x  

The reduction for prefix is defined inductively on the structure of assertions and shown in figure 
1. Note that  red~ : A; a)  just renames the variables of A from X to X0. The transformation 
in was explained in the previous section. 2 

red~ : X ; ~ )  = X0 
where ~z(X) = IN(Xo, X1) 

red~ : vX.A;a) = vXo.red~ : A;a) 
where a(Z)  = IN(Xo, X1) 

red~ <a)A;r = (a)red~ : A; a) 
red~ -~A; a)  = -~red~ : A; #) 
red~ : A V B; a)  = red~ : A; a)  V red~ : B; a)  

redl(at  : X;a)  = X1 
where a(X) = Ig(Xo, X,)  

redl(at : vZ.A;a) = redl(at : A;a)[red~ vX.A;a)/Xo][T/X,] 
where a(X) = IN(Xo, XI) 

redi(at:(a)A;a) = { F:red~ i f a = a  
if a y~ a 

redl(at  : "~A;a) = -~redl(at : A; a)  
redl(at : A V B; a) = red1(at : A;a) V redX(at : B; a) 

Figure i: Reduction for prefix defined inductively on the structure of assertions. 

~For this and the following reductions we have that red(at : (*>A; a) = red(at : A; a) and henceforth we will 
omit these trivial cases from the presentation. 
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The reduction is constructed in such a way that  the two components are related to A through 
in by 

[A[a]]]at r = in([red~ : A; a)] t ~b, [redX(at : A; a)] ,  r (1) 

where a is a change of variables for A. From the rooting lemma we know that  

at 6 [A],t r iff aA6[A]~ d e  

and from the definition of in and (1) we get 

at 6 [A]~, r iff �9 E [redl(at  : A; a)] .  r 

As redl(at  : A; a)  consists of correctness assertions, negations, and conjunctions only, we can 
consider it to be a formula in our propositional logic, yielding our reduction 

(at: A) ~ redl(at  : A; a).  

T h e o r e m  6 (Reduction for prefiz.) Given a closed, pure assertion A, a change of variables a 
which is fresh for A, and an arbitrary process term t, then ~ (at : A) *-* reda(at : A;a) .  

3.2  N i l  

The reduction for nil is defined inductively on the structure of assertions and shown in figure 
2. The definitions of -~ and V are similar to the definitions for prefix and therefore omitted. 
The transformation in : P ({ ,} )  --* P({nil}) is just the direct image of the obvious isomorphism 
between {.} and {nil}. Note that  the reduction for nil is quite trivial and just gives true (T) or 

(F) .  

red(nil : X; a) = 
red(nil : vX.A; ~r) = 
red(nil: = 

r where a ( X )  = IN(Y) 
red(nil: A; a )[T / r] where a ( X ) =  IN(Y) 
F 

Figure 2: Reduction for nil. 

T h e o r e m  7 (Reduction for nil.) Given a closed, pure assertion A and a change of variables a 
which is fresh for A, then ~ (nil: A) ~ red(nil: A; a). 

3 .3  S u m  

The reduction for sum is presented in figure 3. The definitions for -~ and V are omitted as the}" 
are similar to the definitions for prefix. 

To understand the transformation first note that  we have a map j : 5to + St, --* 5t~+t~ taking 
the initial states of to and tl to the state to + tl in ,5'to+t1 and taking all other states to their 
obvious counterparts. Let f : (S~ 0 + St1) + {e} --, StQ• be the map that  takes �9 to the initial 
state of 5to+~1 and on Sto + Sh behaves like j .  We take the transformation to be 

in : + &, )  x - +  vCS o+, ) 

where in(Vo, VI) = {j(s) l s 6 Vo} U {t o + tl I ' 6 V,}. 

T h e o r e m  8 (Reduction for sum.) Given a closed, pure assertion A, a change of variables a 
which is fresh for A, and arbitrary process terms to and tl, then 

]= (to + tl : A) ~ redl(to + tl : A; a).  
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red~ + tl : X; a) 

red~ + tl : uX.A; a) 

red~ + tl : (a)A; a) 

redl(to + tl : X; or) 

redX(to + tl : vX.A; a) 

redl(to + tl : (a)A; a) 

= Xo 
where a (X)  = IN(Xo, X1) 

= vXo.red~ + tl  : A;a)  
where a(X)  = IN(Xo, X1) 

= (a)red~ + t l :  A;a)  

= X1 
where .(X) = ZN(Xo, XI) 

= real(to + t l :  A; a)[red~ + t l :  vx .n ;  a)/Xo][T/X1] 
where ~(X) = m(Xo, x l )  

= (to : (a)A ~ V (*1 : (a)A ~ 
where A ~ = red~ + tx : A; a) 

Figure 3: Reduction for sum. 

3.4 R e l a b e l l i n g  

For relabeUing we take the transformation to be in : P(Rt)  ~ 79(R,{_=)) where in(V) = {p{-=} I 
p e v } .  

red(t{E} : X; a) 
red(t{E} : vX.A; a) 
red(t{Z} : (alA; a) 

= Y where a(X)  = IN(Y) 
= vY.red(t{E} : A; a) where a(X)  = IN(Y) 
= (E- l (a ) ) red( t{E}:  A;cr) 

Figure 4: Reduction for relabelling. 

T h e o r e m  9 (Reduction for relabelling.) Assume A closed and pure, a change of variables a 
which is fresh for A, and an arbitrary process term t, then I = (t{E} : A) ~ (t : red(t{F.} : A; a)). 

3.5 R e s t r i c t i o n  

For restriction we take the transformation to be in : 79(Rt) ~ P(RtrA) where in(V) = {p F A I 
p ~ V} n R,r^. 

red(t r h : X; a) 
red(t [ A : vX.A; a) 

red(t [ A:  (a)A; a) 

= Y where a (X)  = IN(Y) 
= vY.red(t r A : A; a) where a (X)  = IN(Y) 

{ (a)red(t [ A : A ; a )  i f a E A  
= F i / , ~ r  

Figure 5: Reduction for restriction. 

T h e o r e m  10 (Reduction for restriction.) Assume A closed and pure, a change of variables a 
which is fresh for A, and an arbitrary process term t, then ~ (t r A : A) ~ (t : red(t r A : A; a)).  

3.6 R e c u r s i o n  

In order to define the reduction for recursion, we will need to extend our assertion language with 
an assertion/3 to identify recursion points. The semantics of /3  is simply: 3 

3The general semantics should be I[P~T ~b -- {P,P} 1"1 ST, but d u e  to  our  requkement of guardedness, we will 
n e v e r  be involved with rooting a state identifier, so the stated semantics is sufficient. 
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[]3]r r = { e }  n ST. 

It can be verified that the locality and the rooting lemma still hold. All the reductions mentioned 
in the previous sections should be extended to take caxe of the assertions ]3 and this is easily 
done - they should all give F. Furthermore, we add a reduction for P ,  which is like the one for 
nil, except that it gives T on ]3. 

For the first time we will need to put in extra correctness assertions in our reductions, which 
furthermore might contain free assertion variables. These correctness assertions can however be 
dosed by a closure lemma and then 'pulled out '  by a purifying lemma yielding an expression 
which belongs to the propositional language without any correctness assertions appearing inside 
other assertions, hence being applicable for further reductions. 

T h e o r e m  11 (The purifying lemma.) 
Let A be an assertion with all correctness assertions closed and let t be a process term. Then 
there exists an expression B over unnested correctness assertions such that, ~ (t : A) ~ B.  

Moreover, the proof of the lemma gives an algorithm for computing such a B. The closure 
lemma can be found in [Win90]. 

red(tee P.t : X ;  a) 
red(me P.t : vX.A;  a) 
red(tee P.t : (~ )A; . )  

= Y where a ( X )  = IN(Y)  
= vY.red(rec P.t : A; a)  where ~ ( X )  = IN(Y)  
= (a )A '  V (i  8 h ( t :  (a)A')) 

where A t = red(tee P.t : A; a) 

Figure 6: Reduction for recursion. The definitions for -~ and V axe omitted as they again axe 
similax to the definitions for prefix. 

Take f : St --* Srec P.t to be the map that takes ~ to rec P.t and all other states $ to 
s[rec P.t/P]. The transformation for recursion in : 7)(S~ --. P(3r~c/'.t) is defined to be the 
direct image of f .  

T h e o r e m  12 (Reduction/or recursion.) Given a closed, pure assertion A, a change of  variables 
a which is fresh for A, and an arbitrary process term t then 

(rec P.t : A) ~ (t : red(rec P.t : A; a)). 

3.7 Product 

A reduction for a product q x p should be an assertion B over atoms (q : Bi) and (p : Cj) such 
that 

~ - q •  iff  ~B. 

Unfortunately, if we insist on finding such a B without inspecting either p or q, we can get 
a very complex expression which, in the case of fixed-points will even become infinite unless 
assumptions on the possible sizes of p and q axe made (cf. the remarks at the end of [Win90]). 
In [Win90] it is shown how a very reasonable sized B can be found, when the assertion language 
is restricted rather severely, excluding disjunctions, negations, minimal fixed-points, and general 
box formulas, but still having maximal fixed-points, diamond formulas, a strong version of box 
formulas, and conjunctions. 
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Here we present another approach. We give a reduction when p is a process term without 
restrictions and relabellings, i.e. we find a B (depending on p) s.t. 

[ = q •  iff ~ - q : B .  

Let R ,  = {P l , . . . , P , }  be the finite set of reachable states of p in some fixed enumeration. We 
define the map in: y (Rq)  x . . .  x 79(Rq~--~ 3o(Rqx,) as 

i n ( t ; , , , , . . . ,  r.r,.) = ( t r , ,  x p~) u . . .  u (u,. x p.). 

As usual we have a change of variables a with a ( X )  = IN(Xpl , . . . .  X , . ) .  As a notational 
convenience we write A/p  for red(q • p : A; a) omitting the a which is always assumed to map 
an X into X,1 , . . . ,  Xp,. The reduction is shown in figure 7. 

-~A/p = 
Ao V A1/p = 
X / p  = 
v X . A / p  = 

A/q  X r = 

(ax f l )A /n i l  = 

(ax f l )A /7q  = 

(aX[3)A/q + r = 
(ax f l )A / rec  P.t = 

-~(A/p) 
(Ao/p) V (A1/p) 
x ,  
ck(v(x, , , . . . ,  X , . ) . (  A / p l ,  . . . ,  A / p , )  ) 
where {pi}i denotes the set of reachable 
states from p with p = Pk. 
(A / r ) / q  
with the actions in the modalities of A reassociated 

(c~)(A/nil) i f  fl = * 
F i f # # ,  
(a)(A/Tq)  i f f l  = ,  
(a) (A/q)  if[3 = 7 
F otherwise 

( (ax/3)A/q)  V ((axle)A/r)  
(ax[3)A/t[rec P.t /P] 

Figure 7: Reduction for product. Ck(vX .A )  denotes the k ' th component of the n-ary fixed-point 
vX___.A, closed by repeated application of Beki6's theorem 4. 

T h e o r e m  13 (Reduction for product.) 
Assume given a pure and closed assertion A, a change of variables a, and a term p with no 
restrictions and relabellings. We then have for an arbitrary term q: 

(q x p :  A) ~ (q:  red(q x p:  A;a)) .  

The ease of the maximal fixed-point is established by repeated application of Beki6's theorem,  
and the resulting assertion might become rather complex, as in the worst case a fixed-point will 
appear for each reachable state of p, and on top of this, Beki6's theorem might increase the size 
of the assertion considerably. We are currently investigating methods to control the potential 
blow-up in general. We present in the next section an example, that  indicates that in practice 
this need not be the case. 

(Termination is ensured by the well-founded order consisting of the number of products in the process term 
combined lexicographically with the structure of assertions again combined lexicographically with the maximal 
depth to a prefix in the process term 
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4 Examples 

It is an important property of all our reductions (except product) that  they only dependent on the 
top-most operator of the process term, hence we can leave part of a process unspecified and still 
apply the reductions. Technically this can be done by adding process variables to our language of 
processes. Given an assertion and a process with variables, we can then compute a propositional 
expression with correctness assertions over the variables, expressing what relationship there 
should be between them in order to make the process satisfy the assertion. In this way the 
reductions compute what corresponds to weakest preconditions in Hoare logic. 

As pointed out in the previous section, the reductions for product has the potential of 
becoming rather complex. In this section we show by a small example, that  in practice, the 
reductions need not turn out to be too complex. 

First we define a binary parallel operator IIK,L which allows its left and right components to 
independently perform the actions indicated by the sets K and L, except that  they are required 
to synchronise on common actions of K and L. The precise definition is 

p H/c,L q ~ '  (p x q) t A{ .=-) 

where A = {aXa I a ~ K n L} u { a x ,  I a ~ _re \ L)  U { *xa  I a ~ Z \ _re} and 

E(axa)  = a, for a l l a 6 K n L  
~(ax*)  = a, for a l l a 6 K \ L  
F.( ,xa) = a, f o r a l l a E L \ K  
~(a)  undefined otherwise. 

Now assume that we want to construct a small system consisting of a coffee vending machine 
and a researcher. The coffee machine should be able to accept money and then supply a cup 
of coffee. The researcher should be able to pay out money, drink coffee, and publish papers. 
Suppose we know how the researcher behaves, specified by a process term r, but would like to 
find out what kind of coffee machine x to put into the system, such that  eventually the researcher 
has no other choice than to publish a paper. 

In general a property of the form 'eventually only the action a can happen ~ can be expressed 
by the assertion 

where 
(-)A = 

Our problem can now be restated. 

#X.<-)T A [-a]X 

(Act)A [-KIA = [Act\ K]A. 

Assume the actions to be p for publish, c for taking/giving coffee, m for taklng/glving 
money, and define If = {m,c},L = {m,c,p}. Which values of z make the following 
correctness assertion valid 

x IIK,L r: #X.(-)T A [-p]X? (2) 

Suppose the researcher r behaves as rec P.m.c.(m.c.P + p.P). Then expanding the defini- 
tion of IIK,L and applying the reduction for restriction and relabeUing, we get the equivalent 
correctness assertion 

x X r : #X.(raxrn, cxc, *xp)T A [mxra, cxc]X 

arid then, by applying the reduction for product, the equivalent 

x: #X.(ra)T A [m]C{c)T A [c][m]((c)T A [c]X)). (3) 
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One can now use (3) to verify different proposals for coffee machines, without redoing the first 
two steps. This might be done by our method, or for closed terms by other model checking 
algorithms. 

An interesting point to note about the assertion in (3) is that,  although the researcher r had 
four reachable states, and then potentially four fixed-points could appear, only one fixed-point 
appears in the resulting assertion. 

Returning to the example, we can verify that a successful choice of z is m.c.nil, i.e. a coffee 
machine that accepts money and give coffee once, and then breaks down, whereas rec P.m.c.P 
is an unsuccessful choice. Reading the assertion in (3) carefully, we can express the requirement 
to the machine as 'after having offered a finite and odd number of m's  followed by c's, no m 
should be offered.' 

Changing the behaviour of the researcher slightly and taking r = rue P.m.e.P + m.c.p.P and 
performing the reductions for restriction, relabelling, and product, we arrive at the correctness 
assertion z : F ,  i.e. there are no coffee machines that will make the system fulfill the requirement. 
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