
Compositional Checking of Satisfaction*

Henrik Reif Andersen Glynn Winskel

Department of Computer Science, Aarhus University, Denmark

Abstract: We present a compositional method for deciding whether a process satisfies an
assertion. Assertions are formulae in a modal u-calculus, and processes are drawn from a
very general process algebra inspired by CCS and CSP. Wall-known operators from CCS,
CSP, and other process algebras appear as derived operators.

The method is compositional in the structure of processes and works purely on the syntax
of processes. It consists of applying a sequence of reductions, each of which only take into ac-
count the top-level operator of the process. A reduction transforms a satisfaction problem for
a composite process into equivalent satisfaction problems for the immediate subcomponents.

Using process variables, systems with undefined subcomponents can be defined, and given
an overall requirement to the system, necessary and sufficient conditions on these subcom-
ponents can be found. Hence the process variables make it possible to specify and reason
about what are often referred to as contexts, environments, and partial implementations.

As reductions are algorithms that work on syntax, they can be considered as forming
a bridge between traditional non-compositional model checking and compositional proof
systems.

1 Introduct ion

In this paper we present a compositional method for deciding whether a finite state process
satisfies a specification. Processes will be described in a very general and rich process algebra,
which includes common operators from process algebras as CCS and CSP. This algebra contains
primitive operators to reflect sequentiality (by the well-known operation of prefixing), non-
deterministic choice, asynchronous and synchronous parallel composition, recursion, relabelling,
and restriction. Specifications will be drawn from a modal v-calculus with negation, in which
a variety of properties can be specified. These include the usual liveness, safety, and fairness
properties, as well as all operators from ordinary linear and branching time temporal logics (see
e.g. [Sti91] and [Dam90]).

The method we advocate is compositional in the structure of processes and works purely
on the syntactical level without any explicit references to the underlying transition system.
Compositionality is important for at least the following two reasons. Firstly, it makes the
verification modular, so that when changing a part of a system only the part of the verification
concerning that particular component must be redone. Secondly, when designing a system or
synthesizing a process the compositionality makes it possible to have undefined parts of a process
and still be able to reason about it. For instance, it might be possible to reveal inconsistencies
in the specification or prove that with the choices already taken in the design no component
supplied for the missing parts will ever be able to make the overall system satisfy the original
specification.

This approach is unlike traditional model checking where a transition system model of a
process is built and the specification formula is checked by applying some algorithm to the
transition system. There are several versions of this basic idea in the literature, e.g. Emerson and
Lei [EL86], Clarke et al [CES86], Stirling and Walker [SW89], Larsen [Lar88], Winskel [Win89],
Cleaveland [Cle90], and Arnold and CrubiUe [AC88]. ttecently there have been attempts to
extend some of these methods based on transition systems to compositional methods by Clarke,

*This work is supported by the ESPRIT Basic Research Actions CEDISYS and CLICS, and for the first author
also by the Danish Natural Science Research Council.

25

Long, and McMillan [CLM89] and Larsen and Xinxin [LXgO], but none of these are compositional
in the structure of processes.

Our method consists of applying a sequence of reductions each of which removes the top-most
operator of the process, i.e. a reduction transforms a satisfaction problem for a composite process
to satisfaction problems for the immediate subcomponents of the process - without inspecting
these. Start ing with a process term one can repeatedly use the reductions until a trivial process,
for which satisfaction is easily decided, or a variable remains.

2 The Languages

2.1 S y n t a x

Assume given a set of state names Nam, and a finite set of actions Act. Processes are denoted
by syntactic terms t constructed from the following grammar:

t : := hill a t I to + tl I to • tl I t [A I t{ -=} I tee P.t I P,

where P is an element in Nam, i.e. a s tate identifier. The usual notion of free and bound will
apply to state identifiers P , so that P will be bound in rec P.t but free in P % nil.

Nil is the inactive process, and at is the usual prefix and to + t l the usual sum operations
known from CCS. The product term to x t l denotes a very general kind of parallel compo~,ition
which allows the components to and t l to proceed both synchronously and asynehronously. The
exact semantics is defined below.

A state identifier P in the body of rec P.t works as a recursion point, and in effect will behave
as the normal recursion in CCS: A term rec P.t has the same behaviour as the unfolded term
t[rec P.t/P] (the result of substituting tee P.t for all free occurrences of P in t). We impose
the syntactic restriction on recursive terms, that no product must appear in the body, which
ensures all definable processes are finite state, and for technical reasons we also require every
occurrence of P in tee P.t to be strongly guarded, i.e. appear immediately under a prefix.

In the prefix at, a denotes an action in Act. For a given set of actions Act we define a
set of composite actions. Let , be a distinguished symbol not contained in Act. The symbol
, is called the idling action and interpreted as 'no action' or ' inaction' . Define Act. to be the
least set including Act U {*} and such that a,/~ E Act, implies a x f l E Act , taking , • -- , .
Now E : Act, ~ Act, is a relabelling which is a part ia l function, with finite domain, mapping
non-idiing actions to non-idling actions. This rdabel l ing can be extended to a total function on
Act, by taking it to behave as the identity outside the domain. The term t [A is a restriction
where A is a finite subset of Act..

Properties of processes are denoted by assertions A from a modal u-calculus:

A ::= ~ a I A0 v a , I (~)A I X I v X . A I (t : a) ,

where X ranges over a set of assertion variables. In the maximal fixed-point formula v X . A amy
free occurrence of X must be within an even number of negations in order to guarantee the
existence of a unique maximal fixed-point. The action name a belongs to the set of composite
actions Act,. The correctness assertion (t : A) denotes true if t satisfies A and false otherwise.
An assertion is said to be pure if it does not contain any correctness assertions.

A lot of derived operators can easily be defined in terms of the core language and will be
used throughout the paper:

[~]A = -~(a)-~A tzX.A = - , vX . -A[-~X/Xl
T = v X . X A ~ B = - ~ A V B
F = -~T A ~ B = (A - - * B) A(B-- -*A)

26

Here we have used the notation A[B/X] which denotes the assertion resulting from substituting
B for all free occurrences of X in A. We will say that an assertion A is closed if it contains
no free variables. Furthermore for a finite set K C_ Act. we define (K) A = V~eK(a)A where
disjunction over an empty set gives false (F).

The correctness assertions (t : A) are atoms in a propositional logic which will be used to
express reductions. A grammar for the logic is:

L ::= T I -~L 1 L0 V L1 I (t : A)

In the logical language L we axe able to express complex relationships between properties of
different processes. For example

(p + q : (c~)A) ~ (p: (a)A) V (q: (a)A),

expresses a very simple example of a reduction. It states that the process p + q can do an a
and get into a state that satisfies A if and only if p or q can do an a and get into a state that
satisfies A. It is a reduction because the formula is valid for all p's and q's, and the validity
of (p + q : (a)A) is reduced to validity of correctness assertions over the subterms p and q.
Although this reduction is almost trivial, in general, it might be quite difficult to get reductions.
Consider for exampl e the problem of choosing a B such that

(tee P.t : uX.A) ~ (t : B)

holds. The aim of this paper is to describe a method for supplying such a B and analogous
assertions for all the other operators.

2 .2 S e m a n t i c s

In order to define the semantics we first recall some well-known definitions of transition systems.

Def in i t ion 1 A transition system T is a triple (S, L,--*) where S is a set of states, L a set of
labels, and --.c_ S x L • S a transition relation. The set of reachable states Rp from a state

p E S is defined as the least subset of S containing p and closed under ~ , where ~ = UteL -~/�9
A pointed transition system T is a quadruple (S, L, -% i) where (S, L, ~) is a transition system,
i E S is an initial state, and all states in S must be reachable from i, i.e. S must equal R/.

Given a pointed transition system T = (S, L, ~ , i) the rooting of T is a pointed transition
system T = (S U {_/}, L, --+',_/) where i is a new state assumed not to be in S, and the transition
relation -~' C_ (S U {~}) • L x (S U {i)) is defined by:

- ~ ' = - , u {(i, a, q) I i -% q}.

Pictorially the rooting of a pointed transition system is constructed by adjoining a new initial
state with the same out-going transitions as the old initial state.

The rooting of a transition system T is just as good as T with respect to satisfaction in our
logic. A claim made precise by the rooting lemma below.

The semantics of process terms is given by the transition system T = (8, Act,, ~) , where ~g
is the set of closed process terms, Act. the set of composite actions, and --.C ~r • Act, • 8 is
the transition relation given as the least relation satisfying the following rules.

p -% p, q -% ql
p .5, p a p .5, p ...p T q -% p~ P T q -% q~

p _5, i] q Z q' t[rec P.t/P] -% t'
tee P.t -% t' P • q ax_~p, x q'

27

p -% p' p & p'

p{Z} L p'{E} S(a) =/~ p ~ a -% p' t h
a6A

Note in particular the rule for product. One of the components in the product may idle by
means of the idling ac t ion , allowing the other component to proceed independently, as in the
transition

P ~.~x. p,

where the left component of p performs an a-action and the right component ides.
For a transition system T = (S, L, 4) an assertion A denotes a property of T which we

take to be a subset of S, hence the set of all properties of T is the powerset P(S). As asser-
tions may contain fl'ee variables we introduce the notion of an environment which describes the
interpretation of the variables. An environment of assertions for T is a map

r :Vara - , P(S)

which azsigns properties to assertion variables. The environment ~[U/X] is like ~b except that
the variable X is mapped to U.

Formally, relative to the transition system T = (S, L, --*) the assertion A denotes the property
[[A]T r defined inductively on the structure of A.

[-4o V A1]T ~ = [AO]T r U I[A1]T r
[(a)A]r r = {s ~ S 13s' ~ S. s -% s' ~ s' ~ la ir r
IX] r e = r
[~x .a] r r = ~u c s. r

where r U ~-~ [.4]] T ~[U/X]
s / I t ~ [A] T

[(t : A)] r r = r otherwise

The powerset 79(S) ordered by inclusion is a complete lattice and as we require all variables to
appear under an even number of negations the map r will always be monotonic, so by Tarski's
lemma [Tar55] Ib will have a maximum fixed-point (the largest postfixed point) which we denote
by ~ c S. r

Define [[A~ ~b = [A]T r This ~ves the standard global interpretation of assertions over all
states 8.

For a transition system T = (S, L, 4) , and a subset Q of S we have the induced transition
system

T o = (Q, L, ~ N(Q x L x Q)),

which is T restricted to the set of states Q. Writing [A]Q ~ for [A]7 ~ ~b we get a local interpreta-
tion of A. For particular choices of the subset Q the local and globaI interpretations coincide, as
is captured by the locality lemma below. Let CQ denote the environment which on the variable
x gives r n O.

Lemma 2 (Locality lemma.)
Let T = (S, L, --*) be a transition system. Given an assertion A, an environment r and a subset
Q of S. Suppose Q satisfies the closedness criterion: Q is closed under ~ , where K is the set
of actions appearing inside diamonds in A. Then the following equality holds

[A]T ~ CQ = lAIr r N Q.

28

With the transition system • one particularly interesting choice of Q is the set of reachable
states Rp from a state p which by definition satisfies the closedness criterion of the locality
lemma. Suppose we wanted to check whether a particular state p belongs to the set of states
denoted by an assertion A, then by the locality lemma we obtain:

p E ~ A] r iff p E ~ A I C N R p
iff p e ~A]R p CRp

As mentioned previously, the rooting of a transition system T is 'just as good as' T with
respect to satisfaction in our logic - which is the intuitive content of the following lemma.

L e m m a 3 (Rooting lemma.)
Given a pointed transition system, T = (ST, LT, ~T , iT), with the rooting T_. Let r : P(ST)
79(ST_) be the map on properties that take the initial state of T to the two copies of it in T and
take all other states to their obvious counterparts. Let r : VarA ~ P(S) be an environment of
assertions. Then

r(iA]T r = [A1]T_(r o r

The connection given by the rooting lemma between pointed transition systems T and their
roofings T is very useful: The set of states satisfying an assertion will be the same in both
interpretations up to application o f the map r. In particular the initial state of T will satisfy
A if and only if the initial state of T satisfies A; an observation central to our development of
reductions in section 3.

There is another technical lemma stating a close relationship between syntactic and semantic
substitution on assertions which will be used frequently in the proofs.

L e m m a 4 (Substitution lemma.)
For B a closed assertion, X a variable, A an arbitrary, pure assertion, and ~b an environment
for T, we have

[A[B/X]] T r = [A]T r [[B]T r

For the propositional logic we define the satisfaction predicate [=~ relative to an environment
r

~r T always
~r -~L iZ not ~ L
~r Lo V L~ iff ~ , Lo or ~ L~
~ t : A iff t e [A]r

Furthermore we define the derived predicate I= as:

~- L iff for all r ~r L.

Taking , to be the trivial transition system with one state (denoted ,) and no transitions, we
observe that the set of assertions built from correctness assertions, negations, and conjunctions
when interpreted over �9 is essentially a copy of the logic L, i.e. for such an assertion A we have
~A1]. r = { ,) if and only if ~ A where A is interpreted as a formula in the propositional logic.

3 Reductions

Our method for compositional checking of satisfaction is based on the notion of a reduction,
which we explain in terms of the prefix operator.

29

Given a pure and closed assertion A and a prefix at we would like to find a proposit ional
expression B over atoms (t : Bi) such that the following holds:

(at: A) ,-, B

Having found such a B the validity of (at : A) has been reduced to validity of a propositional
expression containing only atoms on the subterm t. In order words: /3 is a necessary and
sufficient condition on the subterm t ensuring that at satisfies A. By the word reduction we will
henceforth understand an algorithmic description of how to find B given A and at.

It is not obvious that such a B exists. Although we can easily express the set of processes
that will make the correctness assertion valid as

{t~sl I= at : a } ,

it is not necessarily the case that this set can be expressed within the logic as an assertion B
over atoms (t : Bi) such that

{ t e s l ~ B) = { t e S l k - a t : A) .

In general, the ability to do so, will depend on the expressive power of the logic, and the kind
of operation for wlfich we are trying to find a reduction. We will show that for our modal l og i c
and all operators of our process algebra, such a B does indeed exist, and furthermore we give
for each operator an algorithm that computes one part icular choice of B.

In providing this B the most difficult part concerns - not surprisingly - the fixed-points. The
single most important property of fixed-points around which all the reductions are centered, is
expressed by the reduction lemma. Recall that a map on a complete meet semilattice is w-
anticontinuous if it preserves meets of all decreasing w-chains.

L e m m a 5 (Reduction lemma.)
Suppose D and E are powersets over countable sets, and in : D ~ E an w-anticontinuous
function with in(YD) = TE. Suppose r : E ~ E and 0 : D ~ D are both monotonic and have
the property

. C o i n = inoO.

We can then conclude that
uC = in(u#).

To understand the role of the reduction lemma, take E to be the latt ice of properties of a
compound process and D to be a latt ice built from properties of immediate subprocesses. The
lemma allows us to express a fixed-point property of the original compound process in terms of
fixed-points of functions over properties of its immediate subcomponents via the transformation
in.

For example, the properties of a process at can be identified with certain subsets of the s tates
S~ in the rooting of the transition system pointed by at, and the properties of t with subsets of
the states St of the transition system pointed by t. Now we take the transformation to be

in: ~(S,) x PC{.)) -- V(S~)

where in(Vo, VI) = V0 kJ {at [�9 E VI}. The role of the extra product component is to record
whether or not the property holds at the initial state at of Sa_t. (The rooting is required to
ensure that the initial state at is not confused with later occurrences.) I

a Because of the isomorphism P(A0) x . . . x • (A .) x . . . c~ P(Ao + . . . + A n +. . .) we can still meet the conditions
of the reduction lemma when D is a countable product of powersets of countable sets.

30

An assertion with a free variable occurring positively essentially denotes a monotonic function
r : P(Ss_~.) --* :P(Sa_~.). The definition of the reduction is given by structural induction on
assertions ensuring that assertions denoting such functions r and their reductions denoting
monotonic functions 8 : 7~(St) x 7)({.}) --* P(S~) • 7)({,}) are related by in in the manner
demanded by the transformation lemma. The lemma then allows the reduction to proceed for
fixed-points. As this case of prefixing makes clear reductions of fixed-points can be simultaneous
fixed-points. However the use of Bekid's theorem ([Bek84]) replaces the simultaneous fixed-polnts
by fixed-points in the individual components. In the case where these individual components lie
in powersets of singletons they end up being replaced by boolean values for closed assertions.

In the course of tlfis definition by structural induction we will be faced with the problem
of giving a reduction for assertion variables. One solution to this problem can be found by
introducing a syntactic counterpart of in called IN and define a change o/ variables a to be a
map taking all variables X to IN(Xo, X1). An application of such a substitution to an assertion
A has to satisfy certain technical requirements: It should be fresh i.e. for an assertion A
when (i) for all variables X at which a is defined the free variables in a(X) are disjoint from
those in A, and (ii) for distinct variables X and X I, at which a is defined, the free variables
in a(X) and a(X I) are disjoint. It is emphasised that while the syntactic counterparts IN of
the transformations play the important part in reductions of expressing relationships between
variables they do not appear in the reductions themselves.

Reductions for all operators can be established along the lines sketched. Each operator
involves a judicious choice of in, which IN is to denote. In the following sections we present this
choice and the accompanying reductions.

3.1 P r e f i x

The reduction for prefix is defined inductively on the structure of assertions and shown in figure
1. Note that red~ : A; a) just renames the variables of A from X to X0. The transformation
in was explained in the previous section. 2

red~ : X ; ~) = X0
where ~z(X) = IN(Xo, X1)

red~ : vX.A;a) = vXo.red~ : A;a)
where a(Z) = IN(Xo, X1)

red~ <a)A;r = (a)red~ : A; a)
red~ -~A; a) = -~red~ : A; #)
red~ : A V B; a) = red~ : A; a) V red~ : B; a)

redl(at : X;a) = X1
where a(X) = Ig(Xo, X,)

redl(at : vZ.A;a) = redl(at : A;a)[red~ vX.A;a)/Xo][T/X,]
where a(X) = IN(Xo, XI)

redi(at:(a)A;a) = { F:red~ i f a = a
if a y~ a

redl(at : "~A;a) = -~redl(at : A; a)
redl(at : A V B; a) = red1(at : A;a) V redX(at : B; a)

Figure i: Reduction for prefix defined inductively on the structure of assertions.

~For this and the following reductions we have that red(at : (*>A; a) = red(at : A; a) and henceforth we will
omit these trivial cases from the presentation.

31

The reduction is constructed in such a way that the two components are related to A through
in by

[A[a]]]at r = in([red~ : A; a)] t ~b, [redX(at : A; a)] , r (1)

where a is a change of variables for A. From the rooting lemma we know that

at 6 [A],t r iff aA6[A]~ d e

and from the definition of in and (1) we get

at 6 [A]~, r iff �9 E [redl(at : A; a)] . r

As redl(at : A; a) consists of correctness assertions, negations, and conjunctions only, we can
consider it to be a formula in our propositional logic, yielding our reduction

(at: A) ~ redl(at : A; a).

T h e o r e m 6 (Reduction for prefiz.) Given a closed, pure assertion A, a change of variables a
which is fresh for A, and an arbitrary process term t, then ~ (at : A) *-* reda(at : A;a) .

3.2 N i l

The reduction for nil is defined inductively on the structure of assertions and shown in figure
2. The definitions of -~ and V are similar to the definitions for prefix and therefore omitted.
The transformation in : P ({ ,}) --* P({nil}) is just the direct image of the obvious isomorphism
between {.} and {nil}. Note that the reduction for nil is quite trivial and just gives true (T) or

(F) .

red(nil : X; a) =
red(nil : vX.A; ~r) =
red(nil: =

r where a (X) = IN(Y)
red(nil: A; a)[T / r] where a (X) = IN(Y)
F

Figure 2: Reduction for nil.

T h e o r e m 7 (Reduction for nil.) Given a closed, pure assertion A and a change of variables a
which is fresh for A, then ~ (nil: A) ~ red(nil: A; a).

3 .3 S u m

The reduction for sum is presented in figure 3. The definitions for -~ and V are omitted as the}"
are similar to the definitions for prefix.

To understand the transformation first note that we have a map j : 5to + St, --* 5t~+t~ taking
the initial states of to and tl to the state to + tl in ,5'to+t1 and taking all other states to their
obvious counterparts. Let f : (S~ 0 + St1) + {e} --, StQ• be the map that takes �9 to the initial
state of 5to+~1 and on Sto + Sh behaves like j . We take the transformation to be

in : + &,) x - + vCS o+,)

where in(Vo, VI) = {j(s) l s 6 Vo} U {t o + tl I ' 6 V,}.

T h e o r e m 8 (Reduction for sum.) Given a closed, pure assertion A, a change of variables a
which is fresh for A, and arbitrary process terms to and tl, then

]= (to + tl : A) ~ redl(to + tl : A; a).

32

red~ + tl : X; a)

red~ + tl : uX.A; a)

red~ + tl : (a)A; a)

redl(to + tl : X; or)

redX(to + tl : vX.A; a)

redl(to + tl : (a)A; a)

= Xo
where a (X) = IN(Xo, X1)

= vXo.red~ + tl : A;a)
where a(X) = IN(Xo, X1)

= (a)red~ + t l : A;a)

= X1
where .(X) = ZN(Xo, XI)

= real(to + t l : A; a)[red~ + t l : vx .n ; a)/Xo][T/X1]
where ~(X) = m(Xo, x l)

= (to : (a)A ~ V (*1 : (a)A ~
where A ~ = red~ + tx : A; a)

Figure 3: Reduction for sum.

3.4 R e l a b e l l i n g

For relabeUing we take the transformation to be in : P(Rt) ~ 79(R,{_=)) where in(V) = {p{-=} I
p e v } .

red(t{E} : X; a)
red(t{E} : vX.A; a)
red(t{Z} : (alA; a)

= Y where a(X) = IN(Y)
= vY.red(t{E} : A; a) where a(X) = IN(Y)
= (E- l (a)) red(t{E}: A;cr)

Figure 4: Reduction for relabelling.

T h e o r e m 9 (Reduction for relabelling.) Assume A closed and pure, a change of variables a
which is fresh for A, and an arbitrary process term t, then I = (t{E} : A) ~ (t : red(t{F.} : A; a)).

3.5 R e s t r i c t i o n

For restriction we take the transformation to be in : 79(Rt) ~ P(RtrA) where in(V) = {p F A I
p ~ V} n R,r^.

red(t r h : X; a)
red(t [A : vX.A; a)

red(t [A: (a)A; a)

= Y where a (X) = IN(Y)
= vY.red(t r A : A; a) where a (X) = IN(Y)

{ (a)red(t [A : A ; a) i f a E A
= F i / , ~ r

Figure 5: Reduction for restriction.

T h e o r e m 10 (Reduction for restriction.) Assume A closed and pure, a change of variables a
which is fresh for A, and an arbitrary process term t, then ~ (t r A : A) ~ (t : red(t r A : A; a)).

3.6 R e c u r s i o n

In order to define the reduction for recursion, we will need to extend our assertion language with
an assertion/3 to identify recursion points. The semantics of /3 is simply: 3

3The general semantics should be I[P~T ~b -- {P,P} 1"1 ST, but d u e to our requkement of guardedness, we will
n e v e r be involved with rooting a state identifier, so the stated semantics is sufficient.

33

[]3]r r = { e } n ST.

It can be verified that the locality and the rooting lemma still hold. All the reductions mentioned
in the previous sections should be extended to take caxe of the assertions]3 and this is easily
done - they should all give F. Furthermore, we add a reduction for P , which is like the one for
nil, except that it gives T on]3.

For the first time we will need to put in extra correctness assertions in our reductions, which
furthermore might contain free assertion variables. These correctness assertions can however be
dosed by a closure lemma and then 'pulled out ' by a purifying lemma yielding an expression
which belongs to the propositional language without any correctness assertions appearing inside
other assertions, hence being applicable for further reductions.

T h e o r e m 11 (The purifying lemma.)
Let A be an assertion with all correctness assertions closed and let t be a process term. Then
there exists an expression B over unnested correctness assertions such that, ~ (t : A) ~ B.

Moreover, the proof of the lemma gives an algorithm for computing such a B. The closure
lemma can be found in [Win90].

red(tee P.t : X ; a)
red(me P.t : vX.A; a)
red(tee P.t : (~)A; .)

= Y where a (X) = IN(Y)
= vY.red(rec P.t : A; a) where ~ (X) = IN(Y)
= (a)A ' V (i 8 h (t : (a)A'))

where A t = red(tee P.t : A; a)

Figure 6: Reduction for recursion. The definitions for -~ and V axe omitted as they again axe
similax to the definitions for prefix.

Take f : St --* Srec P.t to be the map that takes ~ to rec P.t and all other states $ to
s[rec P.t/P]. The transformation for recursion in : 7)(S~ --. P(3r~c/'.t) is defined to be the
direct image of f .

T h e o r e m 12 (Reduction/or recursion.) Given a closed, pure assertion A, a change of variables
a which is fresh for A, and an arbitrary process term t then

(rec P.t : A) ~ (t : red(rec P.t : A; a)).

3.7 Product

A reduction for a product q x p should be an assertion B over atoms (q : Bi) and (p : Cj) such
that

~ - q • iff ~B.

Unfortunately, if we insist on finding such a B without inspecting either p or q, we can get
a very complex expression which, in the case of fixed-points will even become infinite unless
assumptions on the possible sizes of p and q axe made (cf. the remarks at the end of [Win90]).
In [Win90] it is shown how a very reasonable sized B can be found, when the assertion language
is restricted rather severely, excluding disjunctions, negations, minimal fixed-points, and general
box formulas, but still having maximal fixed-points, diamond formulas, a strong version of box
formulas, and conjunctions.

34

Here we present another approach. We give a reduction when p is a process term without
restrictions and relabellings, i.e. we find a B (depending on p) s.t.

[= q • iff ~ - q : B .

Let R , = {P l , . . . , P , } be the finite set of reachable states of p in some fixed enumeration. We
define the map in: y (Rq) x . . . x 79(Rq~--~ 3o(Rqx,) as

i n (t ; , , , , . . . , r.r,.) = (t r , , x p~) u . . . u (u,. x p.).

As usual we have a change of variables a with a (X) = IN(Xpl , X , .) . As a notational
convenience we write A/p for red(q • p : A; a) omitting the a which is always assumed to map
an X into X,1 , . . . , Xp,. The reduction is shown in figure 7.

-~A/p =
Ao V A1/p =
X / p =
v X . A / p =

A/q X r =

(ax f l)A /n i l =

(ax f l)A /7q =

(aX[3)A/q + r =
(ax f l)A / rec P.t =

-~(A/p)
(Ao/p) V (A1/p)
x ,
ck(v(x, , , . . . , X , .) . (A / p l , . . . , A / p ,))
where {pi}i denotes the set of reachable
states from p with p = Pk.
(A / r) / q
with the actions in the modalities of A reassociated

(c~)(A/nil) i f fl = *
F i f # # ,
(a)(A/Tq) i f f l = ,
(a) (A/q) if[3 = 7
F otherwise

((ax/3)A/q) V ((axle)A/r)
(ax[3)A/t[rec P.t /P]

Figure 7: Reduction for product. Ck(vX .A) denotes the k ' th component of the n-ary fixed-point
vX___.A, closed by repeated application of Beki6's theorem 4.

T h e o r e m 13 (Reduction for product.)
Assume given a pure and closed assertion A, a change of variables a, and a term p with no
restrictions and relabellings. We then have for an arbitrary term q:

(q x p : A) ~ (q: red(q x p: A;a)) .

The ease of the maximal fixed-point is established by repeated application of Beki6's theorem,
and the resulting assertion might become rather complex, as in the worst case a fixed-point will
appear for each reachable state of p, and on top of this, Beki6's theorem might increase the size
of the assertion considerably. We are currently investigating methods to control the potential
blow-up in general. We present in the next section an example, that indicates that in practice
this need not be the case.

(Termination is ensured by the well-founded order consisting of the number of products in the process term
combined lexicographically with the structure of assertions again combined lexicographically with the maximal
depth to a prefix in the process term

35

4 Examples

It is an important property of all our reductions (except product) that they only dependent on the
top-most operator of the process term, hence we can leave part of a process unspecified and still
apply the reductions. Technically this can be done by adding process variables to our language of
processes. Given an assertion and a process with variables, we can then compute a propositional
expression with correctness assertions over the variables, expressing what relationship there
should be between them in order to make the process satisfy the assertion. In this way the
reductions compute what corresponds to weakest preconditions in Hoare logic.

As pointed out in the previous section, the reductions for product has the potential of
becoming rather complex. In this section we show by a small example, that in practice, the
reductions need not turn out to be too complex.

First we define a binary parallel operator IIK,L which allows its left and right components to
independently perform the actions indicated by the sets K and L, except that they are required
to synchronise on common actions of K and L. The precise definition is

p H/c,L q ~ ' (p x q) t A{ .=-)

where A = {aXa I a ~ K n L} u { a x , I a ~ _re \ L) U { *xa I a ~ Z \ _re} and

E(axa) = a, for a l l a 6 K n L
~(ax*) = a, for a l l a 6 K \ L
F.(,xa) = a, f o r a l l a E L \ K
~(a) undefined otherwise.

Now assume that we want to construct a small system consisting of a coffee vending machine
and a researcher. The coffee machine should be able to accept money and then supply a cup
of coffee. The researcher should be able to pay out money, drink coffee, and publish papers.
Suppose we know how the researcher behaves, specified by a process term r, but would like to
find out what kind of coffee machine x to put into the system, such that eventually the researcher
has no other choice than to publish a paper.

In general a property of the form 'eventually only the action a can happen ~ can be expressed
by the assertion

where
(-)A =

Our problem can now be restated.

#X.<-)T A [-a]X

(Act)A [-KIA = [Act\ K]A.

Assume the actions to be p for publish, c for taking/giving coffee, m for taklng/glving
money, and define If = {m,c},L = {m,c,p}. Which values of z make the following
correctness assertion valid

x IIK,L r: #X.(-)T A [-p]X? (2)

Suppose the researcher r behaves as rec P.m.c.(m.c.P + p.P). Then expanding the defini-
tion of IIK,L and applying the reduction for restriction and relabeUing, we get the equivalent
correctness assertion

x X r : #X.(raxrn, cxc, *xp)T A [mxra, cxc]X

arid then, by applying the reduction for product, the equivalent

x: #X.(ra)T A [m]C{c)T A [c][m]((c)T A [c]X)). (3)

36

One can now use (3) to verify different proposals for coffee machines, without redoing the first
two steps. This might be done by our method, or for closed terms by other model checking
algorithms.

An interesting point to note about the assertion in (3) is that, although the researcher r had
four reachable states, and then potentially four fixed-points could appear, only one fixed-point
appears in the resulting assertion.

Returning to the example, we can verify that a successful choice of z is m.c.nil, i.e. a coffee
machine that accepts money and give coffee once, and then breaks down, whereas rec P.m.c.P
is an unsuccessful choice. Reading the assertion in (3) carefully, we can express the requirement
to the machine as 'after having offered a finite and odd number of m's followed by c's, no m
should be offered.'

Changing the behaviour of the researcher slightly and taking r = rue P.m.e.P + m.c.p.P and
performing the reductions for restriction, relabelling, and product, we arrive at the correctness
assertion z : F , i.e. there are no coffee machines that will make the system fulfill the requirement.

References

[AC88] Andr~ Arnold and Paul Crubille. A linear algorithm to solve fixed-point equations on transitions
systems. Information Processing Letters, 29:57-68, 1988.

[Bek84] H. Beki~. Definable operations in general algebras, and the theory of automata and flow charts.
Lecture Notes in Computer Science, 177, 1984.

ICES88] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. A CM Transactions on Programming Languages
and Systems, 8(2):244-263, 1986.

[Cle90] 1Lsnce Cleaveland. Tableau-based model checking in the propositional mu-calculus. Acta In.
forraatica, 27:725-747, 1990.

[CLM89] E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional model checking. In Proeedings of
.tth Annual Symposium on Logic in Computer Science. IEEE, 1989.

[Dam90] Mads Dam. Translating CTL* into the modal p-calculus. Technical Report ECS-LFCS-90-123,
Laboratory for Foundations of Computer Science, Uni. of Edinburgh, November 1990.

[EL86] E. Allen Emerson and Chin-Luang Lei. Efficient model checking in fragments of the proposi-
tional mu-calculus. In Symposium on Logic in Computer Science, Proceedings, pages 287-278.
IEEE, 1986.

[Lar88] Kim G. Larsen. Proof systems for Hennessy-Milner logic with recursion. In Proceedings of
CAAP, 1988.

[LX90] Kim G. Larsen and Liu Xinxin. Compositionality through an operational semantics of contexts.
In M.S. Paterson, editor, Proceedings of ICALP, volume 443 of LNCS, 1990.

[StiYl] Colin Stirling. Modal and Temporal Logics. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science. Oxford University Press, 1991.

[SW89] Colin Stirling and David Walker. Local model checking in the modal mu-calculns. In Proceed-
ings of TAPSOFT, 1989.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Math.
ematics, 5, 1955.

[Win89] Glynn Winskel. A note on model checking the modal y-calculus. In Proceedings of ICALP,
volume 372 of LNCS, 1989.

[WinY0] Glynn Winskel. On the compositional checking of validity. In J.C.M. Baeten and J.W. Klop,
editors, Proceedings of CONCUR '90, volume 458 of LNCS, 1990.

