Skip to main content

Synthesis of (strained) macrocycles by sulfone pyrolysis

  • Chapter
  • First Online:
Macrocycles

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 161))

Abstract

Among the methods for the synthesis of strained macrocycles, the ring contraction of unstrained cyclic precursors by thermal elimination of sulfur dioxide (“sulfone pyrolysis”) is of general importance because it offers access to a large diversity of macrocycles not equalled by other methods. Highly strained macrocycles as well as macrocycles containing labile moieties or functional groups can be synthesized. Several bonds can be created simultaneously and yields are comparably high.

In order to fully acknowledge the scope of this method, recent pyrolyses are listed and arranged according to structural features. Experimental parameters can be adapted to reactivity and stability of the compounds and are listed for purpose of easy comparison.

By reviewing the reactions listed, it becomes obvious that the potential of this synthetic method is not yet fully explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

10 References

  1. Vögtle F (1969) Chem Ber 102: 1449

    Google Scholar 

  2. Vögtle F (1969) Chem Ber 102: 3077

    Google Scholar 

  3. Vögtle F (1969) Angew Chem 81: 258; Angew Chem Int Ed Engl 8: 274

    Google Scholar 

  4. Vögtle F, Rossa L (1979) Angew Chem 91: 534; Angew Chem, Int Ed Engl 18: 514

    Google Scholar 

  5. Rossa L, Vögtle F (1983) Top Curr Chem 113: 1

    Google Scholar 

  6. Müller E, Röscheisen G (1957) Chem Ber 90: 543

    Google Scholar 

  7. See, eg, Allinger NL, Da Rooge MA, Hermann RB (1961) J Am Chem Soc 83: 1974

    Article  Google Scholar 

  8. Vögtle F, Knops P, Sendhoff N, Mekelburger HB (1990), Top Curr Chem (in press)

    Google Scholar 

  9. Ostrowicki A, Koepp E, Vögtle F (1990) Top Curr Chem (in press) [Beitrag 239]

    Google Scholar 

  10. Nokami J, Nishiuchi K, Wakabayashi S, Okawara R (1980) Tetrahedron Lett 21: 4455

    Article  Google Scholar 

  11. See, eg, Givens RS, Olsen RJ, Wylie PL (1979) J Org Chem 44: 1608

    Article  Google Scholar 

  12. See, eg, Bruhin J, Jenny W (1973) Tetrahedron Lett 1215

    Google Scholar 

  13. Bieber W, Vögtle F (1978) Chem Ber 111: 1653

    Google Scholar 

  14. Mitchell RH, Otsubo T, Boekelheide V (1983) Tetrahedron Lett 1975: 219

    Google Scholar 

  15. Mitchell RH, Boekelheide V (1974) J Am Chem Soc 96: 1547

    Article  Google Scholar 

  16. Koray AR (1983) J Organomet Chem 243: 191

    Google Scholar 

  17. Higuchi H, Tani K, Otsubo T, Sakata Y, Misumi S (1987) Bull Chem Soc Jpn 60: 4027

    Google Scholar 

  18. Vögtle F, Dohm J, Rissanen K (1990) Angew Chem 102 943; Angew Chem, Int Ed Engl 29: 902

    Google Scholar 

  19. Staab HA, Reibel WRK, Krieger C (1985) Chem Ber 118: 1230

    Google Scholar 

  20. Staab HA, Wahl P, Kay KY (1987) Chem Ber 120: 541

    Google Scholar 

  21. Staab HA, Diederich F (1983) Chem Ber 116: 3487

    Google Scholar 

  22. Vögtle F, Fornell P, Löhr W (1979) Chem Ind (London) 416

    Google Scholar 

  23. Yamato T, Sakamoto H, Kobayashi K, Tashiro M (1986) J Chem Res (S) 352

    Google Scholar 

  24. Blank NE, Haenel MW (1981) Chem Ber 114: 1531

    Google Scholar 

  25. Hammerschmidt E, Vögtle F (1980) Chem Ber 113: 1125

    Google Scholar 

  26. Wittek M, Vögtle F, (1982) Chem Ber 115: 1363

    Google Scholar 

  27. Vögtle F, Palmer M, Fritz E, Lehmann U, Meurer K, Mannschreck A, Kastner F, Irngartinger H, Huber-Patz U, Puff H, Friedrichs E (1983) Chem Ber 116: 3112

    Google Scholar 

  28. Hammerschmidt E, Vögtle F (1980) Chem Ber 113: 3550

    Google Scholar 

  29. Vögtle F, Wittek M (1982) Chem Ber 115: 2533

    Google Scholar 

  30. Wingen R, Vögtle F (1980) Chem Ber 113: 676

    Google Scholar 

  31. Bodwell G, Ernst L, Haenel MW, Hopf H (1989) Angew Chem 101: 509; Angew Chem, Int Ed Engl 28: 455

    Google Scholar 

  32. Vögtle F, Neumann P (1970) Tetrahedron 26: 5847

    Article  Google Scholar 

  33. Hopf H, Bodwell G, Ernst L (1989) Chem Ber 122: 1013

    Google Scholar 

  34. Sato T, Torizuka K, Komaki R, Atobe H (1980) J Chem Soc, Perkin Trans 2: 561

    Google Scholar 

  35. Torizuka K, Sato T (1980) Bull Chem Soc Jpn 53: 2411

    Google Scholar 

  36. Staab HA, Jörns M, Krieger C, Rentzea M (1985) Chem Ber 118: 796; Staab HA, Jörns M, Krieger C (1979) Tetrahedron Lett 2513

    Google Scholar 

  37. Staab HA, Schanne L, Krieger C, Taglieber V (1985) Chem Ber 118: 1204

    Google Scholar 

  38. Staab HA, Reimann-Haas R, Ulrich P, Krieger C (1983) Chem Ber 116: 2808

    Google Scholar 

  39. Tashiro M, Koya K, Yamato T (1983) J Am Chem Soc 105: 6650

    Article  Google Scholar 

  40. Tashiro M, Yamato T (1985) J Org Chem 50: 2939

    Article  Google Scholar 

  41. Tashiro M, Yamato T (1981) J Org Chem 46: 1543

    Article  Google Scholar 

  42. Tashiro M, Fujimoto H, Tsuge A, Mataka S, Kobayashi H (1989) J Org Chem 54: 2012

    Article  Google Scholar 

  43. Kawashima T, Tohda Y, Ariga M, Mori Y, Misumi S (1985) Heterocycles 23: 180

    Google Scholar 

  44. Kawashima T, Kurioka S, Tohda Y, Ariga M, Mori Y, Misumi S (1985) Chem Lett 1289

    Google Scholar 

  45. Haenel MW (1982) Chem Ber 115: 1425; Blank NE, Haenel MW, Krüger C, Tsay YH, Wientges H (1988) Angew Chem 100: 1096; Angew Chem, Int Ed Engl 27: 1064

    Google Scholar 

  46. Blank NE, Haenel MW (1983) Chem Ber 116: 827

    Google Scholar 

  47. Boekelheide V, Tsai CH (1976) Tetrahedron 32: 423

    Article  Google Scholar 

  48. Haenel MW, Lintner B, Benn R, Rufinska A, Schroth G, Krüger C, Hirsch S, Irngartinger H, Schweitzer D (1985) Chem Ber 118: 4884

    Google Scholar 

  49. Haenel MW, Lintner B, Schweitzer D (1986) Z Naturforsch 41b: 223

    Google Scholar 

  50. Lintner B, Schweitzer B, Benn R, Rufinska A, Haenel MW (1985) Chem Ber 118: 4907

    Google Scholar 

  51. Staab HA, Kirrstetter RGH (1979) Liebigs Ann Chem 886

    Google Scholar 

  52. Kirrstetter RGH, Staab HA (1984) Liebigs Ann Chem 899

    Google Scholar 

  53. Sauer M, Staab HA (1984) Liebigs Ann Chem 615

    Google Scholar 

  54. Staab HA, Sauer M (1984) Liebigs Ann Chem 742

    Google Scholar 

  55. Staab HA, Diederich F, Caplar V (1983) Liebigs Ann Chem 2262

    Google Scholar 

  56. Leach DA, Reiss JA (1979) Tetrahedron Lett 4501

    Google Scholar 

  57. Banciu R, Pogany I, Mosara D, Rusu P, Stanciulescu R, Dezsö M (1985) Rev Roum Chim 30: 703

    Google Scholar 

  58. Böckmann K, Vögtle F (1981) Liebigs Ann Chem 467

    Google Scholar 

  59. Böckmann K, Vögtle F (1981) Chem Ber 114: 1048

    Google Scholar 

  60. Haenel MW, Irngartinger H, Krieger C (1985) Chem Ber 118: 144

    Google Scholar 

  61. Hatta T, Mataka S, Tashiro M (1986) J Heterocycl Chem 23: 813

    Google Scholar 

  62. Kawamata A, Fukazawa Y, Fujise Y, Ito S (1982) Tetrahedron Lett 1083

    Google Scholar 

  63. Vögtle F, Klieser B (1982) Angew Chem 94: 922; Angew Chem, Int Ed Engl 21: 928

    Google Scholar 

  64. Saitmacher K (1989) Ph D Thesis, Univ Bonn

    Google Scholar 

  65. Vinod TK, Hart H (1990) J Org Chem 55: 881; Vinod TK, Hart H (1988) J Am Chem Soc 110: 6574

    Article  Google Scholar 

  66. Higuchi H, Kobayashi E, Sakata Y, Misumi S (1986) Tetrahedron 42: 1731

    Article  Google Scholar 

  67. Staab HA, Alt R (1984) Chem Ber 117: 850

    Google Scholar 

  68. Staab HA, Ruland A, Kuo-chen C (1982) Chem Ber 115: 1755

    Google Scholar 

  69. Saito H, Fujise Y, Ito S (1983) Tetrahedron Lett 24: 3879

    Article  Google Scholar 

  70. Kawamata A, Fukazawa Y, Fujise Y, Ito S (1982) Tetrahedron Lett 23: 4955

    Article  Google Scholar 

  71. Haenel MW, Flatow A (1979) Chem Ber 112: 249

    Google Scholar 

  72. Otsubo T, Kitasawa M, Misumi S (1979) Bull Chem Soc Jpn 52: 1515

    Google Scholar 

  73. Otsubo T, Kohda T, Misumi S (1980) Bull Chem Soc Jpn 53: 512

    Google Scholar 

  74. Staab HA, Herz CP, Döhling A (1980) Chem Ber 113: 233

    Google Scholar 

  75. Staab HA, Herz CP, Krieger C, Rentea M (1983) Chem Ber 116: 3813

    Google Scholar 

  76. Staab HA, Hinz R, Knaus GH, Krieger C (1983) Chem Ber 116: 2835

    Google Scholar 

  77. Staab HA, Knaus GH, Kenke HE, Krieger C (1983) Chem Ber 116: 2785; Staab HA, Knaus GH (1979) Tetrahedron Lett 4261

    Google Scholar 

  78. Staab HA, Döhling A, Krieger C (1981) Liebigs Ann Chem 1052

    Google Scholar 

  79. Staab HA, Starker B, Krieger C (1983) Chem Ber 116: 3831

    Google Scholar 

  80. Blank NE, Haenel MW (1981) Chem Ber 114: 1520

    Google Scholar 

  81. Yoshinaga M, Otsubo T, Sakata Y, Misumi S (1979) Bull Chem Soc Jpn 52: 3759

    Google Scholar 

  82. Staab HA, Riegler N, Diederich F, Krieger S, Schweitzer D (1984) Chem Ber 117: 246

    Google Scholar 

  83. Pascal Jr. RA, Grossmann RB, van Engen D (1987) J Am Chem Soc 109: 6878

    Article  Google Scholar 

  84. Hammerschmidt E, Vögtle F (1979) Chem Ber 112: 1785

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Dohm, J., Vögtle, F. (1992). Synthesis of (strained) macrocycles by sulfone pyrolysis. In: Macrocycles. Topics in Current Chemistry, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54348-1_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-54348-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54348-0

  • Online ISBN: 978-3-540-47581-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics