
"On the Fly" Verification of Behavioural Equivalences and 
Preorders 

J e a n - C l a u d e  Fernandez  Lauren t  Mounie r  
I M A G - L G I  BP53X 38041 G R E N O B L E  Cedex  

Abstract  

This paper describes decision procedures for hisimulation and simulation relations be- 
tween two transition systems. The algorithms proposed here do not need to previously 
construct them: the verification can be performed during their generation. In addition, a 
diagnosis is computed when the two transitions systems are not equivalent. 

1 Introduction 

One of the successful approaches used for the verification of systems of communicating processes 
is provided by behavioral equivalence and preorder relations, which allow to compare different 
descriptions of a given system. More precisely, if we note S (Specification) the most abstract  
description of the system and I (Implementation) the most detai led one, i t  is possible to check 
whether I is in fact an implementation of S in the following manner: from S and I ,  generate 
two Labeled Transition Systems (LTS for short) Sl  and $2. Let R be an appropria te  equivalence 
relation or preorder relation on LTS. Then, I implements S if and only if S1RS2. 

Among the different equivalence relations which have been proposed, blsimulation8 appear  
to be the most at t ract ive ones: these equivalences have a suitable semantics, are well defined, 
and for each of them a normal form exists which is minimal in number of states and transit ions.  
An efficient algori thm [PT87] allows to compute the normal form of a LTS S for the strong 
bisimulation relation. This algorithm consists in refining a par t i t ion of its states until  i t  becomes 
"compatible" with its t ransit ion relation. If  n is the number of states of S,  and m is the 
cardinality of its transit ion relation, then the t ime requirement for this algori thm is O(rn log(n)). 
Thus, an efficient decision procedure for the equivalence of two transi t ion systems consists in 
computing the normal form of the union of the LTS. 

Other equivalence relations are based on simulation preorders like safety equivalence, which 
characterizes exactly safety properties [BFG*91]. In this case, I implements S if and only if  
SIRS2 a n d  S2RS1. A decision procedure for safety equivalence is based on the Palge & Tarj~m 
algorithm [Fer89]. 

However, the main drawback of these methods is tha t  the whole LTS have to be stored (i.e, 
the sets of states and transitions). Consequently, the size of the graphs which can be compared 
is l imited, and this limit is easily reached when verifying real examples. 

In this paper  we extend the decision procedure for bisimulation equivalence relation, pre- 
sented in [FMg0], to simulation based equivalence or preorder. In fact, we show tha t  i t  is 
sufficient to define a part icular  synchronous product  between two LTS parametr ized by a sim- 
ulation or a bisimulation. Thus, the verification can be done during the process of the two 
transit ion systems ("on the fly" verification). In addition, in the case where two LTS are not 
comparable under the relation R, we produce as a diagnosis an execution sequence which leads in 



182 

a failure state. This approach is similar to the one proposed in [JJ89], [BFH90] and [CVWY90], 
which deals with "on the fly" verification of linear temporal  logic properties.  

A version of our algorithm for a weaker bisimulation, for safety equivalence and for simulation 
preorder have been implemented in the tool ALDEBARAN which allows to compare and reduce 
LTS with respect to several equivalence relations (strong bisimulation, observational equivalence 
[Mi180], acceptance model equivalence [GS86] and safety equivalence). 

The paper  is organized as follows: in section 2 we give the definitions used in the following 
pages, in section 3 the verification method for simulations and bisimulations is described, in 
section 4 we give the algorithm, and in section 5 we show how it can be adapted to provide a 
diagnostic. The results obtained when applying the usual algorithm and our improved one are 
also compared in this section. 

2 D e f i n i t i o n s  

2.1 L a b e l e d  T r a n s i t i o n  S y s t e m s  

Let States  be a set of states, A a set of names (of actions), and r a part icular  name of A, which 
represents an internal or hidden action. For a set X,  X* will represent the set of finite sequences 
on X.  
A LTS is a tuple S = (Q ,A ,T ,  qo) where: Q is the subset of States  reachable from q0 with 
respect to T, A is a set of actions (or labels), T C_ Q x A x Q is a labeled transi t ion relation, 
and q0 is the initial  state. 
For a �9 A and each state q, we consider the image set: T"[q] = {q~ �9 Q I (q,a,q') �9 T}.  
We also use the notat ion p - ~ T  q for (p, a, q) �9 T. We consider the set of the actions which 
can be performed in a state q: Act(q) = {a �9 A I 3q' �9 Q . q - -~  q'}. 

D e f i n i t i o n  2.1 Let S = (Q ,A ,T ,  qo) be a LTS  and q a state of Q. 
The set of the finite ezeeution sequences from q (noted Ez (q ) )  is defined as follows: 

Sx(q) = {~ �9 Q "  ~(o) = q ^ v i  o _< i < I~1 - z, 3a~ �9 A .  ~(i) m r  ~(i  + 1 ) }  

In the following, for a LTS S, the term ezecution sequences of S represents the set Ez(qo) (where 
q0 is the initial state of S). Furthermore, an execution sequence is elementary if and only if  all 
i ts  states are distinct. The subset of Ez(q)  containing the elementary execution sequences of a 
s tate q will be noted Eze(q). 

2.2 E q u i v a l e n c e s  a n d  P r e o r d e r s  

We recall the definition of the simulation and the bisimulation relations. 

N o t a t i o n  1 Let A C A*, and let p, q �9 Q. We write p x ' r  q if and only if: 

3U1"''Un �9 A A 3 q l , ' " , q n - 1  �9 Q A p "-~'*T ql -2-%T q2""qi  ?'~'~T q i+l ' "qn-1  "?'e*T q. 

TxIq] = {q' �9 Q I q ~ r  q ' }  Let II be a family of disjoint languages on A. 

Ac~a(q) = {), �9 n 13q'. q ~ q'}. 

D e f i n i t i o n  2.2 (simulation) Let II be a family of disjoint languages on A.  We define inductinely 
a family of simulations R~ by: 

R~  = O x O  

Rn+~ {(p~,~) I W e n Vq~. ~1 ~' ~' = �9 ---~r ql ~ ~q2. (r~ - - ~ r  q2 ^ (ql,q2) e R~))}  



183 

The simulation preorder is __.n= 5 R~, the simulation equivalence is ~ n =  EII fIE rr-1. 
k = 0  

D e f i n i t i o n  2.3 (bisimulation) Let II be a family of disjoint languages on A. We define induc- 
tively a family of bisimulations R~ by: 

n~  = Q x Q  
RII ), k+~ = {(p~,rn) I v,x e n Vq~. (p~ ~ �9 - - , r  q~ ~ 3q2. (p2 - - . r  q2 ^ (q~, q2) �9 R~))  

Vq2. (192 ----*T q2 ~ 3ql �9 (Pl ~ 'T ql A (ql,q2) �9 RkII))} 

or 

The bisimulation equivalence for I / i s  ,,~n= ~ R~. 
k = 0  

R e m a r k  1 From these general definitions, several simulation and bisimulation relations can be 
defined. The choice of a class II corresponds to the choice of an abstraction criterion on the 
actions. The strong simulation and the strong bisimulation are defined by II = {{a} I a �9 A}, 
the w-bisimulation is the bisimulation equivalence defined by II = {r*a I a �9 A A a ~ r},  the 
safety preorder is the simulation preorder defined by II = {7"*a ] a �9 A A a ~ r} and the safety 
equivalence is the simulation equivalence where II = {r*a I a �9 A h a r r}. 

Each equivalence relation R rl defined on states can be extended to an equivalence relation 
comparing LTS in the following manner: let Si = (Qi, Ar,Ti, qi), for i -~ 1, 2 be two LTS such 
that  Q1 I"1 Q2 = 0 (if it is not the case, this condition can be easily obtained by renaming). Then 

we define $1 R II S2 if and only if (ql,q2) �9 R H and $1 ~rl Sz if and only if (ql,q2) r R n. 

3 V e r i f i c a t i o n  o f  S i m u l a t i o n s  a n d  B i s i m u l a t i o n s  " O n  t h e  F l y "  

In this section, we describe the principle of a decision procedure which allows to check if two 
LTS $1 and $2 are similar or bisimilar without explicitly constructing the two graphs. We define 
the product 6:1 xRu $2 between two LTS 6:1 and $2, and then we show how the existence of R n 
between these two LTS can be expressed as a simple criterion which must hold on the execution 
sequences of this product. In the rest of the section, we consider two LTS Si = (Qi, Ai, Ti, q0i), 
for i = 1, 2. We use Pi, qi, P~, q~ to range over Qi. We use R n and R n to denote either simulations 

oo 

or bisimulations (R n = ['~ R~). 
k----0 

The LTS S1 xRn $2 is defined as a synchronous product of $1 and $2: a state (ql,q2) of 
$1 XRn $2 can perform a transition labeled by an action a if and only if the state ql (belonging 
to $1) a n d  the state q2 (belonging to $2) can perform a transition labeled by a. Otherwise, 

�9 in the case of a simulation, if on ly  the state ql can perform a transition labeled by a, then 
the product has a transition from (ql, q2) to the sink state noted fail. 

�9 in the case of a bisimulation, if on ly  one  of the two states (ql or qz) can perform a 
transition labeled by a, then the product has a transition from (ql,q2) to the sink state 
fail. 

D e f i n i t i o n  3.1 We define the LTS S = $1 xRa $2 by: 
s = (Q,A,T,  (qol,q02)), with Q c (Q1 • A : ( A l n A 2 ) U { r  andT : Q x A • Q, 
where r r (A1 U As) and fa/t r (Q1 u Q2). 
T and Q are defined as the smallest sets obtained by the applications of the followin 9 rules: RO, 
R1 and R2 in the case of a simulation, RO, R1, R2 and R3 in the ease of a bisimulation. 



184 

(q01,q02) ~ Q [R0] 

(ql,q2) E Q, .Actrl(qt) = .Actn(q2), ql ----~T1 q~, q2 --~a'2 q[ [R1] 

{(q~,q~)} E Q, {(ql,q2) X--~T (q~,q~)} E Y 

(ql,q2) ~ Q, ql ---~T, q~, T~[q] = 
[R21 

{ fa i l }  E Q,{(ql,q2) ~b,y fa i l }  E T 

(ql,q2) E Q, q2 ~ ~T2 q~, Tl[q] = 0 
[R3 bisimulation] 

{ fa i l }  E Q,{(ql, q2) ~"~T fa i l }  E T 

Let's notice that  (Pl,P2) ~--~r fa i l  if and only if (pl,Pz) r R n. 
The following proposition allows to express that  $1 and $2 are not comparable against R n 

in terms of the execution sequences of $1 • $2. 

Proposition 3.1 Let S = (Q ,A ,T ,  qo) be the product $1 • $2, Then, (qol, qo2) r R II i f  and 
only if  it ezists an elementary ezecution sequence ~r of S (or E Eze(qol, qo2)) such that :  

�9 ~ = {(q01, q02) = (po, qo), (pl, ql), ... (pk, qk), fa i l } .  

Vi . 0 < i < k, (pi, qi) ~- II �9 Rk_i+ 1 and (Pi, qi) E R~_ i. 

If  one of the two LTS is deterministic, proposition 3.1 can be improved. 

Proposition 3.2 Let S = (Q ,A ,T ,  qo) be the product S1 • $2 and let us suppose that $9 is 
deterministic (or S1 if  the (R~)k>_o are bisirnulations). Then: 

$1 ~nS2 r 3r E Ez(qol,qog) �9 3k > O. or(k) = fail. 

According to this proposition, if at least one of the two LTS S1 or $2 (resp. 32) is deterministic 
then $I  and $2 are not bisimilar (resp. similar) if and only if it exists an execution sequence of 
Sl • R n $2 containing the state fail  

4 A l g o r i t h m s  

In the previous section, we have expressed the bisimulation and the simulation between two LTS 
$1 and $2 in terms of the existence of a particular execution sequence of their product S1 x/~n $2. 
Now we show that this verification can be realized by performing depth-first searches (DFS for 
short) on the LTS $1 x Rn $2. Consequently, the algorithm does not require to construct the two 
LTSpreviously : the states of $1 x/~n S2 are generated during the DFS ("on the fly" verification), 
but not necessarily all stored. And the most important is that  transitions do not have to be 
stored. 

We note nl (resp. n2) the number of states of $1 (resp. $2), and n the number of states of 
$1 xRn $2 (n < nl x n2). We describe the algorithm considering the two following cases: 

D e t e r m i n i s t i c  case:  if R II represents a simulation (resp. a bisimuiation) and if $2 (resp. 
either $1 or $2) is deterministic, then, according to proposition 3.2, it is sufficient to cheek 
whether or not the state fail belongs to $1 • $2, which can be easily done by performing 
a usual DFS of $1 x/~n $2. The verification is then reduced to a simple teachability problem 
in this graph. Consequently, if we store all the visited states during the DFS, the time 
and memory complexities of this decision procedure are O(n). Several memory etHcient 
solutions exist to manage such a DFS ([Ho189]). 



185 

Gene ra l  case:  in the general case, according to the proposition 3.1, we have to check the 
existence of an execution sequence ~ of S1 • $2 which contains the state fail and which 
is such that for all states (ql,q2) of ~, (ql,q2) ~ R n for a certain k. According to the 
definition of R n, this verification can be done during a DFS as well if: 

�9 the relation R1 n can be checked. 

�9 for each visited state (ql, q2), the result (ql, q2) 6 R E is synthesized for its predecessors 
in the current sequence (the states are then analyzed during the back tracking phase). 

More precisely, the principle of the general case algorithm is the following: if R n is a simulation 
(resp. a bisimulation) we associate with each state (ql,q2) a bit_array M of size ITl[ql]l (resp. 
ITl[ql][ + [T2[q2]D. During the analysis of each successor (q~, q~) of (qi, q2), whenever it happens 
that (qtl,q~) 6 R II  then ~r[ql] (resp. M[q~] and M[q~]) is set to 1. Thus, when all the s u c c e s s o r s  

of (ql,q2) have been analyzed, (qi,q2) 6 R n if and only if all the elements of M have been set 
to I. 

As in the deterministic case algorithm, to reduce the exponential time complexity of the 
DFS the usuM method would consist in storing all the visited states (including those which do 

not belong to the current sequence) together with the result of their analysis (i.e, if they belong 
or not to Rn). Unfortunately, this solution cannot be straightly applied: 

During the DFS, the states are analyzed in a postfixed order. Consequently, it is possible to 
reach a state which has already been visited, but not yet analyzed (since the visits are performed 
in a prefixed order). Therefore, the result of the analysis of such a state is unknown (it is not 

available yet). We propose the following solution for this problem: 

Notation 2 We call the status of a state the result of the analysis of this state by the algorithm. 
The status of (ql, q2) is ",,2' if (ql, q2) 6 R n, and is "~"  otherwise. 

Whenever a state already visited but not yet analyzed (i.e, which belongs to the sta~k) is reached, 
then we assume its status to be -,,2'. If, when the analysis of this state completes (i.e, when it 
is popped), the obtained status is "~", then a TRUE answer from the algorithm is not reliable 
(a wrong assumption was used), and another DFS has to be performed. On the other hand, a 
FALSE answer is always reliable. 

Consequently, the following data structures are required: 

�9 A sta~k Stl, to store the states already visited of the current execution sequence. Each 
element of Stl is a couple ((p,q),l), where" (p,q) is a state and 1 the llst of its direct 
successors which remains to explore. 

�9 A stack St2, to store the bit_arrays associated to each state of the current execution 
sequence. We assume that whenever a new array is pushed into St2, then it is initialized 
with the value 0. 

�9 a set V, to mark all the visited states. 

�9 a set R, to store all the states of the current sequence visited more than once. 

�9 a set W, to store all the states for which the obtained status is "4". 

The list of all direct successors of a state (p, q) is obtained by the function succ: 
succ(p,q) {(a, (p', q')) a p, a = �9 P ---~T, A q ----~T, ql}. 

succ(p, q) can be incrementally computed in the foUowing manner: 

- calculate the direct successors of p and q applying the transition rules of the description 

language of $1 and $2. 



186 

- calculate the direct successors of (p, q), applying the rules given in definition 3.1. 

We also consider the function partial_DFS, which performs a DFS storing all the visited 
states and analyzing ordy the states which do not belong to V U W. The result returned 
by this function may be TRUE, FALSE or UNRELIABLE. The algori thm then consists in a 
sequence of calls of part ial_DFS (each call increasing the set W),  until  the result belongs to 
{ T R U E ,  F A L S E } .  

The algorithm dealing with the bisimulation relation is the following: 

A lgo r i t hm 
W:=O 
repeat 

result := partial_DFS { perform a DFS } 
until result E {TRUE, FALSE} 
return result 

end. 

function par t ia l_DFS 
V := 0 ; R := 0 ; stable := false 
st~ := { (qo~, qo2 ), suec(qol, qo2) } 
Stz :=  0 
push into St2 a bit_array of size 2 { in order to deal with (q01,q02) } 
push into St= a hit_array of size (ITffi[qo~]l + IT=[qo2]l) (Z) 
while Stz # 0 

stable':= true 
((qz,q2}, 1) := top(Stl) 
M := top(Sh) 
i f / # l ~  

choose and remove (q~,q~) in l 
i f ( q~ ,q~ ) r  

if(qI,q;) r st~ { it's a new state } 

if-~ ((q'x,q~) ~-~" fail) 
push {(q;, a;), su~c(ql, qD} in St~ 
push into St ,  a bit_array of size (ITt[q~]l + IT=[q;]l) (1) 

endif 
else { (q~,q~ E Stx) } 

insert (q~; q~) in R { this state has been visited more that once } 
M [ q f l - =  1 ; M[q~] := x ( z )  

endif 
else { (q~,q~) E V U W (i.e, visited in a previous DFS) } 

if (q[, q~) r W 
M[qfl := 1 ; M[r := 1 (2)  { q~ ~ q~ } 

endif 
endif 

else { 1 • 0 } 
pop(St,) ; pop(St2) 
insert (ql,q2) in V { a new state has been analyzed } 
M'  := top(Sh) 
if M[q'] = X for all q' in (T~[q,] U T=[q=]) (a) 

M' [q l ]  :=  1 ; M'[q,] : =  1 {ql ~ q, } ( 2 )  
else 

insert (qx,q2) in W { ql ~ q:~ } 
if (qz,q2) ~ R 

stable := false { we assumed a wrong status } 



187 

endif 
endif 

endif 
endwhile 
M := top(St2) 
if M[qotl # 1 and M[q02] # I (4) 

return FALSE { qol ~ qo2 } 
else 

if stable 
return TRUE { q01 ~ q0z } 

else 
return UNRELIABLE { another DFS has to be performed } 

endif 
endif 

end. 

The algori thm dealing with the simulation is straightly obtained by replacing: 

(1) by push into St2 a bit .~rray of size (IT~[q01]l) 

( 2 )  by M[ql] : =  1 

(3) by if M[q'] = 1 for all q' in Tx[ql] 

(4) by if M[q0x] = I 

P r o p o s i t i o n  4.1 Algorithm terminates, and it returns TRUE if and only if the two LTS are 
bisimilars. 

P r o o f  We use the following notations: let DFSi  representing the i th execution of the function 
partial_DFS, and let Ri (resp. Wi) representing the set R (resp. W) at  the end of DFSi.  
When DFSI terminates,  the following property holds: 

stable = False r R~ N Wk ~ 0 (1) 
Algori thm terminates: From (1), Vi .  DFSi  returns UNRELIABLE r 

3(ql,q2) E Q .  ((ql,q2) E Wi nRd. 
Moreover, as during DFSi the states of Wi-1 aren ' t  pushed, we also have: 

Vi.  V(ql,q2) E Q .  ((ql,q2) 6 Ri :=~ (ql,q2) ~ Wi-1). 
From these two assertions, we can deduce : 

Vi . DFSi returns UNRELIABLE 
3(ql,q2) ~ Q . ( (ql ,q2)  e w ,  ^ (ql,q~) r w,_l). 

Consequently, the set W increases strictly (Vi . Wi C Wi+I) and, as Q is finite, it  exists a 
k such tha t  DFSk doesn' t  return UNRELIABLE, which ensures the terminat ion of Algori thm. 
Moreover, the number of calls to the function ~r t ia l . .DFS is less or equal t o  n .  

It  remains to prove the correctness. Let DFSk be the last DFS performed. From (1), 
Rk n Wk = 0 v DFSk returns FALSE. But,  

- if Rk n Wk = r then all the assumptions made during DFSk are correct. Consequently, t h e  

obtained result is correct too. 

- Whenever the status of a state is unknown, i t ' s  assumed to be ,~. Thus, the relat ion computed 
by the algorithm contains the relation ,,~ (it 's  a weaker relation). I t  follows tha t  if t h e  

algorithm returns FALSE then the LTS aren ' t  bisimilar. 
D. 



188 

The time requirement for the function partial-DFS is O(n). In the worst case, as pointed 
out in the proof of proposit ion 4.1 the number of calls of this function may be n. Consequently, 
the theoretical t ime requirement for this algori thm is O(n2). In practice, it  turns out tha t  only 1 
or 2 DFS are required to obtain a reliable result. Moreover, whenever the LTS are not bisimilar, 
the time requirement is always O(n). 

In both cases, the memory requirement for the algori thm is O(n). However, the da ta  struc- 
tures required can be divided into sequentially accessed memory (Stl and St2) wad randomly 
accessed memory ( R, V and W).  Furthermore, as it  is not crit ical to store a l l  the already visited 
states, memory efficient implementations can be found for the set V, like hash-based caches. 

5 A p p l i c a t i o n s  and  R e s u l t s  

From this general algori thm several decision procedures for bisimulation and simulation based 
relations have been implemented in the tool ALD~BARAN, like strong and w-bisimulation, strong 
simulation, safety preorder and safety equivalence. However, as it  is the case for the Paige & 
Tarjan algorithm, such decision procedures are really useful in a verification tool - from a user's 
point  of view - only if they allow to build a diagnosis whenever the two LTS are not re la ted .  We 
show how the previous algori thm has been modified in order to allow this computation.  Then, 
we give some results obtained when applying it to the verification of LOTOS specifications. 

R e m a r k  2 In this draft implementation, the verification is not performed "on the fly" straightly 
from the LOTOS specifications: the LTS are previously generated and the verification phase 
consists in simultaneously building the LTS product  and deciding whether or not they are 
related, as described in the algorithm. Thus, the obtained results can be compared with the  
classical verification procedure (based on the Paige & Tarjan algorithm) already implemented 
in ALD~BARAN. 

5.1 D i a g n o s i s  

Several formalisms have been proposed in order to express the "non bisimulation" of two LTS 
(for example Hennessy-Milner Logic in [Cle90]). We present here a more intuitive solution, 
suitable either for bisimulation or simulation relations (both denoted by RII): whenever the two 
LTS $1 and $2 are not related, we build an explanation sequence consisting of an execution 
sequence ~ of $1 XRa $2 terminated by a failure state (Ph, qk) which is not in R111 (i.e, from 
which it c lear ly 'appears  that  S1 and $2 are not related) and such tha t  for each (Pl,ql) of ~, 
(p~, q~) r R n. 

D e f i n i t i o n  5.1 Let S1 and $2 be two LTS. An ezplanation sequence of $1 ~IIs2 is an e~ecution 
sequence ~ of S1 x Rn S2 such that: 

�9 o" = {(q01, qo2) = (Pl ,  q l ) ,  (/92, q2), ...,  (Pk, qk)}  

�9 V i . O < i < k ,  (pi, qi) f[ II Rk-i+l. 
�9 (p~, qk) r @ 

In fact, the explanation sequences are exactly the execution sequences which are looked for 
during the verification phase, see proposit ion 3.1. 

We show how such a sequence can be obtained (and therefore printed) without modifying 
the t ime and memory complexities of the previous algorithm: 



189 

d e t e r m i n i s t i c  case:  Obviously, when a state fail is reached during the DFS of $1 • n $2 the 
stack S t l  contains an ezplanation sequence (proposition 3.2). 

g e n e r a l  case:  In this case, the sequence has to be explicitly buil t  during the verification phase. 
In the previous algorithm, all the visited states (p, q) of S1 • $2 which do not belong 
to R H are inserted in the set W. To obtain an ezplanation sequence, it  is then sufficient 
to modify the algori thm in the following manner: whenever a new state is inserted in W*, 
it is linked with one of its successor already in ~V (which always exists). Thus, if the 
initial state of the product  belongs to Fir (i.e, the two LTS are not  related),  an ezplanation 
sequence is s traightly available from its associated linked list. 

5 .2  R e s u l t s  

Two examples are studied here: the first one is an al ternat ing bi t  protocol  called Datal ink 
protocol [QPF88], and the second one is a more realistic example, the rel/RELfi]o protocol 
[SEP0]. For each example, the verification was performed as follows: 

- generating the LTS $1 (Implementation) from the LOTOS description, using the LOTOS com- 
piler CJESAR [GSP0]. 

- building the LTS $2 (Speci]ication), representing the expected behavior of the system. 

- comparing $1 and $2 with respect to w-bisimulation or safety equivalence, using both the 
usual decision procedure of ALDI~BARAN and the improved one described in this paper.  

5.2.1 D a t a l l n k  p r o t o c o l  

The Datalink protocol is an example of an al ternat ing bi t  protocol. The LOTOS specification 
provided to CESAR is described in [QPF88]. By varying the number of the different messages 
(noted N) ,  LTS of different sizes can be obtained. These LTS have been compared, with respect 
to w-bisimulation, with the LTS describing the expected behavior of the protocol. However , for 
N > 40, the memory required by the classical decision procedure of ALDI~BARAN becomes too 
large, and consequently the verification can no longer be performed with this procedure. 

The following notations are used: 

�9 ni and rn~ denote the number of states and transit ions of the two LTS (i = 1, 2). 

�9 n denotes the number of states of the product  which have been effectively analyzed. 

�9 t l  is the time needed by the usual decision procedure of ALDI~BARAN. 

�9 t2 is the time needed by the decision procedure described in this paper.  

The times given here are elapsed times, obtained on a SUN 3-80 Workstation.  

N n l  m l  n2 m2 n t l  t2 
20 7241 10560 41 440 1661 0:24 0:19 
30 15661 23040 60 930 3691 0:57 0:55 

40 27281 40320 80 1640 6521 2:07 1:45 

50 42101 62400 101 2600 10151 �9 - - .  2:27 

60 60121 89280 121 3720 14581 �9 - - ,  3:42 

70 81341 120960 140 4970 19811, - - .  6:42 

80 105761 157440 161 6560 25841, - - .  9:23 



190 

5.2.2 reI/REL/~fo p r o t o c o l  

This algorithm has also been used for the verification of a "real" protocol, rel/TlELflfo ([SEY0]), 
carried out in Hewlett-Packard Laboratories [MB90]. This reliable multicast protocol provides 
the following service: 

A t o m i c i t y :  If a multicast from a transmitter is received by a functioning receiver, then all the 
other functioning receivers will also receive it, even if the transmitter crashes during the 
multicast. 

Fifo: All the multicasts from the same transmitter are received by the functioning receivers in 
the order of the multicasts were made. 

This protocol has been modeled in LOTOS, and a LTS of 680 000 states and 1 900 000 transitions 
has been generated by C~SAR. The Fifo requirement has been verified by comparing (with 
respect to safety equivalence) this LTS in which only the actions performed by one receiver 
were visible, with the expected behavior of a single receiver. Although the size of the graphs 
prevented a verification by using the Paige & Tarjan algorithm, this comparison was carried out 
by using the algorithm described in this paper in less than 3 hours on a HP-9000 Workstation. 

6 C o n c l u s i o n  

Several applications can be obtained from the algorithm described in this paper. 
First, it can be viewed as a new decision procedure (in the usual sense) for bisimulation 

equivalence, simulation equivalence and simulation preoders between LTS. 
The results obtained, from a draft implementation in ALD~BARAN, show that this algorithm 

can be more efficient than the usual one. As this algorithm requires less memory, verifications 
of larger LTS become possible. 

Moreover, the diagnosis capability of this decision procedure is very useful from the user's 
point of view for the specification of communicating processes (as a debugging tool for a sequen- 
tial language). 

But one of the major improvement provided by this algorithm is that  "on the fly" verification 
of bisimulation and simulation relations are allowed. In this framework, our project is to modify 
the LOTOS compiler C2~SAR to compare LOTOS specifications (with respect to these relations) 
without explicitly storing the whole LTS of the LOTOS specifications. Consequently, checking 
of real size examples could be carried out. 

R e f e r e n c e s  

[BFG*91] 

[BFH90] 

[CleY0] 

[CVWY90] 

A. Bouajjani, J.C. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safety for 
Branching Time Semantics. In 18th ICALP, july 1991. 

A. Bouajjani, J. C. Fernandez, and N. Halbwachs. On the verification of safety 
properties. Tech. report, Spectre L 12, IMAG, Grenoble, march 1990. 

R. Cleaveland. On Automatically Distinguishing Inequivalent Processes. In Work- 
shop on Computer-Aided Verification, june 1990. 

C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory Efficient Algo- 
rithms for the Verification of Temporal Properties. In Workshop on Computer-Aided 
Verification, june 1990. 



[Fer89] 

[FM90] 

[GS86] 

[GS90] 

[Ho189] 

[JJ89] 

[MB90] 

[Mil80] 

[PT87] 

[QPF88] 

[SE90] 

191 

J. C. Fernandez. Alddbaran: A tool for verification of communicating processes. 
Tech. report Spectre C14, LGI-IMAG Grenoble, 1989. 

J. C. Fernandez and L. Mounier. Verifying Bisimulations on the Fly. In Proceedings 
of the Third International Conference on Formal Description Techniques FORTE'90 
(Madrid, Spain}, pages 91-105, North-Holland, November 1990. 

S. Graf and J. Sifakis. Readiness Semantics for Regular Processes with Silent Action. 
Technical Report Projet Cesar RT-3, LGI-IMAG Grenoble, 1986. 

Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS Spec- 
ifications. In L. Logrippo, It. L. Probert, and H. Ural, editors, Proceedings of the 
lOth International Symposium on Protocol Specification, Testing and Verification 
(Ottawa}, IFIP, North-Holland, Amsterdam, June 1990. 

Gerard J. Holzmann. Algorithms for Automated Protocol Validation. In Proceed. 
ings of the 1st International Workshop on Automatic Verification Methods for Finite 
State Systems (Grenoble, France}, Springer Verlag, jun 1989. 

Claude Jard and Thierry Jeron. On-Line Model-Checking for Finite Linear Tem- 
porM Logic Specifications. In International Workshop on Automatic Verification 
Methods for Finite State Systems, LNCS 407, Springer Verlag, 1989. 

Laurent Mounier and Simon Bainbridge. Specification and Verification of a Reliable 
Multicast Protocol. Technical Report (In preparation), Hewlett-Packard Laborato- 
ries, Bristol, U.K, 1990. 

1t. Milner. A Calculus of Communication Systems. In LNCS 9~, Springer Verlag, 
1980. 

It. Paige and It. Tarjan. Three Partition Itefinement Algorithms. SIAM J. Comput., 
No. 6, 16, 1987. 

Juan Quemada, Santiago Pav6n, and Angel Fern&ndez. Transforming LOTOS Spec- 
ifications with LOLA: The Parametrized Expansion. In Kenneth J. Turner, editor, 
Proceedings of the 1st International Conference on Formal Description Techniques 
FORTE'88 (Stifling, Scotland}, pages 45-54, North-Holland, Amsterdam, Septem- 
ber 1988. 

Santosh K. Shrivaztava and Paul. D. Ezhilchelvan. rel/REL: A Family of Reliable 
Multicast Protocol for High-Speed Networks. Technical Report (In prepaxation), 
University of Newcastle, Dept. of Computer Science, U.K, 1990. 


