
DBE: AN EXPERT TOOL FOR DATABASE DESIGN

Dina Bitton *

Jeffrey C. Millman *
Solveig Torgersen +

Department of Electrical Engineering and Computer Science
University of Illinois at Chicago

I. Introduction

DBE (Design By Example) is an expert tool for specifying and designing a rela-

tioiial database and its associated queries. The primary goals in the development of

DBE were:

(a) To provide a system that can tolerate, elucidate, and correct poorly formed rela-
tional database specifications by using example tables and example queries.

(b) To integrate the design of a database with the design of its queries.
(c) To construct well-formed database schemes by automating important knowledge

in relational design theory.
(d) To study issues of feasibility, ease of use, and performance in automatic database

design.

Currently, a prototype of DBE is operational on Sun 3 workstations and interfaces with

SunIngres. The system supports an interactive design process, which takes the data-

base designer through a structured sequence of Design Screens. The screens visualize

* Author's present address: DB Software Corporation, 385 Sherman Avenue Suite 2, Palo Alto
CA 94306, USA.
+ Author's present address: Norsk Hydro a.s., Postboks 200, N-1321 Stabekk, Norway.
Partial Support for this research was provided by a fellowship from the Norwegian Council for
Sciences and Humanities.

241

design information and provide menu selections to invoke specialized editors and

design algorithms. An underlying storage subsystem provides access to a design cata-

log containing the attributes, dependencies, relations, tables, and queries participating

in a design session. Throughout the design process, a dual representation of relations

and queries is available to the designer. One is the graphical DBE representation, the

other is text in a conventional query language (a Quel query in the present implemen-

tation).

A design session with DBE establishes a dialogue between the database designer

and the system, during which the designer can convey his knowledge about the seman-

tics of the database through the use of example tables and example queries. Visual

tools, such as specialized editors, menus, and graphical displays of the examples, pro-

vide an interface that hides the complexity of the design algorithms used by the sys-

tem. This interface allows the designer to focus on specifying the application, instead

of trying to master concepts in relational design theory.

The design expertise embedded in DBE addresses two important problems that

current database design tools often overlook. The first problem is that the database

designer is usually not able to specify the semantics of the database or the queries

correctly and completely in one step. Thus a good design tool should support an itera-

five design process and provide a way to verify and correct an initial specification.

For that purpose, DBE represents design information with examples that the designer

can examine and modify. The second problem is that alternative database schemes

often exist of which the designer is not aware. During a conventional design process,

one out of possibly many candidate schemes is often selected, without weighting

whether it is natural for representing data or for formulating queries. In contrast, DBE

generates multiple designs for the same database and lets the designer examine and

242

evaluate them in conjunction with queries.

Anomalies resulting from an incorrect specification of the logical dependencies

often appear in a relational scheme that is produced by a conventional design tool or

chosen by the designer in an ad-hoc manner. Even for the best understood dependen-

cies, the functional dependencies, omissions or errors will often occur when the data-

base designer is asked to specify them all at once. To cope with this problem, DBE

can automatically infer functional dependencies from an example table containing sam-

pie data. Alternatively, if the designer prefers to specify the dependencies directly, but

needs to verify this specification, DBE will generate an example table which satisfies

exactly these dependencies. The data values used in generating the example table are

selected from domains defined by the database designer. Thus by examining the fami-

liar data in the table, the designer may uncover inconsistencies. In particular, for any

dependency that was omitted in the initial specification, the example table will contain

a pair of "real-like" tuples violating this dependency.

Other database anomalies may result from the designer choosing a scheme that is

not sufficiently normalized or does not have other desirable properties such as lossless

joins or preservation of dependencies [U182]. To avoid these anomalies, DBE gen-

erates database schemes satisfying these properties, or checks whether these properties

hold for a scheme which was manually constructed by the designer.

Ambiguities in a relational query may result from an unnatural database scheme,

from an unfriendly query language, or simply from a user error. Often, these ambigui-

ties could have been avoided by making the database designer aware of an alternative

scheme for the database, and by providing a tool for validating the formulation of

queries.

DBE provides the database designer with the option to reject or modify a candi-

243

date database scheme, if it is difficult to formulate a desirable set of queries against

that scheme. Thus the design and acceptance of a database scheme is fully integrated

with the design of the queries. Furthermore, the design tool can be used on an opera-

tional database to update and modify the database scheme if new data and new appli-

cations make the existing scheme incomplete or inefficient.

The remainder of this paper is organized as follows. In Section 2, we present the

Schema Design Screens and the design algorithms utilized in the database design pro-

cess. In Section 3, we describe the Query Design Screen. In Section 4 we provide an

overview of the data structures that constitute the DBE design catalog, and describe the

screen editors associated with these structures. In Section 5, we present the storage

subsystem and discuss performance issues. Section 6 contains a summary and outlines

directions of future work.

2. The Schema Design Screens

A design session with DBE takes the database designer through a sequence of

design screens, where current design information is displayed and menu selections are

provided. Help is available in pop-up windows, and a transparent history mechanism

keeps track of the work accomplished during the session. Certain screens are Viewers,

from which specialized editors can be invoked. For instance, there is a Catalog

Viewer (Figure 1) and a Scheme Viewer. Two other screens, the Relation Viewer (Fig-

ure 3) and the Decomposition Viewer (Figure 4), which encompass the most important

functions and algorithms utilized during the design process, are described below.

244

2.1. The Relation Viewer

FIGURE 1 - C A T A L O G VIEWER

.,.l~'b.=:,+',.,,,-+, = .5-~+i

D a t a b a s e : ~ ! ~ - ~

D i r ec to r y : c o u r s e _ d b

I II

CLOSE REPORTS QUIT

;i VIEW copy D~,~E 'i;
IIN C Databsee II

Current llt)ate: 5E~-~-~LT§~-~ n
Catalog I1# A t t r i b u t e s : 6 U

H# Re la t ions : 6
II# S,:he,,,e= : 2 II
I t , q

J i (J !

I ! t
l i m m (

II

i ! ,

; VZEV/ DELETE I | VIEW UELETE ;
IName: C.a_t_a~og 3_N_F_. I IName: c_a_.t_a_!oa 8C_N_F - I
I D a t e : O c t t 3 1 5 : 1 2 : 5 1 I l o a f s : O c t 13 1 6 : 1 2 : 5 8 t
J# A t t r i b u t e s : 6 I :# A t t r i b u t e s : 6 I
I# Re]ar lene: 6 i iN Re la t ions : 5 1
! , sobs°. : 2 ! !# ~o,°°°.: 2 i

C a t a l o g s ;

| 3ep 29 18:22;83: Catalog #5
O c t 13 16:12:58: Catalog BCNF

| Oct 13 16:12:51: Catalog 3HF
O c t 13 15:35:45: C o u r s e D a t a b a s e

This screen displays a complete description of a relation (Figure 3). It is divided

into four areas, each displaying one type of information on the relation: (1) keys, (2)

attributes, (3) dependencies, and (4) example table. In each area, the current informa-

tion stored in the catalog is displayed, and can be edited by selecting the correspond-

ing editor.

Two other menu selections, SHOW EXAMPLE and INFER DEPENDENCIES,

2 4 5

F I G U R E 2 - S C H E M E V I E W E R

Da~.aballe: Cour ~e l) a t abase

C a t a | o g : C a t a l o g #2

Scheme: S.eh_e.d_u_ l_e - NEW

New Re' fa t I on: I..

R e l a t i o n s : Number o f R e l a t i o n s : 5

I H R S
R H T

| T C
H R C

QUERY

IIIII I I

RETURN

CLEAR

HERGE

C l f c k f o r menu o f e d i t o r s

should be explained in more detail, since they control the use of example tables in the

design process. The designer may provide an example table, or request that one be

generated by the system by selecting the SHOW EXAMPLE menu selection. The

example table generated by DBE is always an Armstrong table [Ar74, BDFS84]. That

is an instance of the relation which exactly satisfies the given set of dependencies.1 In

1 The idea of using Armstrong tables in the design process was originally proposed in
[SM81]. An algorithm for constructing an Armstrong table was given in [BDFS84]. Bounds
for the size of an Armstrong table and an improved algorithm, which we have implemented in

246

FIGURE 3 - RELATION VIEWER

Relation: ~2~C£~_~Z~E~ MORH^LIZE

Keys

{ HOUr Student }

1

Att r ibutes

| Grade Hour
Student Teacher
Room CouPes

Functional Dependencies

| { Course } --> (Teacher }
{ Hour Room) --> £ Course }

| (Teacher Hour) --> (Room }
(Course Student } --> (Grade)
{ Hour Student } --> (Room }

RETURN

EDIT

EDIT

Armstrong Table GEH INFER FD'S

both cases, the example table can be edited by invoking the table editor, and depen-

dencies will be inferred which reflect any update to the values and tuples stored in the

example. For instance, changing the value of an attribute involved in a previously

DBE, are given in [MR86].

247

defined dependency may make the table violate this dependency. Thus the dependency

should be deleted from the set associated with the relation. After the example table is

updated, the INFER DEPENDENCIES menu can be selected. This selection will have

the effect of updating the set of dependencies so that it reflects the changes made by

the designer in the example table. After any update of the attributes or dependencies,

the keys and the example table are automatically updated.

Four algorithms provide the functionality associated with the Relation Screen:

• reduction of a set of functional dependencies [U182]
• finding keys, given a set of functional dependencies [LO78]
• generating an Armstrong table for a set of functional dependencies
• inferring the functional dependencies satisfied by a table [MR87, BMOT87].

2.2. The Decomposition Viewer

This screen (Figure 4) will appear after the designer selects the NORMALIZE

menu item in the Relation Screen. It contains a scheme (set of subrelations) obtained

by decomposing a relation into third, Boyce-Codd, or fourth normal form, and a label

describing properties of the decomposition: normal form, preservation of dependencies,

lossless join. Many alternative decompositions may exist for a given relation. When

the normalization function is invoked, the first scheme found by the decomposition

algorithm is generated and displayed. If the designer wishes to examine alternative

schemes, these can be displayed by selecting the NEXT SCHEME option. We use an

algorithm proposed in [To87] to efficiently generate all the distinct BCNF decomposi-

tions.

The relations produced by decomposition inherit functional dependencies obtained

by projecting the set associated with the original relation. The decomposed scheme,

with the relations and the projected dependencies, are automatically stored in the

2 4 8

FIGURE 4 - DECOMPOSITION VIEWER

Iqq~llll+p|lm,k'.lU',I

Nm'mzl Form:Third
Lose|see: Yes
Dependency Preserv ing: YeS

SEARCH REJECT NEXT PREY RETURN

Oo. Os~tmps: 1
Current Re.; 1
No. Rolat lons: S

S H_R Student
1 Keys FOs Hour
| Yte~ aoo,

R H T Room
-f--~--'~" H e =

V$~I e ~ Teacher

S C_G Student
| Keys FOs Course
l V i e Grids

| Keys FOe Hour
| Vlew Course

~_! Course
| Keys FDs Teacher

SCROLL UP SCROLL

) tsp lay the FD'e to th~s r e l a t i on

I l l .e l 'Alber t Harrlngtonl4:fl0 Tl~ 138~ gSB] I~
II%'.lOl^~be~t HabrtngtOnlg:mJ Xon IZW'3 BX I |ll
ill~.,.~jOIAlbet't x*rr~n~tonlie:'ee ~hul2~ en t II!
IIl~lOIAnna gaemerltntJ ' IlO:O0 ThUIIOR SX I E
i ~ I ~ t ° n "h 'a 'n I 'e:ee Thul'ee ' ~ I i

(RouO (T .c~sr) I
lJ0eb SSel4i,e Th, 10avtd ' Xarr|e I i

1:2o9 ~x I9~'ee ~on II:d=~rd'"Rur*eki |
1188 SH |1B:88 ThulE~ard'*6uraekl |

!

EECS 34 Grlld~

[l i l i i '
rL~J~* (Room_) (flour) (Course) --e

ILliOlaees es~19:oe ~n /tics 2021 I
ll~OlZe9 e . i~:ee v~n'lttcs"4991 g
I~mol;eo z. I lo:oo T~ulEECS 4991 |

OIleR SH]II:eR Ved/EECS 4991 [

" "'1' ' '11' '1

,~ ' " _._ - , |
- (c ~ . .) (l e . e ~ ') |

fLiCk' '~4~ IOavld Herr tel]
|tEed aezlo.~,e X . r r l . I [

current catalog instance and can be subsequently examined and updated.

Any relation listed in a Decomposition Screen can be selected. This selection

will have the effect of displaying a new Relation Screen containing the description of

the relation. At this point, every menu available in the Relation Screen can be selected

again. In particular, the designer can request to show an example table for the rela-

tion.

249

At present, the following algorithms support the functions provided in the Decom-

position Screen:

• ~ m p o s i t i o n into 3NF, dependency preserving, and lossless [U182]
• Decomposition into BCNF, lossless [TF82 and To87]
• Projection of a set of dependencies [Go87]

3. The Query Designer

A Query Design Screen (Figure 5) displays two representations of the query

being designed. One is a graphical representation, similar to the one used in Query-

By-Example [Z177], where templates of the relations involved in the query are

displayed. The other is text, in a conventional query language. In the current imple-

mentation, the query language is Quel since DBE interfaces with Sunlngres. To design

a query in DBE, the designer uses a screen editor and specifies the query graphically.

When this specification is completed, the Query Designer automatically invokes an

algorithm that finds the possible join paths and helps the designer disambiguate the

query [To87]. Finally the DBE query is translated to its equivalent text query.

The graphical representation is more flexible, and does not require that the

designer remember names of attributes or which relation an attribute belongs to. As a

query is being designed, browsing through the catalog is possible and transition to

another design screen, such as the Relation Screen is possible. Thus the designer can

interleave the design of queries with the design of the database scheme.

The Query Screen is broken up into two parts (Figure 5). On the left hand side,

the list of relations composing the current database scheme is displayed, and a number

of subwindows contain commands to help specify and verify the query. The right

hand side of the screen contains relation templates. A DBE query is constructed by

2 5 0

FIGURE 5 - QUERY DESIGN SCREEN

$CHEH(: schedule RETURN

R e l l t t o n u : $ H ~ R H T
1 S C G ~ H C
| C T

. m . . ~
B ~ J (Studont) (NOu,) (R ~) : ~ |

"r r i I [: !

(Cour.e) (T.ch~) --ll
| _COUR3E / I

I
in' FII

1
C ~ e n t l

F~Qd t h 2 F oueee lind th l l t e l l cher f o r the s t u d e n t . A r | e n Yun . Re
l i t 9 : 6 0 HOndaVs.
.

i
~lllr, ltt~ • w : t I m t ; ~ * , _ I I

I .STU~EHT : "Ar ten Yung" | .
.
.
.

Huar:t T e x t ;
| r , n g e of • I s $ It R~ b (s C T, c (s fl H C
| r e t r ~ o v o (; , S t u d e n t , , b . C o m ' s e , b. Totcher)

uhere (c .Room : t .Roo lq) sad (b ,Courae = c .Course) arid (: , H o u r
" 9 : 8 8 Hon") t n d (i . S t u d o n t = " A r 4 e n Yung ")
\g

selecting the relations participating in the query and filling out the relation templates.

A number of editor commands and help menus are provided to assist the designer in

this construction. Like in QBE [Z177], a query can be specified by filling example ele-

ments and predicates in the attribute columns of the relation templates. Alternatively,

predicates can be specified in the Predicates area at the bottom left of the query screen

(Figure 5).

251

After the query is constructed and its syntax checked, it can be translated to text

form by selecting the DML (Data Manipulation Language) menu.

One problem that we have begun investigating is how to verify the queries first

against example tables, and later against an existing database. To solve this problem,

DBE needs to interact with a database management system that contains a copy of the

database against which the query will be run. This seems to be only possible for a

database systems that can interpret queries on the fly. In the case of Ingres, it is possi-

ble to run queries interpretively, and so we can implement this feature.

Another advantage of using query translation is that it allows the design tool to

have its own internal representation of the query that can be used with multiple data-

base schemes. This feature adds flexibility in integrating the design of queries with

the design of the database.

4. The DBE Design Catalog: Data Structures and Editors

The DBE design catalog stores all the design data and controls versions and his-

tory in the design process. It is structured to provide browsing and retrieval capabili-

ties. The design catalog for a particular database contains a number of catalog

instances. Domains arc defined globally with respect to all catalog instances. All the

other design entities (attributes, relations, tables, schemes, and queries) are defined

with respect to one catalog instance.

A data structure and an associated set of functions arc defined for each type of

design entity. The functions typically include create, view, copy and update. They

can be invoked by the designer through the corresponding editor (for instance, a new

attribute can be created by invoking the attribute editor), or called by one of the

252

design algorithms in the system. Below, we briefly describe these data structures and

the specialized editors associated with them.

4.1. Catalog Instances

The catalog structure describes a version of the database design. Every catalog

instance has a timestamp, indicating when it was created. When a new design for a

database is initiated, a current catalog is loaded with default attribute domains (such as

integer numbers and names). Then, as the design process proceeds, all attributes,

dependencies, relations, and candidate schemes are specified with respect to the current

catalog.

When a new catalog instance is created, information can be copied from other

catalogs. Catalog instances are arranged in a tree hierarchy (Figure 1) according to the

steps taken by the designer in the design process. Design entities can then be added to

the new catalog, or entities copied from another catalog can be modified.

4.2. Attributes

The main components of the attribute structure are the attribute name and its

domain. In addition, a data type and a format can be specified which define a storage

class. For instance the basic type "integer" can support domains "employee-no" or

"ssno", with different ranges and storage requirements. For every attribute, the

designer can specify properties such as "unique", "null-allowed", a list of synonyms,

and a short text describing its meaning.

Attributes can only be defined or updated using the attribute editor (Figure 6).

This editor provides a main menu for specifying the attribute's properties. It also sup-

ports browsing capabilities on domain values, and other attributes or relations stored in

253

FIGURE 6 - ATTRIBUTE EDITOR

Relat ion:

| Grade
Room

| Teacher

Course Database

Student
Hour
Course

RETURN

Name: Hour

Synonyms:Hour
H
J

Domain: hour

Format: character

RELATIONS CLEAR SAVE gEl'lOVE

hour
h

~AHPLE DOHAIb' 4:0e Thu
") 9:99 Non

EDIT DOHAZNS le:ee Th~

Length: 18 . U:B8 We(
. 11:e8 Frl

"1111
Unique: NO

Hul l Ok: NO

Desc r i p t i on :

.

.

.

C11ek to view sample domaln

the catalog. The editor validates any input made by the designer, and maintains con-

sistency in the dependencies and keys which the attribute participates in.

4.3. Domains

The domain structure specifies the range and type of values that an attribute may

254

span. A domain has a name which is a unique identifier. There is a sample list asso-

ciated with every domain, and functions are provided to add or delete values, sort the

list, and test whether a value is included in it. The list can be explicitly specified by

the designer and stored in the design catalog, or implicitly associated with a basic data

type (e.g. integer). A number of default domains are predefined. Additional domains

can be specified by the designer.

When defining a new attribute, the designer can browse through the list of values

associated with any previously defined domain or request that a new domain be

created. When an example table is generated by DBE or edited by the designer, a

domain function is invoked that produces a stream of unique example values from that

domain.

4.4. Dependendes and Keys

The dependency structure describes the type, functional or multivalued 2, and the

left (lhs) and right (rhs) hand sides of the dependency. The lhs and rhs are pointers to

lists of attributes that can have arbitrary length. Similarly keys are represented as

pointers to a list of attributes.

A dependency editor (Figure 7) can be invoked to specify new dependencies or

update previously defined dependencies. A number of specialized features are associ-

ated with the editor. The editor will check consistency of any new dependency before

adding it to the current set. Keys are dynamically found and displayed, and the set of

dependencies can be reduced to a more compact cover by selecting the COVER menu.

Two covers are generated: a minimal cover and a canonical cover [U182]. The

2 At present, multivalued dependencies are only partially implemented in DBE. They will
be more systematically integrated in the system at a future stage.

255

FIGURE 7 - FUNCTIONAL DEPENDENCY EDITOR

t $ 1 | t l o t : C o u r l l O l t l b l | l COVE~ SA~ QUXT

A t t r i b u t e s

I Grade Student ROOm
HO~I~ TEIChoP COUPs8

l

GUtLO FO ADD GEL~C ~,LEAR

Curr~nt FO Vorking Aria

{ Course) - ') (Teacher }

Funct t onsl Dop~ndmncl ee

t { Course } - -) { Teacher)
{ Course Student } - -) { Grade }

I { M r R ~ } ~ > { Courn)
{ H o u r Student) - -> (Hoo~)
(TRaher HOu~ } - -) { Room)

I I~ER

Keys:

| (Hour Student)

1

L~FT: se lec t key o~ U ~ of fd ; HIDOLE: se lec t mlS of fd

~le* tabll~ Jr0m I~+~

I

designer can choose to replace the set of dependencies by one of them.

The screen displayed by the functional dependency editor displays the attributes

in the relation, and the list of functional dependencies and keys currently defined. A

work area is provided (Current FD Working Area), where a new key or a new depen-

dency can be constructed by selecting attributes with the mouse. As dependencies are

256

added, the system automatically finds the keys and displays them. Likewise, when a

key is specified by the designer, the corresponding functioflal dependency is added to

the current set. The editor only saves a unique instance of a dependency. It also pro-

vides a menu selection to reduce a partially constructed set of dependencies to a

minimal or canonical cover [U182].

4.5. Relations

The relation structure has a unique name; a set of attributes; a set of functional

and multivalued dependencies; tags indicating its degree of normalization (3NF,

BCNF, 4NF); and an associated instance, the example table. Additional properties in

the relation structure link a relation to a database scheme which contains this and other

relations.

The relation data structure constitutes the core of the design tool. Most of the

design algorithms used by DBE are invoked in the context of specifying or updating a

relation description. The designer specifies a relation by using the attribute, depen-

dency, and table editors. Consistency within the design catalog is automatically

enforced by the editors.

4.6. Tables

Any relation stored in the catalog may have an associated instance that contains

data values sampled from actual attribute domains. This instance is an example table,

and it is extensively used to assist the designer in specifying the semantics of the data-

base. The designer can load an example table containing sample data and ask the sys-

tem to infer dependencies from it, or dependencies can be specified directly, using the

dependency editor, and the system will generate an example table which is an exact

257

representation of the dependencies. In this case, the example is an Armstrong Table

[At74, BDFS84].

The table structure is a space-efficient data structure that allows storage, addition,

and deletion of tuples (Figure 8).

F I G U R E 8 - DBE T A B L E S T R U C T U R E

Descriptor Area:

Permutation Vector:

Editor Information:

Tuple0:

Tuplel:

Tuplem:

Tuple Offsets:

Po P1 " " " P1

Display 0 Display 1 • . . Display n

TValueo. 0 "rvalueo. I . . . SValueo~

"l'Valuex, o TValuel. 1 - . . SValuel. ~

q'Valuem. 0 ~'Valuem, 1 • . . ~'Valuem.n

'~Tupleko ~Tuplekt ~l'uplekz TTuplek3

. . . ~uplek =

At the top of the table, a table descriptor is stored, followed by an array of tuples.

Tuples are implemented as arrays of pointers to character strings. At the bottom of the

table, tuple offsets are stored, with a free area left in the middle of the table for insert-

258

ing new tuples. The table is automatically expanded when this free area is exhausted.

The table descriptor contains the number of tuples stored and the maximum

number of tuple slots allocated. It also contains information required by the table edi-

tor such as a permutation vector indicating the order and format in which the attributes

are displayed by the editor. This vector is updated when the user requests viewing the

columns in a different order. Similarly, if the user wishes to sort or modify the tuples

in some way, this transformation can be done by changing only the array of tuple

offsets.

The table editor displays a 2-dimensional table representing an instance of a

stored relation scheme. Horizontal and vertical scrolling are available to facilitate exa-

mining a table which may not fit in the editor window. The table editor supports a

range of functions for manipulating columns (attributes), rows (tuples), and fields.

These functions appear as pop-up menus when the appropriate column, row, or field is

selected. Columns can be permuted, hidden, or reformatted to a desirable width. The

values in a column can be sorted or randomized. Rows can be added, deleted, or

copied. Field values can be modified. All updates are instantaneously reflected in the

window display.

4.7. Schemes

A scheme structure has a unique name, and an associated set of relations. It also

includes tags indicating whether the scheme is normalized (3NF, BCNF, 4NF), loss-

less, and dependency preserving. A scheme can be constructed by the designer, or

generated by decomposing a relation into a normal form.

To define a scheme, a screen called the Scheme Viewer is provided (Figure 2)

which provides menu selections to incrementally add relations and attributes to the

259

scheme. As with the attribute editor, consistency with the D B E design catalog is

checked before any input is accepted.

5. The DBE Storage Subsystem

In order to provide flexibility in the design process and specialized assistance in

the specification of a database and its queries, D B E must store and manipulate a con-

siderable amount of design data. Furthermore, the design algorithms utilized produce

large sets of intermediate results. For instance, for every pair of tuples in a table, the

dependency inference algorithm constructs a number of subsets of attributes that grows

exponentially with the number of attributes in the table. Thus it is important to store

these subsets as compactly as possible.

Relational design algorithms operate on sets of attributes, representing relations or

left and right hand sides of logical dependencies. Thus it is important to efficiently

support set operations such as union, intersection, subset-of, etc. In D B E , attribute sets

are internally represented as binary vectors. The attributes in a database are ordered,

R =Ao, A1, - ' - ,A,,-I. A set S~R is represented as a binary number (io i l ". • in-l), with

i~=l if Aj is in S, and i~=0 otherwise. For instance, in the database

R=Course Teacher Student Grade Hour Room , the set Course Student is represented by the

binary number (101000).

With this data structure, we are able to support an efficient implementation of set

operations (union, intersection, difference), boolean operations (set-membership, subset,

proper subset), and functions to add or remove an attribute from a set. For most prati-

cal databases, these operations are accomplished in a few machine instructions. The

set functions constitute a basic layer of DBE, and arc invoked by the higher level func-

tions.

260

Storage and manipulation of character strings are optimized by keeping all strings

in one system table. DBE maintains the invariant that all strings are stored only once.

Strings are stripped of leading and trailing blanks and inserted into a hash table. A

search or insertion return a pointer to the unique instance. String comparison reduces

to testing pointer equality.

Example tables are stored in a compact structure (Figure 8), containing descrip-

tors at its top and tuple pointers at its bottom. All example tables used during a

design session are allocated memory within one large static area. Within this area,

they can be relocated when space is needed for other example tables. Tuple offsets,

stored at the bottom of the table are relative to the top of the table.

Finally, DBE maintains its own free lists and heaps of memory, instead of allocat-

ing memory globally by making an operating system call (the sbrkO Unix call). Struc-

tures such as sets and dependencies are kept on separate free lists and are allocated

and freed on a per structure basis. In addition to being space efficient, this memory

management scheme may cut down on the amount of paging for large database design.

6. Summary and Future Work

DBE is a tool for designing relational databases and queries. One of its distin-

guishing features is that it provides expert assistance in specifying attributes and logi-

cal dependencies, without departing from the relational model. This assistance is pro-

vided in the form of graphically displayed examples and editors that interface with an

intelligent design catalog. In particular, the designer has the option of examining and

modifying example tables as a way to verify the specification of logical dependencies.

Another important feature of DBE is that it integrates the design of queries with

the design of a database scheme. The designer is given the option to consider

261

alternative database schemes and experiment with formulating relational queries against

them. Like in the specification of the logical dependencies, DBE assists the designer

in disambiguating a query by generating dual representations (graphical and tex0 and

using examples.

Consistency of the design catalog is automatically maintained by minimizing

redundancy and concurrently updating all related design entities and all their represen-

tations. For instance, the example table and the set of functional dependencies associ-

ated with a relation are always consistent with each other, as are the two representa-

tions of a query.

In the implementation of DBE, we have emphasized performance issues. A cus-

tomized storage subsystem provides a compact organization of the design information

and supports an efficient implementation of the design algorithms. Currently, the

entire DBE system consists of 45,000 lines of C code. The prototype runs comfortably

with 4 megabytes of main memory on a Sun 3/50 (a 1 MIP machine).

We have recently performed an extensive set of experiments that demonstrate the

feasibility of our approach to automatic database design. For instance, we have

showed that our implementation of the dependency inference function leads to accept-

able interactive response times for realistic example tables [BMOT87].

In the future, we plan on expanding DBE in two main directions. One is adding

functionality to the Query Designer and investigating better techniques for integrating

it with the Schema Designer. We are currently working on a characterization of join

paths, and investigating types of updates to a database scheme that could resolve ambi-

guities in a relational query [To87]. The other natural expansion would be to add a

physical design component to the system. This component could be a front-end to the

query optimizer of the database system for which DBE generates a schema and

262

queries. Finally, an open question is whether it would be possible to develop a

higher-level (non-relational) design interface on the top of DBE, while preserving the

major features of the system.

Acknowledgements

Work on the DBE system was initiated in collaboration with Kari-Jouko Raiha at

Cornell University [BMR85]. The current prototype was developed at the University of

nlinois at Chicago. We thank Soon-Ho Jeon and Arien Yung for their contributions

and long hours of programming in the final stages of implementation. Arien wrote the

screen interpreter and the functional dependency editor. Soon-Ho helped design and

implement the driver and the history mechanism.

References

[Ar74] Armstrong W.W., "Dependency Structures of Data Base Relationships," Infor-
mation Processing, 74, 1974. Berlin, August 1978.

[BDFS84] Beeri C., Dowd M., Fagin R., and Statman R., "On the Structure of
Armstrong Relations for Functional Dependencies," Journal of the ACM, 31:1,
1984.

[BMR85] Bitton D., Mannila H., and Raiha K., "Design-By-Example, A Design Tool
for Relational Databases," Technical Report, Comell Univ., March 1985.

[BMOT87] Bitton D., Millman J.C., Orji C., and Torgersen S., "A Feasibility and Per-
formance Study of Dependency Inference," Technical Report , University of
Illinois at Chicago, Dec. 1987.

[F82] Fagin R., "Armstrong Databases," IBM Research Report RJ3440, San Jose,
California, 1982.

[(3087] Gottlob G., "Computing Covers for Embedded Functional Dependencies,"
Proceedings ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, 1987.

268

[LO78] Lucchesi C.L. and Osborn S.L., "Candidate keys for relations," Journal of
Computer and System Sciences, 17:2,1978

[MU83] Maier D. and Ullman J.D., "Maximal Objects and the Semantics of Universal
Relation Databases," ACM Transactions on Database Systems, 8:1,1983.

[MMS79] Maier D., Mendelzon A.O., and Sagiv Y., "Testing Implication of Data
Dependencies," ACM Transactions on Database Systems, 4:4,1979.

[MUV84] Maier D., Ullman J.D., and Vardi M.Y., "On the Foundations of the
Universal Relation," ACM Transactions on Database Systems, 9:2,1984.

[MR86] Mannila H. and Raiha K.-J., "Design by Example: An Application of
Armstrong Relations," Journal of Computer and System Sciences, 33, 2, Oct
1986.

[MR87] Mannila H. and Raiha K.-J., "Dependency Inference," Proceedings Thir-
teenth International Conf. on Very Large Data Bases, Brighton, August 1987.

[MZ80] Melkanoff M.A. and Zaniolo C., "Decomposition of Relational and Synthesis
of Entity-Relationship Diagrams," Entity_relationship Approach to System
Analysis and Design,(P.P. Chert ed.),North-Holland Publishing Company, 1980.

[SM81] Silva A.M. and Melkanoff M.A., "A method for helping discover the depen-
dencies of a relation," Advances in Data Base Theory, 1, Gallaire H., Minker
J., Nicolas J.M., Plenum Press, 1981.

[To87] Torgersen S., Ph29. Thesis Proposal, Cornell University, Dec. 1987.

[TF82] Tsou D.M. and Fischer P.C., "Decomposition of a Relation Scheme into
Boyce-Codd Normal Form," Proceedings ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems, 1982.

[U182] Ullman J.D., Principles of Database Systems (Second Edition), Computer Sci-
ence Press, Rockville, Md., 1982.

[Z177] "Query-By-Example: A Database Language," IBM Systems Journal, 16:4,
1977.

