
D E A L I N G W I T H G R A N U L A R I T Y O F T I M E IN
T E M P O R A L DATABASES

Gio Wiederhold t
Department of Computer Science
Stanford University, Stanford, CA 94305-2140, U.S.A.

Sushil Jajodia
Department of Information Systems and Systems Engineering
George Mason University, Fairfax, VA 22030-4444, U.S.A.

Witold Litwin*
I.N.R.I.A.
78153 Le Chesnay, France

ABSTRACT A question that always arises when dealing with temporal informa-
tion is the granularity of the values in the domain type. Many different approaches
have been proposed; however, the community has not yet come to a basic agree-
ment. Most published temporal representations simplify the issue which leads to
difficulties in practical applications. In this paper, we resolve the issue of temporal
representation by requiring two domain types (event times and intervals), formal-
ize useful temporal semantics, and extend the relational operations in such a way
that temporal extensions fit into a relational representation. Under these considera-
tions, a database system that deals with temporal data can not only present con-
sistent temporal semantics to users but perform consistent computational
sequences on temporal data from diverse sources.

1. Introduction

Large databases do not just collect data about the current state of objects but retain infor-
marion about past states as well. In the past, when storage was costly, such data was often not
retained online. Aggregations of past information might have been kept, and detail data was
archived.

Certain applications always required that an adequate history be kept. In medical data-
base systems a record of past events is necessary to avoid repeating ineffective or inappropriate
treatments, and in other applications legal or planning requirements make keeping of a history
desirable. In banking long audit trails are kept to assure traceability of errors and fraud, and
apply corrections when required. In planning applications we must project into the future, and
trends from the past are an important source of information.

* Partially supported by DARPA, contract # N39-84-C-21 I.
* Performed while visiting Stanford University.

125

Changes in technology are supporting a movement towards temporal databases. Today
the cost of data-entry often exceeds the cost of long-term storage. If we want to take object his-
tories into account, we must identify the stored data with timestamps which associate temporal
domain values with objects being described. Timestamps require an appropriate domain
definition, and any temporal database has to support temporal domains with operations that pro-
vide, at the very least, correct comparisons. Temporal values must be associated with events or
objects so that for each object a time-precedence and a temporal sequence can be established.
We also need operations that help in temporal data reduction and in combining temporal infor-
mation from multiple relations.

A question that arises when dealing with temporal information is the granularity of the
values in the domain type. In some applications the granularity is days, in others it can be
seconds or years. Several authors (e.g., see [6, 9,11,22]) model time as a discrete linearly
ordered set. Discrete time implies that there exists some granularity (years, days, seconds, etc.)
which is universally valid, otherwise we are creating semantic mismatches when operations
combine temporal information. Figure 1 illustrates such a mismatch. Most representations
have ignored mixed granularities. Later in this paper we discuss this problem and our resolu-
tion in greater depth.

We have information on playing times of movies given in days,
and on smog alerts, given in hours.

Smokey and the Bandit plays from 12Dec1977 to 15Dec1977.
A smog alert is in force from 5 pm 12Dec.1977 to 6pro 15Dec1977.

Common sense tells us that 5 pm 12Dec1977 comes after 12Dec1977
but
6 pm 15Dec1977 comes before 15Dec1977.

Figure 1: Mixing granularities

The thesis by Ladkin [16] recognizes that distinct granularities cannot be mixed, and
develops an algebra where the granularity of the source timestamps is considered throughout.
Binary operations that mix granularities have results that are the best approximation, which is
typically the coarsest granularity of the two arguments. Unfortunately, such an approach
requires a large set of operations, and is difficult to apply to the set-flavored operations required
for databases.

For databases many types of time-stamps and interval representations have been pro-
posed. Some researchers [11,22] use only intervals to denote temporal domains. This
approach simplifies the model, since now there is only one type. Some [13,14] use unions and
cross product of intervals. In [20,21] a variety of underlying time domains is presented: entry
time, valid time, etc.

We identify problems with most of these temporal representations (See Section 3).
Although they provide interesting and internally consistent theories, their representations lead
to problems in realistic applications. Our experience derives from the development, implemen-
tation, and use of a time-oriented database system (TOD) developed in the early seventies and
its successors [3,10, 23]. However, this system did not incorporate an algebra; all temporal
operations were embedded in PL/I code modules, invoked by applications and code generators.

126

In this paper, we will first deal with the representation of time. Timestamps require an
appropriate domain definition so that a database system which deals with temporal events can
present consistent temporal semantics to the user to avoid confusion. Moreover, if we formal-
ize the relevant semantics, the database management system (DBMS) can determine, schedule,
optimize, and execute transactions involving temporal information. Achieving the required
consistency means that we avoid mismatch of domains.

We contend that factual data is collected at the source based on the times associated with
events. However, queries and snapshots (see, for example, [21]), need valid intervals to
retrieve information, since their parameters wilt rarely match event times exactly. Since event
times are associated with arbitrarily fine granularity, we need to convert this event data to a
well-formed interval representation, which we call histories. Unlike the event data, historical
data should be time granularity independent. Once a history is derived from the source events,
a database can carry out the computations to satisfy application semantics.

To benefit from existing research, we base our work on the relational model. We extend
the set of relational operations in such away that all extensions fit into a relational representa-
tion [15]. Only the semantics are extended and new operations take advantage of these seman-
tics. Since we are concerned with the precise operational semantics of temporal operations, we
define them as algebraic operators. We follow again the relational development where the
algebraic definition preceded the calculus [1,4].

The organization of this paper is as follows. In Section 2, we start with some definitions
so we can distinguish levels of temporal support. In Section 3, we indicate how several tem-
poral representations give difficulty if the data have to merged with other data or if snapshots at
different points in time instances have to be derived. We give the steps needed to process the
temporal data in Section 4. The critical step in the processing scenario is the conversion of
event information to a history. It requires an understanding of the semantics of the time
domain, and our history operator permits specification of these semantics. In Section 5, we
give a number of basic operations on tuples with timestamps, and in Section 6 we present the
operation needed for temporal relations. The conclusion is given in Section 7.

2. Levek of Temporal Support

In this section, we introduce definitions for several types of temporal databases. These
types impose constraints on the representation of temporal data. Since these constraints
prevent anomalies, they can be viewed as a temporal normalization.

We define a journal as a database which collects information about the temporal changes
of objects. To support a journal, a database must associate with each object some time-variant
attribute values as well as temporal domain values which represent periods of validity for these
time-variant attribute values. In a relational model a nest of tuples is needed to represent the
changes pertaining to an object. For instance, the salaries of employees together with their
departments in Figure 2 constitutes such a journal. The object identifier (attribute " N a m e ")
and the timestamp (attribute "Date") form the relation key. The nest for each object forms a
temporal sequence of events. Each employee has a time-variant salary which is valid for some
time interval past the time a salary is recorded. The events in a sequence determine intervals.
The period that an employee has a particular salary is defined by the time that salary is recorded
in the database and the time a change is made to iL With the assumption that a salary is stable
in that period, the value is valid throughout this period. The temporal relation in Figure 3 is
another journal; however, period of validity of a temperature value is very different from that of
a salary value in Figure 2. A temperature value is an instantaneous measurement and is valid

127

only for some small time interval around the hour value.

Name Salary Dept Dale

Peter 30K Shoe 1Jan80
Peter 32K Shoe 4Jun80
Margi 30K Shoe 6Mar78
Margi 31K Shoe 1Jan79
Margi 32K Shoe 4Jun80
Jack 30K Linen 4Ju179
Jack 30K Shoe 4Dec80

Figure 2. A journal with discrete values

Location Degrees Hour

Class room 17.0C 8:00
Class room 22.0C 9:00
Class room 23.0C 10:00
Kitchen 23.0C 9:00
Kitchen 25.0C 10:00

Figure 3. Journal with continuous values

A historial database extends the requirement of a journal by requiting that the sequences
be complete between the extreme start-point and finish-point of each object history. Whereas a
journal only records events, a history also tells us about the state of the object at intermediate
points. The journal in Figure 2 is easily converted to a complete salary history since each
employee's salary is known within each interval. The journal in Figure 3, on the other hand, is
not directly convertable to a history since temperatures at intermediate points are not known.
(See, however, Section 4.2).

We restrict a proper historical database to be a historical database such that each object
is assigned a unique value at any point within the time interval. This means that for each point
in time covered there is one and only one value for salary of any of the employees. We denote
periods without a salary by a null (A) entry. The journal in Figure 2 represents a proper history.
One way to ensure that a history is proper by making the time attribute a part of the object
identifier. With that constraint we can be assured of a high quality result. A snapshot of a
proper history will, for instance, be in first-normal form.

We now define a historical database system to be a temporal database system which sup-
ports computations on histories. A historical database permits computation of snapshots for
any given time instant. The snapshot is a result relation which shows all values as they existed
at that time. A frequently needed snapshot is the current state; this result is then similar to the
updated relation in a non-temporal database.

3. Choices of Domain Types for Timestamps

Any temporal database system has to support a domain type for timestamps. The values
in those domains must be comparable so that a time-precedence and a temporal sequence can
be established. A question that always arises when dealing with temporal information is the
granularity of the values in the domain type. Many different types have been proposed; how-
ever, there is currently no consistency among the members of the research community. Several

128

authors model time as a discrete linearly ordered set T = {0,1 now} where now denotes the
changing value of the present time. Some (see, for example, [6,11]) view temporal relations as
event relations where each attribute or tuple is tagged with an appropriate timestamp. (See
Figures 2 and 3.) Unfortunately, few of our common algebraic operations are applicable to
discrete timestamps. Timestamps cannot be added; multiplied, or divided; they can only be
compared. Subtraction of timestamps gives interval sizes. Thus, event relations have the prob-
lena that they cannot directly provide answers to queries dealing with event points that are not
explicitly represented. For the event relation in Figure 2, "What was Peter's salary on
1Mar80?" is an example of a hard query. Not only is a type of range query required to locate
the prior and successor tuples (see Section 6.1), but also the semantics of having a stable salary
are implicitly invoked.

The problem gets even worse when there is a need to combine two or more relations with
different temporal domain types into a single relation. As an example, consider the relation
given in Figure 4.

Name Salary Dept Start End

Peter 32K Toys Jan77 Jan78
John 15K Shoe Jan77 Jan81
John 25K Shoe Jan81 Jan83

Figure 4. A temporal relation with different domain type

It is not obvious how the system should combine the two relations in Figures 2 and 4 to
form a single relation. Standardization of domain types in a database can prevent this
mismatch; however, in practice, since we derive information from diverse sources, not always
under the same control, we will always encounter some mismatched domains, t

Let us once again consider the event relation given in Figure 2. If a user wishes to derive
a snapshot at time 2Jan80 for the data of Figure 2, it seems reasonable for the system to return
the state given in Figure 5. Stability of the discrete event results is assumed here.

Name Salary Dept

Peter 30K Shoe
Margi 31K Shoe
Jack 30K Linen

Figure 5. A snapshot

However, the stability assumption is not valid for all attributes. For instance, if the data-
base also records events where bonuses were given, then a snapshot query should not assume
that the bonus is valid throughout every implicit granularity unit used for other employment
data.

Assumptions other than stability or none also occur. Suppose a user asks for a snapshot
at time 9:15 for the relation given in Figure 3 that records room temperatures. If the system
uses the stability assumption, it will derive the answer given in Figure 6 which is not likely to
be the desired response. Unless we formalize all relevant temporal semantics, we cannot leave

* There are other types of mismatches (e.g., semantic mismatch [7]) that can occur in these cases, but they are
outside the scope of this paper.

129

the task of executing queries involving temporal data to the system; the responsibility of
defining the semantics for the temporal data falls onto the users. It is specified during the query
definition phase.

Location Degrees

Class room 22.0C
Kitchen 23.0C

Figure 6. An incorrect snapshot using stability assumption

Some authors use intervals as the temporal domain type, but there too some use represen-
tations which lead to difficulties. For example, Dutta [8] uses ordered pairs of the type
<closed-interval,value> to represent a temporal attribute. So the bank balance of a certain
account is represented as

{ ([2Jan87,3Jan87],3000), ([3Jan87,5Jan87],5000}.

We now have the problem that we are not sure of the exact bank balance on 3Jan87. It is either
3000 or 5000, but we do not know which. One could argue that there is one other possible
interpretation that the account balance changed from 3000 to 5000 during the day, but we do
not know exactly when it changed inside the granule. The difficulty, however, is that if we
wish to have a proper balance history, we will require time granules smaller than a day which
requires information which is not available.

Some (e.g., [11,12,17]) model temporal intervals which do not adjoin; they are always
separated by event boundaries of some grain size. This representation has some of the same
problems as those seen with event relations. In [13,14], unions and cross product of intervals
are used that require extensions to the relational model.

In [6,11] as well as in many statistical programs, a further assumption is made that all
intervals are equal in size. We find this assumption too costly in database practice where his-
tories are long and events occur at unpredictable times. For these reasons it is better to denote
interval start and finish explicitly. Statistical programs can then evaluate if their assumptions
are sufficiently valid to allow reliable computations.

3.1. Granularity Differences
In any specific application, the granularity of time has some practical magnitude. For

instance, the time-point that a business event, like a purchase, is associated with a date, so that
a day is the proper granule for most business transactions. People do not schedule themselves
for intervals of less than a minute, while database transactions may be measured in mil-
liseconds. Eventually we are limited by the precision that our hardware can recognize; frac-
tions of microseconds are the finest grain here. We use G to denote the granularity; it is in
effect an interval.

The finiteness of measurement granules leads to a confusion of event times and intervals.
If we limit our event measures to dates (G = 1 day), and we say that an event occurred on such-
and-such a day, then implicit for most of us is also that the event spanned some interval within
that day. A point event is then associated with an interval of one granule length. There will be
a smallest time granule G, perhaps intervals of seconds or days, which follow each other
without gaps, and are identified by the timepoint at their beginning. True Intervals are
sequences of event measuring intervals.

130

However, problems arise with this simplification. Inconsistencies occur when an
inclusive interval is defined by two event time measurements with an implicit grain. First we
have to round actual measurements to the integer grainsize used; then we add the granule size
to the result:

T c = t / - t s + G

where ts denotes the value corresponding to the start of the interval and t/the value when the
interval is finished. Thus, if movie is shown daily from the 12th to the 19th of a month, there
will be 19-12+1 = 8 performance days. While we are all used to performing such adjustments
when computing with intervals, a database system which deals with temporal events must
present consistent temporal semantics to the user to avoid confusion. We cannot use an event
directly to compute an interval but always have to Correct for the associated grain size. While
in any one application use of a fixed grainsize is feasible, problems arise if we merge informa-
tion from distinct applications.

A database system has to carry out the computations to satisfy the application semantics.
If those include the use of finite events, then the grain size assumption made must be explicitly
stated. Many granularities may need to be simultaneously active. In our formulation we will
require two datatypes, infinitesimal time points for events and intervals for histories, to deal
with all temporal data.

4. Processing of Temporal Data

In this section we outline the steps needed to process the temporal data, given the design
decision made above.

1. Collection of new data. When temporal information about objects is added to rela-
tions describing objects, it does not change the essence of the objects, it merely records their
history. The traditional means for identifying the objects remain accessible and manipulable.
However, the time-identification is appended to the object identifier, so that the multiple tem-
poral tuples for an object can be distinguished. For each object then we have a nest of temporal
tuples. We need to make explicit the underlying domain for the event times. If the time of the
event is not given, the data-entry time is used as a surrogate.

2. Conversion of event data to histories. We introduce a history operator H in Section
4.2 that converts event information to a history by finishing and starting of intervals. An inter-
val is created for every event of an object, intervals are closed by finishing events, and adjoin-
ing intervals are merged to create larger intervals.

3. Retrieval of information. We next extend the set of operations to permit a larger set of
computations, so that we can perform all the functions needed for query answering and general
data processing at a high level.

The critical step in the processing scenario outlined above occurs in Step 2. The deriva-
tion of historical intervals from start and finish point events requires an understanding of the
semantics of the time domain; the history operator H permits specification of these semantics.
By deriving a history from the source events we prepare the stage for all subsequent operations.
Specifically, since a snapshot is only applied to a historical relation, no semantic interpretation
is necessary when the queries are being processed.

These processes can be carried out today by conventional data-processing programs.
Their formalization has the objective of being able to mechanize more of these tasks, reduce

131

programming effort and failures, and improve el~ciency. Operations carried out within
DBMS's are subject to optimization, wheras optimization done within user programs tends to
be spotty and inflexible.

4.1. Events and Intervals

As mentioned earlier, we will need two domains types to process temporal data:

I. Event times, and

2. Intervals between events.

Event time typically consist of the time and date of events. These two domains are com-
plementary and distinct. Algebraic operators can convert information among these representa-
tions, either can be used to represent temporal data. Intervals are obtained by taking the
difference of time-points. Unlike event times, time intervals can be added and subtracted, and
therefore, new event points can be computed by adding or subtracting intervals to time-points.
Intervals can be multiplied and divided by real or integer values. Furthermore, intervals can be
compared as well, although the conditions are more complex, as shown in Section 5.1.2.

We consider time to be infinitely divisible, so we must treat it similarly to real numbers.
In our temporal domain we introduce a new symbol uc which stands for "until changed." We
illustrate its utility by way of an example. Consider the relation given in Figure 7.

loan type rate (in %) period

Prime 10 [1988,1989)
Prime 11 [1989, uc)

Figure 7. A temporal relation using "until changed" symbol

The interpretation given to the second tuple is that the fact represented by the tuple (the
prime rate is 11%) remains true until it is changed. With this simple augmentation in the
domain definition, we are now able to record information about the future values of the prime
interest rate (not just the past and current values). For example, we can insert in 1990 the the
prime rates for 1991. (See Figure 8.)

loan type rate (in %) period

Prime 10 [1988,1989)
Prime 11 [1989,1990)
Prime 10.5 [1990,1991)
Prime 10.25 [1991, uc)

Figure 8. A temporal relation containing future rates

If we adhere to the usual now notation, we find that we cannot represent the semantics of
the second relation (although there is no problem with that of the first relation). The first rela-
tion can be represented by the relation in Figure 9 while the second relation is given in Figure
10. The second relation does not make sense when now has a value which is less than 1991.

132

loan type rate (in %) period
Prime 10 [1988,1989)
Prime 11 [1989, now]

Figure 9. The temporal relation in Figure 7 using "now' ' symbol

loan type rate (in %) period
Prime 10 [1988,1989)
Prime 11 [1989,1990)
Prime 10.5 [1990,1991)
Prime 10.25 [1991, now]

Figure 10. The temporal relation in Figure 8 using "now" symbol

The exact relationship between n o w and uc is as follows: Given an interval t = [/, uc) ,

uc = n o w if 1 < n o w ,

> n o w i f l ~ n o w .

We should note that as long as the database is restricted to collecting the factual observa-
tions about the real world, now is adequate. As soon as we use a database for planning or com-
mitments made into the future, the n o w semantics give the above problems, and uc must be
used in its place. Also, we have chosen to use [l, uc) instead of [l, ,o) since we wish to distin-
guish between values (for example, death) which are true forever from those that are true until
they are changed.

4.2. Introduction of Temporal Semantics

A critical step in the processing of temporal data is the conversion of event data to his-
tories. The derivation of values of time-variant attributes at intermediate points within the his-
torical intervals, defined by event times, requires an understanding of what actually occurs
within the interval. There are several possibilities; some are shown in Table 1.

Event Interval State Transform , Type

Salary_change Salary Use start value stable
Hiring Workshop Use start value stable
Bonus n.a. not continuing none
Output_measures Productivity Use average of points AVG
Power_usage Power_consumption Use average of points AVG
Power_usage Power_rating Use maximum point MAX
Light Illumination use minimum point MIN
Inventory Growth Use difference of points RATE

Table 1. Historical attribute semantics

Using these historical attribute semantics, we will define in Section 6.2 a history operator
H which permits specification of these transforms. Time-variant attribute values (an) in his-
tories can be computed using computations given in Table 2. As before I, denotes the event

133

value corresponding to the start of the interval I and If the value when the interval is finished.

Assumption Computation

Stability au = at,
Constant Rate of Change a . = at, + AT(at t - at,)
Maximum in Interval a n = max (at,, at I)

Minimum in Interval a n = min (at,, at t)

Average over Interval a , = at, + (at t - at,)12

Table 2. Introduction of semantics in the history operator

We can now derive the historical information from Figure 2 using the assumption that
salaries are stable during the intervals, as shown in Figure 11. Since Figure 11 is based solely
on Figure 2, it shows current information which may not be reasonable (e.g, no change in
Peter's salary since June, 1980), The point here is that history relations convey information by
resolving the interval value. The relation is Figure 11 contains explicit answer to the query
about Peter's salary on 1Mar80. If a query specifies an interval, say [2Feb80,4Jul80), then mul-
tiples tuples might be returned.

Name Salary Dept Period

Peter 30K Shoe [1Jan80,4Jun80)
Peter 32K Shoe [4Jun80, uc)
Margi 30K Shoe [6Mar78,1Jan79)
Margi 31K Shoe [1Jan79,4Jun80)
Margi 32K Shoe [4Jun80, uc)
Jack 30K Linen [4Ju179,4Dec80)
Jack 30K Shoe [4Dec80, uc)

Figure 11. History relation derived from the journal in Figure 2

When the history operation converts event information to a history, it depends on the
assumption that the journal of the events has been made complete so that it can generate a
correct history, especially if different histories are to be combined. For the relation in Figure 4,
we need to add the information that the start date for employee is the first of the month. Once
this is done, we can apply the history operator to the relation in Figure 4, and the system can
then combine the two histories to form a common history which is shown in Figure 12.

It is worth noting in Figure 12 that since the last tuple for the employee John does not
contain "uc," we know that John is no longer employed by the company. Thus, if we assure
that each object history is complete between the extreme start- and finish-points, then deleted
objects can be easily represented in history relations.

134

Name Salary Dept Period
Peter 32K Toys [1Jan77,1Jan78)
Peter 30K Shoe [1Jan80AJul80)
Peter 32K Shoe [4Jun80, uc)
Margi 30K Shoe [6Mar78,1Jan79)
Margi 31K Shoe [1Jan79,4Jun80)
Margi 32K Shoe [4Jun80, uc)
Jack 30K Linen [4Ju179,4Dec80)
Jack 30K Shoe [4Dec80, uc)
John 15K Shoe [IJan77,1Nov81)
John 25K Shoe { 1Jan81,1Nov83)

Figure 12. Combined history

The history relation for the journal in Figure 3 is given in Figure 13, assuming that the
average value is to be used at intermediate points of an interval. The benefit here is that we can
now easily determine the snapshot at time 9:15, which is given in Figure 14.

Location Degrees Interval

Class room 19.5C [8:00, 9:00)
Class room 22.5C [9:00,10:00)
Kitchen 24.0C [9:00,10:00)

Figure 13. History relation derived from the journal in Figure 3

Location Degrees

Class room 22.5C
Kitchen 24.0C

Figure 14. A correct snapshot

5. Temporal Operations
In this section, we define various operators on our two domain types (event times and

intervals), most of which are taken from [2]. Using these operators, it is straightforward to
extend the usual relational operations (select, project, join, and others) for event as well as his-
tory relations.

We use the variables t, u, v to denote the time and date of events, and variables T, U, V
to denote time intervals. We define two functions, nun and max, which, when applied to inter-
vals, return the starting and finishing event times. Thus, if T is the interval It, u), then m/n (T) =
t and max (T) = u.

Let T ,U,V to denote the time intervals between events t and u, u and v, and t and v,
respectively. We denote by I TI the size of an interval T. Then the following transformations
hold:

t = m i n (T) = m i n (V) lTl=u-t
u = max (T) = min (U) I U l = v - u

135

v =max(U) =max(V) IVl=v-t

IVI=ITI+IUI

5.1. Temporal Comparison
For database searching, the primary operations is comparison. It can be applied to pairs

of events, to pairs of intervals, and to combinations of both. Temporal comparison occurs so
frequently in daily life, we have words (e.g. before, after, etc.) for the various cases with fairly
well understood semantics. Using these words can help avoid errors when dealing with histori-
cal databases.

5.1.1. Event Comparisons

The comparison operations for events are listed in Table 3.

Name Definition

t BEFORE u t < u
t A T u t = u
t AFTER u t > u

Table 3. Comparing events

5.1.2. Interval Comparisons

When we want to deal with independent events, and see if they coincide, interval com-
parison is appropriate. First we may want to see if one interval is longer or shorter than
another, and then we may want to check how intervals occur relative to each other. The two
size comparisons given in Table 4 are symmetric.

Name Definition

TLONGER U (m a x (T) - m i n (T)) > (m a x (U) - m i n (U))
T SHORTER U (max (T) - min (T)) < (max (U) - min (U))

Table 4. Comparing Interval Sizes

Dealing with the relative position of intervals is necessary when we evaluate actions that
take time to develop an effect. For instance, a drug has to be in the body for some time before it
can affect a disease. An analysis of medical data has to take those lags into account.

Comparison of interval positions is more complex than comparing event occurrences.
When we compare intervals the comparison must hold for all time points within the intervals.
We assess completeness of our operations by considering the start-points (m/n (T)), finish-
points (max (T)), and the relative length of both intervals. Table 5 presents the terms and illus-
trates eleven conditions. Four symmetric cases, DURING and SPANS, and the last three condi-
tions are symmetric for U,T are listed to provide the full terminology. They provide the basis
for a complete comparison algebra on intervals, so that no decomposition into event rime.stamps
is required. The three event comparisons for the two pairs of points in each interval actually
permit 2 × 3 2 ---> 18 comparison cases. Of those five are invalid, since they require that we have
intervals with max (U) < m/n (U). Three cases are symmetric for U longer than T and vice
versa. For two of those cases, STARTS and FINISHES, we do not have common distinctive
terms; they are not shown in Table 5.

136

Name Definition

1. T BEFORE U max(T) < min(U)
2. T UNTIL U max(T) = rain(U)
3. T LEADS U min(T) <_ min(U), max(T) < max(U), min(U) < max(T)
4. T STARTS U rain(T) = min(U), max(T) < max(U)
5. T EQUALS U rain(T) = rain(U), max(T) = max(U)
6. T DURING U min(T) > min(U), max(T) <max(U)
7. T SPANS U rain(T) < min(U), max(T) > raax(U)
8. T FINISHES U rain(T) > rain(U), max(T) = max(U)
9. T LAGS U min(T) > rain(U), max(T) > max(U), min(T) < max(U)
10. T FROM U min(T) = max(U)
11. T AFTER U max(T) > rain(U)

Table 5. Comparing intervals

[unique]

[Complement of 6.]
[Symmetric with 4.]
[Symmetric with 3.]
[Symmetric with 2.]
[Symmetric with 1.]

5.1.3. Comparing Events and Intervals

Although algebras typically do not permit comparison of different domain types, we find
that such comparisons occur frequently in practice. Quite unambiguous are the comparisons
shown in Table 6. The terms themselves are overloaded, so that a system has to know the tem-
poral domain type to carry the operations correctly.

Name Definition

t BEFORE T t < min (T)
t DURING T t > m/n (T), t < max (T)
t AFTER T t > max (T)

Table 6. Comparing events and intervals

5.1.4. Temporal Computation

We define some additional operations on intervals which will be useful in the next sec-
tion when we use the history operator H to create a history from a journal. We will need to
concatenate (cat) or shorten (uncat) history tuples.

Given a pair of intervals T and U, the operation T cat U is defined iff T UNTIL U holds, in
which case

T cat U = [rain (T), max (U)).

The operation T uncat U is defined iff either T STARTS U or T FINISHES U holds. If
T STARTS U, then

and if T FINISHES U, then

T uncat U = [max (T), max (U)),

T uncat U = [min (U), rain (T)).

When we convert event data to histories, each event tuple is converted into a history
tuple by replacing each time attribute by an interval. The cat and uncat operations are used to
replace different history tuples with adjoining intervals for the same object by a single history
tuple with larger interval as the time attribute.

137

6. Operations on Temporal Relations

We now deal with proper histories only. Relations that are less constrained introduce
more complexity and will not be discussed here. One way to ensure that a history is proper is
by augmenting each object identifier by the time attribute.

We define two operations: H to compose a proper history from journal data and I to
create a snapshot at a given instance in time from a proper history. But first we show how we
can derive a temporal sequence from a journal or a history.

We denote relations throughout as R (S,E) where E is the temporal extension with n tem-
poral tuples el. An attribute containing temporal information is denoted as At, with event or
interval values ai in tuple el.

6.1. The Temporal Sequence

The constraints imposed on journals and histories mean that we can establish a temporal
sequence. Within a journal or a history we can speak of the NEXT, CURRENT, or PRIOR event
or interval. When there is no NEXT tuple the result is uc. When there is no PRIOR tuple, the
result is A.

A proper history requires a contiguous sequence. If there is truly an interval with
unknown information it must be represented explicitly. This is done by specifying a tuple with
the interval and a value of null (A) or none or n.a. if it is known to be missing or not applicable.
Specifically,

NEXT(ec) := {ei : objectc = objecti, rain (al) = max(at)}.

The PRIOR tuple is found similarly. CURRENT operation is defined in Section 6.2.1.

6.2. The History Operator

The history operator H converts event information to a history. It depends on the assump-
tion that the journal of the events has been made complete. We showed an example of what
might be needed to complete a journal in Section 4.2. There are two phases to generating a his-
tory:

I. An interval is created for every event on an object.

2. Adjoining intervals are merged to create larger intervals.

More formally, suppose we are given a journal R with attributes S and a temporal extension E.
Let as denote the interval in tuple ei. The history operation H is defined as follows:

H(R(S,E)) := { el = (objecti, ai)}

where objecti ~ S and for each ea ~ S, whenever NEXT(el) = ed, ai = ai cat aa.

Any tuple ed of R processed in this manner is not distinctly represented in the history
H(R). This reduction is reminiscent of the reduction that is required to avoid duplicate entries
during projection, Here we wish to avoid duplicate information in adjoining intervals.

138

6.2.1. Computation of Snapshots
A snapshot (I) provides object information as of a given point in time. The most frequent

snapshot is one that obtains CURRENT information, but any other time value may be used. The
definition of result values from temporal relations is quite straightforward. The snapshot at a
time t is determined as follows:

I(R(S,E)) := { objecti : ei E R and rain (ai) < t < max(a/)}

All other relational operations (such as projection, selection, and join) map straightfor-
wardly into event and history relations, specifics will be given in [24].

7. Conclusion

In this paper, we present an algebra which addresses the issue of time granularity in tem-
poral relations. The algebra permits merging, abstraction, and other computations to reduce
temporal information. Often the factual data collected at the source is at too fine a granularity
to be useful to the decision maker. The data have to be aggregated, merged with other data,
etc., before we have the information needed for decision making. Many of these tasks are tradi-
tional functions of application programs. However, when applications are shared by many
users, it is important that they be consistent. Since one of the roles of a DBMS is to assure con-
sistency, it is reasonable that not only shared data, but also shared computations are handled by
the DBMS.

We have shown that it is wise to have both explicit journal and history representations in
view of the need to make semantic choices when converting events to histories and snapshot
results explicit, as shown in Section 4.2. An implicit conversion cannot capture the range of
options that might be needed.

With these considerations, we have also defined a representation and corresponding
operations for temporal data. The relational temporal algebra is a straightforward and sound
extension of the relational algebra. A requirement for an algebra is that the results of opera-
tions on objects are in turn objects of the same type. The relational algebra satisfies that condi-
tion since all results are in turn relations. An implementation need not be resu'icted to today's
traditional relational DBMS's. Formulation as nested relations [18,19] are likely to provide
more efficient processing.

An obvious question is whether the proposed extensions are worth the increased com-
plexity. We believe that this is so. Many data-processing applications deal with temporal
information. The operational semantics of time are not well captured by operations that expect
integer, real, or characterstring types. Programmers have to repeatedly code operations which
recreate temporal semantics. However, for any single application a less general collection of
representations and operations are adequate so that the programmer selected representations,
the granularity, and the result types differ from case to case. Mismatch problems when combin-
ing temporal information are frequent. Errors are common and high-level integration is inhi-
bited [5].

By using uc in the temporal domain instead of the usual now, we can record in the data-
base expectations about the future. It would be interesting to extend this capability to allow
consideration of alternate futures. As far as we know those complexities have never been
rigorously addressed.

Acknowledgements

The authors wish to thank Surajit Chaudhuri, Oliver Costich, Michael Walker, and the
users of the TOD and MEDLOG systems for many valuable discussions. Sam Kamens has
recently validated the approach using a preprocessor for SYBASE [15].

References

1. Michel E. Adiba and E. F. Codd, "A Relational Model of Data for Large Shared Data
Banks," CACM, vol. 13, no. 6, pp. 377-387, June 1970.

2. James F. Allen, "Maintaining knowledge about temporal intervals," Comm. ACM, vol.
21, no. 11, pp. 832-843, November 1983.

3. Robert L. Blum, Discovery and Representation of Causal Relationships from a Large
Time-Oriented Clinical Database: The Rx Project, 19, Springer Verlag Lecture Notes in
Medical Informatics, 1982.

4. R.F. Boyce, D. D. Chamberlin, W. F. King, III, and M. M. Hammer, "'Specifying Queries
as Relational Expressions: SQUARE," CACM, vol. 18, no. 11, pp. 621-628, November
1975.

5. Surajit Chaudhuri, "Temporal Relationships in Databases," Proc. 14th VLDB, pp. 160-
170, August 1988.

6. J. Clifford and A. V. Tansel, "On an algebra for historical databases: Two views," Proc.
ACM SIGMOD, pp. 247-265, May 1985.

7. Linda G. DeMichiel, "Resolving database incompatibility: An approach to performing
relational operations over mismatched domains," IEEE TKDE, vol. 1, no. 4, pp. 485-493,
December 1989.

Soumitra Dutta, "Generalized Events in Temporal Databases," Proc. 5th lnt'l. Conf. on
Data Engineering, pp. 118-125, February 1989.

Ramez Elmasri and Gene T. J. Wuu, "A temporal model and query language for ER data-
bases," Proc. 6th DE Conf., pp. 76-83, February 1990.

James F. Fries and Dennis McShane, "Aramis: A National Chronic Disease Databank
System," Proceedings of the 3rd Symposium on Computer Applications in Medical Care,
pp. 798-801, October 1979.

I1. Shashi K. Gadia and Jay H. Vaishnav, "A query language for a homogeneous temporal
database," Proc. ACM PODS, pp. 51-56, March 1985.

12. Shashi K. Gadia, "Weak temporal relations," Proc. ACM PODS, pp. 70-77, March 1986.

13. Shashi K. Gadia, "A homogeneous relational model and query languages for temporal
databases," ACM TODS, vol. 13, no. 4, pp. 418-448, December 1988.

14. Sushil Jajodia, Shashi K. Gadia, Gautam Bhargava, and Edgar H. Sibley, "Audit trail
organization in relational databases," in Database Security III: Status and Prospects, ed.
D. Spooner and C. E. Landwehr, pp. 269-281, North-Holland, 1990.

15. Samuel N. Kamens and Gio Wiederhold, An implementation of temporal queries for SQL,
forthcoming.

16. Peter Ladkin, "The Logic of Time Representation," Ph. D. Dissertation, University of
California, Berkeley, November 1987.

o

9.

10.

140

17. N. Martin, S. Navathe, and R. Ahmed, "Dealing with temporal schema anomalies in his-
tory databases," Proc. VLDB, pp. 177-I84, September 1987.

18. M.A. Roth, H. F. Korth, and A. Silberschatz, Theory of Non-First-Normal-Form Rela-
tional Databases, Univ. of Texas, Austin, CS TR-84-36, Dec. 1984, revised Jan. 1986.

19. Mark A. Roth, Henry F. Korth, and Abraham Silberschatz, "Extended algebra and cal-
culus for nested relational databases," ACM TODS, vol. 13, no. 4, pp. 389-417,
December 1988.

20. Richard Snodgrass and Ilsoo Ahn, "Temporal databases," IEEE Computer, vol. 19, no. 9,
pp. 35-42, September 1986.

21. Richard Snodgrass, "The temporal query language TQuel," ACM Trans. on Database
Systems, vol. 12, no. 2, pp. 247-298, June 1987.

22. Abdullah U. Tansel, M. Erol Arkun, and Gultekin Ozsoyoglu, "Time-by-example query
language for historical databases," IEEE TSE, vol. 15, no. 4, pp. 464-478, April 1989.

23. Gio Wiederhold, J. F. Fries, and S. Weyl, "Structured organization for clinical data-
bases," Proc. NCC, pp. 479-486, 1975.

24. Gio Wiederhold, Semantic Database Design, McGraw-Hill, Forthcoming.

