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ABSTRACT A question that always arises when dealing with temporal informa- 
tion is the granularity of the values in the domain type. Many different approaches 
have been proposed; however, the community has not yet come to a basic agree- 
ment. Most published temporal representations simplify the issue which leads to 
difficulties in practical applications. In this paper, we resolve the issue of temporal 
representation by requiring two domain types (event times and intervals), formal- 
ize useful temporal semantics, and extend the relational operations in such a way 
that temporal extensions fit into a relational representation. Under these considera- 
tions, a database system that deals with temporal data can not only present con- 
sistent temporal semantics to users but perform consistent computational 
sequences on temporal data from diverse sources. 

1. Introduction 

Large databases do not just collect data about the current state of objects but retain infor- 
marion about past states as well. In the past, when storage was costly, such data was often not 
retained online. Aggregations of past information might have been kept, and detail data was 
archived. 

Certain applications always required that an adequate history be kept. In medical data- 
base systems a record of past events is necessary to avoid repeating ineffective or inappropriate 
treatments, and in other applications legal or planning requirements make keeping of a history 
desirable. In banking long audit trails are kept to assure traceability of errors and fraud, and 
apply corrections when required. In planning applications we must project into the future, and 
trends from the past are an important source of information. 

* Partially supported by DARPA, contract # N39-84-C-21 I. 
* Performed while visiting Stanford University. 
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Changes in technology are supporting a movement towards temporal databases. Today 
the cost of data-entry often exceeds the cost of long-term storage. If we want to take object his- 
tories into account, we must identify the stored data with timestamps which associate temporal 
domain values with objects being described. Timestamps require an appropriate domain 
definition, and any temporal database has to support temporal domains with operations that pro- 
vide, at the very least, correct comparisons. Temporal values must be associated with events or 
objects so that for each object a time-precedence and a temporal sequence can be established. 
We also need operations that help in temporal data reduction and in combining temporal infor- 
mation from multiple relations. 

A question that arises when dealing with temporal information is the granularity of the 
values in the domain type. In some applications the granularity is days, in others it can be 
seconds or years. Several authors (e.g., see [6, 9,11,22]) model time as a discrete linearly 
ordered set. Discrete time implies that there exists some granularity (years, days, seconds, etc.) 
which is universally valid, otherwise we are creating semantic mismatches when operations 
combine temporal information. Figure 1 illustrates such a mismatch. Most representations 
have ignored mixed granularities. Later in this paper we discuss this problem and our resolu- 
tion in greater depth. 

We have information on playing times of movies given in days, 
and on smog alerts, given in hours. 

Smokey and the Bandit plays from 12Dec1977 to 15Dec1977. 
A smog alert is in force from 5 pm 12Dec.1977 to 6pro 15Dec1977. 

Common sense tells us that 5 pm 12Dec1977 comes after 12Dec1977 
but 
6 pm 15Dec1977 comes before 15Dec1977. 

Figure 1: Mixing granularities 

The thesis by Ladkin [16] recognizes that distinct granularities cannot be mixed, and 
develops an algebra where the granularity of the source timestamps is considered throughout. 
Binary operations that mix granularities have results that are the best approximation, which is 
typically the coarsest granularity of the two arguments. Unfortunately, such an approach 
requires a large set of operations, and is difficult to apply to the set-flavored operations required 
for databases. 

For databases many types of time-stamps and interval representations have been pro- 
posed. Some researchers [11,22] use only intervals to denote temporal domains. This 
approach simplifies the model, since now there is only one type. Some [13,14] use unions and 
cross product of intervals. In [20,21] a variety of underlying time domains is presented: entry 
time, valid time, etc. 

We identify problems with most of these temporal representations (See Section 3). 
Although they provide interesting and internally consistent theories, their representations lead 
to problems in realistic applications. Our experience derives from the development, implemen- 
tation, and use of a time-oriented database system (TOD) developed in the early seventies and 
its successors [3,10, 23]. However, this system did not incorporate an algebra; all temporal 
operations were embedded in PL/I code modules, invoked by applications and code generators. 
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In this paper, we will first deal with the representation of time. Timestamps require an 
appropriate domain definition so that a database system which deals with temporal events can 
present consistent temporal semantics to the user to avoid confusion. Moreover, if we formal- 
ize the relevant semantics, the database management system (DBMS) can determine, schedule, 
optimize, and execute transactions involving temporal information. Achieving the required 
consistency means that we avoid mismatch of domains. 

We contend that factual data is collected at the source based on the times associated with 
events. However, queries and snapshots (see, for example, [21]), need valid intervals to 
retrieve information, since their parameters wilt rarely match event times exactly. Since event 
times are associated with arbitrarily fine granularity, we need to convert this event data to a 
well-formed interval representation, which we call histories. Unlike the event data, historical 
data should be time granularity independent. Once a history is derived from the source events, 
a database can carry out the computations to satisfy application semantics. 

To benefit from existing research, we base our work on the relational model. We extend 
the set of relational operations in such away that all extensions fit into a relational representa- 
tion [15]. Only the semantics are extended and new operations take advantage of these seman- 
tics. Since we are concerned with the precise operational semantics of temporal operations, we 
define them as algebraic operators. We follow again the relational development where the 
algebraic definition preceded the calculus [1,4]. 

The organization of this paper is as follows. In Section 2, we start with some definitions 
so we can distinguish levels of temporal support. In Section 3, we indicate how several tem- 
poral representations give difficulty if the data have to merged with other data or if snapshots at 
different points in time instances have to be derived. We give the steps needed to process the 
temporal data in Section 4. The critical step in the processing scenario is the conversion of 
event information to a history. It requires an understanding of the semantics of the time 
domain, and our history operator permits specification of these semantics. In Section 5, we 
give a number of basic operations on tuples with timestamps, and in Section 6 we present the 
operation needed for temporal relations. The conclusion is given in Section 7. 

2. Levek of Temporal Support 

In this section, we introduce definitions for several types of temporal databases. These 
types impose constraints on the representation of temporal data. Since these constraints 
prevent anomalies, they can be viewed as a temporal normalization. 

We define a journal as a database which collects information about the temporal changes 
of objects. To support a journal, a database must associate with each object some time-variant 
attribute values as well as temporal domain values which represent periods of validity for these 
time-variant attribute values. In a relational model a nest of tuples is needed to represent the 
changes pertaining to an object. For instance, the salaries of employees together with their 
departments in Figure 2 constitutes such a journal. The object identifier (attribute " N a m e " )  
and the timestamp (attribute "Date") form the relation key. The nest for each object forms a 
temporal sequence of events. Each employee has a time-variant salary which is valid for some 
time interval past the time a salary is recorded. The events in a sequence determine intervals. 
The period that an employee has a particular salary is defined by the time that salary is recorded 
in the database and the time a change is made to iL With the assumption that a salary is stable 
in that period, the value is valid throughout this period. The temporal relation in Figure 3 is 
another journal; however, period of validity of a temperature value is very different from that of 
a salary value in Figure 2. A temperature value is an instantaneous measurement and is valid 
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only for some small time interval around the hour value. 

Name Salary Dept Dale 

Peter 30K Shoe 1Jan80 
Peter 32K Shoe 4Jun80 
Margi 30K Shoe 6Mar78 
Margi 31K Shoe 1Jan79 
Margi 32K Shoe 4Jun80 
Jack 30K Linen 4Ju179 
Jack 30K Shoe 4Dec80 

Figure 2. A journal with discrete values 

Location Degrees Hour 

Class room 17.0C 8:00 
Class room 22.0C 9:00 
Class room 23.0C 10:00 
Kitchen 23.0C 9:00 
Kitchen 25.0C 10:00 

Figure 3. Journal with continuous values 

A historial database extends the requirement of a journal by requiting that the sequences 
be complete between the extreme start-point and finish-point of each object history. Whereas a 
journal only records events, a history also tells us about the state of the object at intermediate 
points. The journal in Figure 2 is easily converted to a complete salary history since each 
employee's salary is known within each interval. The journal in Figure 3, on the other hand, is 
not directly convertable to a history since temperatures at intermediate points are not known. 
(See, however, Section 4.2). 

We restrict a proper historical database to be a historical database such that each object 
is assigned a unique value at any point within the time interval. This means that for each point 
in time covered there is one and only one value for salary of any of the employees. We denote 
periods without a salary by a null (A) entry. The journal in Figure 2 represents a proper history. 
One way to ensure that a history is proper by making the time attribute a part of the object 
identifier. With that constraint we can be assured of a high quality result. A snapshot of a 
proper history will, for instance, be in first-normal form. 

We now define a historical database system to be a temporal database system which sup- 
ports computations on histories. A historical database permits computation of snapshots for 
any given time instant. The snapshot is a result relation which shows all values as they existed 
at that time. A frequently needed snapshot is the current state; this result is then similar to the 
updated relation in a non-temporal database. 

3. Choices of Domain Types for Timestamps 

Any temporal database system has to support a domain type for timestamps. The values 
in those domains must be comparable so that a time-precedence and a temporal sequence can 
be established. A question that always arises when dealing with temporal information is the 
granularity of the values in the domain type. Many different types have been proposed; how- 
ever, there is currently no consistency among the members of the research community. Several 
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authors model time as a discrete linearly ordered set T = {0,1 ..... now} where now denotes the 
changing value of the present time. Some (see, for example, [6,11]) view temporal relations as 
event relations where each attribute or tuple is tagged with an appropriate timestamp. (See 
Figures 2 and 3.) Unfortunately, few of our common algebraic operations are applicable to 
discrete timestamps. Timestamps cannot be added; multiplied, or divided; they can only be 
compared. Subtraction of timestamps gives interval sizes. Thus, event relations have the prob- 
lena that they cannot directly provide answers to queries dealing with event points that are not 
explicitly represented. For the event relation in Figure 2, "What was Peter's salary on 
1Mar80?" is an example of a hard query. Not only is a type of range query required to locate 
the prior and successor tuples (see Section 6.1), but also the semantics of having a stable salary 
are implicitly invoked. 

The problem gets even worse when there is a need to combine two or more relations with 
different temporal domain types into a single relation. As an example, consider the relation 
given in Figure 4. 

Name Salary Dept Start End 

Peter 32K Toys Jan77 Jan78 
John 15K Shoe Jan77 Jan81 
John 25K Shoe Jan81 Jan83 

Figure 4. A temporal relation with different domain type 

It is not obvious how the system should combine the two relations in Figures 2 and 4 to 
form a single relation. Standardization of domain types in a database can prevent this 
mismatch; however, in practice, since we derive information from diverse sources, not always 
under the same control, we will always encounter some mismatched domains, t 

Let us once again consider the event relation given in Figure 2. If  a user wishes to derive 
a snapshot at time 2Jan80 for the data of Figure 2, it seems reasonable for the system to return 
the state given in Figure 5. Stability of the discrete event results is assumed here. 

Name Salary Dept 

Peter 30K Shoe 
Margi 31K Shoe 
Jack 30K Linen 

Figure 5. A snapshot 

However, the stability assumption is not valid for all attributes. For instance, if the data- 
base also records events where bonuses were given, then a snapshot query should not assume 
that the bonus is valid throughout every implicit granularity unit used for other employment 
data. 

Assumptions other than stability or none also occur. Suppose a user asks for a snapshot 
at time 9:15 for the relation given in Figure 3 that records room temperatures. If the system 
uses the stability assumption, it will derive the answer given in Figure 6 which is not likely to 
be the desired response. Unless we formalize all relevant temporal semantics, we cannot leave 

* There are other types of mismatches (e.g., semantic mismatch [7]) that can occur in these cases, but they are 
outside the scope of this paper. 
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the task of executing queries involving temporal data to the system; the responsibility of 
defining the semantics for the temporal data falls onto the users. It is specified during the query 
definition phase. 

Location Degrees 

Class room 22.0C 
Kitchen 23.0C 

Figure 6. An incorrect snapshot using stability assumption 

Some authors use intervals as the temporal domain type, but there too some use represen- 
tations which lead to difficulties. For example, Dutta [8] uses ordered pairs of the type 
<closed-interval,value> to represent a temporal attribute. So the bank balance of a certain 
account is represented as 

{ ([2Jan87,3Jan87],3000), ([3Jan87,5Jan87],5000}. 

We now have the problem that we are not sure of the exact bank balance on 3Jan87. It is either 
3000 or 5000, but we do not know which. One could argue that there is one other possible 
interpretation that the account balance changed from 3000 to 5000 during the day, but we do 
not know exactly when it changed inside the granule. The difficulty, however, is that if we 
wish to have a proper balance history, we will require time granules smaller than a day which 
requires information which is not available. 

Some (e.g., [11,12,17]) model temporal intervals which do not adjoin; they are always 
separated by event boundaries of some grain size. This representation has some of the same 
problems as those seen with event relations. In [13,14], unions and cross product of intervals 
are used that require extensions to the relational model. 

In [6,11] as well as in many statistical programs, a further assumption is made that all 
intervals are equal in size. We find this assumption too costly in database practice where his- 
tories are long and events occur at unpredictable times. For these reasons it is better to denote 
interval start and finish explicitly. Statistical programs can then evaluate if their assumptions 
are sufficiently valid to allow reliable computations. 

3.1. Granularity Differences 
In any specific application, the granularity of time has some practical magnitude. For 

instance, the time-point that a business event, like a purchase, is associated with a date, so that 
a day is the proper granule for most business transactions. People do not schedule themselves 
for intervals of less than a minute, while database transactions may be measured in mil- 
liseconds. Eventually we are limited by the precision that our hardware can recognize; frac- 
tions of microseconds are the finest grain here. We use G to denote the granularity; it is in 
effect an interval. 

The finiteness of measurement granules leads to a confusion of event times and intervals. 
If we limit our event measures to dates (G = 1 day), and we say that an event occurred on such- 
and-such a day, then implicit for most of us is also that the event spanned some interval within 
that day. A point event is then associated with an interval of one granule length. There will be 
a smallest time granule G, perhaps intervals of seconds or days, which follow each other 
without gaps, and are identified by the timepoint at their beginning. True Intervals are 
sequences of event measuring intervals. 
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However, problems arise with this simplification. Inconsistencies occur when an 
inclusive interval is defined by two event time measurements with an implicit grain. First we 
have to round actual measurements to the integer grainsize used; then we add the granule size 
to the result: 

T c = t / - t s + G  

where ts denotes the value corresponding to the start of the interval and t/the value when the 
interval is finished. Thus, if movie is shown daily from the 12th to the 19th of a month, there 
will be 19-12+1 = 8 performance days. While we are all used to performing such adjustments 
when computing with intervals, a database system which deals with temporal events must 
present consistent temporal semantics to the user to avoid confusion. We cannot use an event 
directly to compute an interval but always have to Correct for the associated grain size. While 
in any one application use of a fixed grainsize is feasible, problems arise if we merge informa- 
tion from distinct applications. 

A database system has to carry out the computations to satisfy the application semantics. 
If those include the use of finite events, then the grain size assumption made must be explicitly 
stated. Many granularities may need to be simultaneously active. In our formulation we will 
require two datatypes, infinitesimal time points for events and intervals for histories, to deal 
with all temporal data. 

4. Processing of Temporal Data 

In this section we outline the steps needed to process the temporal data, given the design 
decision made above. 

1. Collection of new data. When temporal information about objects is added to rela- 
tions describing objects, it does not change the essence of the objects, it merely records their 
history. The traditional means for identifying the objects remain accessible and manipulable. 
However, the time-identification is appended to the object identifier, so that the multiple tem- 
poral tuples for an object can be distinguished. For each object then we have a nest of temporal 
tuples. We need to make explicit the underlying domain for the event times. If the time of the 
event is not given, the data-entry time is used as a surrogate. 

2. Conversion of event data to histories. We introduce a history operator H in Section 
4.2 that converts event information to a history by finishing and starting of intervals. An inter- 
val is created for every event of an object, intervals are closed by finishing events, and adjoin- 
ing intervals are merged to create larger intervals. 

3. Retrieval of information. We next extend the set of operations to permit a larger set of 
computations, so that we can perform all the functions needed for query answering and general 
data processing at a high level. 

The critical step in the processing scenario outlined above occurs in Step 2. The deriva- 
tion of historical intervals from start and finish point events requires an understanding of the 
semantics of the time domain; the history operator H permits specification of these semantics. 
By deriving a history from the source events we prepare the stage for all subsequent operations. 
Specifically, since a snapshot is only applied to a historical relation, no semantic interpretation 
is necessary when the queries are being processed. 

These processes can be carried out today by conventional data-processing programs. 
Their formalization has the objective of being able to mechanize more of these tasks, reduce 
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programming effort and failures, and improve el~ciency. Operations carried out within 
DBMS's are subject to optimization, wheras optimization done within user programs tends to 
be spotty and inflexible. 

4.1. Events and Intervals 

As mentioned earlier, we will need two domains types to process temporal data: 

I. Event times, and 

2. Intervals between events. 

Event time typically consist of the time and date of events. These two domains are com- 
plementary and distinct. Algebraic operators can convert information among these representa- 
tions, either can be used to represent temporal data. Intervals are obtained by taking the 
difference of time-points. Unlike event times, time intervals can be added and subtracted, and 
therefore, new event points can be computed by adding or subtracting intervals to time-points. 
Intervals can be multiplied and divided by real or integer values. Furthermore, intervals can be 
compared as well, although the conditions are more complex, as shown in Section 5.1.2. 

We consider time to be infinitely divisible, so we must treat it similarly to real numbers. 
In our temporal domain we introduce a new symbol uc which stands for "until changed." We 
illustrate its utility by way of an example. Consider the relation given in Figure 7. 

loan type rate (in %) period 

Prime 10 [1988,1989) 
Prime 11 [1989, uc) 

Figure 7. A temporal relation using "until changed" symbol 

The interpretation given to the second tuple is that the fact represented by the tuple (the 
prime rate is 11%) remains true until it is changed. With this simple augmentation in the 
domain definition, we are now able to record information about the future values of the prime 
interest rate (not just the past and current values). For example, we can insert in 1990 the the 
prime rates for 1991. (See Figure 8.) 

loan type rate (in %) period 

Prime 10 [1988,1989) 
Prime 11 [1989,1990) 
Prime 10.5 [1990,1991) 
Prime 10.25 [1991, uc) 

Figure 8. A temporal relation containing future rates 

If we adhere to the usual now notation, we find that we cannot represent the semantics of 
the second relation (although there is no problem with that of the first relation). The first rela- 
tion can be represented by the relation in Figure 9 while the second relation is given in Figure 
10. The second relation does not make sense when now has a value which is less than 1991. 
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loan type rate (in %) period 
Prime 10 [1988,1989) 
Prime 11 [1989, now] 

Figure 9. The temporal relation in Figure 7 using "now' '  symbol 

loan type rate (in %) period 
Prime 10 [1988,1989) 
Prime 11 [1989,1990) 
Prime 10.5 [1990,1991) 
Prime 10.25 [1991, now] 

Figure 10. The temporal relation in Figure 8 using "now" symbol 

The exact relationship between n o w  and uc is as follows: Given an interval t = [/, uc) ,  

uc = n o w  if 1 < n o w ,  

> n o w  i f l  ~ n o w .  

We should note that as long as the database is restricted to collecting the factual observa- 
tions about the real world, now is adequate. As soon as we use a database for planning or com- 
mitments made into the future, the n o w  semantics give the above problems, and uc must be 
used in its place. Also, we have chosen to use [l, uc)  instead of [l, ,o) since we wish to distin- 
guish between values (for example, death) which are true forever from those that are true until 
they are changed. 

4.2. Introduction of Temporal Semantics 

A critical step in the processing of temporal data is the conversion of event data to his- 
tories. The derivation of values of time-variant attributes at intermediate points within the his- 
torical intervals, defined by event times, requires an understanding of what actually occurs 
within the interval. There are several possibilities; some are shown in Table 1. 

Event Interval State Transform , Type 

Salary_change Salary Use start value stable 
Hiring Workshop Use start value stable 
Bonus n.a. not continuing none 
Output_measures Productivity Use average of points AVG 
Power_usage Power_consumption Use average of points AVG 
Power_usage Power_rating Use maximum point MAX 
Light Illumination use minimum point MIN 
Inventory Growth Use difference of points RATE 

Table 1. Historical attribute semantics 

Using these historical attribute semantics, we will define in Section 6.2 a history operator 
H which permits specification of these transforms. Time-variant attribute values (an) in his- 
tories can be computed using computations given in Table 2. As before I, denotes the event 
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value corresponding to the start of the interval I and If the value when the interval is finished. 

Assumption Computation 

Stability au  = at, 
Constant Rate of Change a .  = at, + AT(at  t - at,) 
Maximum in Interval a n = max (at,, at I) 

Minimum in Interval a n = min (at,, at t )  

Average over Interval a ,  = at, + (at t - at,)12 

Table 2. Introduction of semantics in the history operator 

We can now derive the historical information from Figure 2 using the assumption that 
salaries are stable during the intervals, as shown in Figure 11. Since Figure 11 is based solely 
on Figure 2, it shows current information which may not be reasonable (e.g, no change in 
Peter's salary since June, 1980), The point here is that history relations convey information by 
resolving the interval value. The relation is Figure 11 contains explicit answer to the query 
about Peter's salary on 1Mar80. If a query specifies an interval, say [2Feb80,4Jul80), then mul- 
tiples tuples might be returned. 

Name Salary Dept Period 

Peter 30K Shoe [1Jan80,4Jun80) 
Peter 32K Shoe [4Jun80, uc) 
Margi 30K Shoe [6Mar78,1Jan79) 
Margi 31K Shoe [1Jan79,4Jun80) 
Margi 32K Shoe [4Jun80, uc) 
Jack 30K Linen [4Ju179,4Dec80) 
Jack 30K Shoe [4Dec80, uc) 

Figure 11. History relation derived from the journal in Figure 2 

When the history operation converts event information to a history, it depends on the 
assumption that the journal of the events has been made complete so that it can generate a 
correct history, especially if different histories are to be combined. For the relation in Figure 4, 
we need to add the information that the start date for employee is the first of the month. Once 
this is done, we can apply the history operator to the relation in Figure 4, and the system can 
then combine the two histories to form a common history which is shown in Figure 12. 

It is worth noting in Figure 12 that since the last tuple for the employee John does not 
contain "uc,"  we know that John is no longer employed by the company. Thus, if we assure 
that each object history is complete between the extreme start- and finish-points, then deleted 
objects can be easily represented in history relations. 
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Name Salary Dept Period 
Peter 32K Toys [1Jan77,1Jan78) 
Peter 30K Shoe [1Jan80AJul80) 
Peter 32K Shoe [4Jun80, uc) 
Margi 30K Shoe [6Mar78,1Jan79) 
Margi 31K Shoe [1Jan79,4Jun80) 
Margi 32K Shoe [4Jun80, uc) 
Jack 30K Linen [4Ju179,4Dec80) 
Jack 30K Shoe [4Dec80, uc) 
John 15K Shoe [IJan77,1Nov81) 
John 25K Shoe { 1Jan81,1Nov83) 

Figure 12. Combined history 

The history relation for the journal in Figure 3 is given in Figure 13, assuming that the 
average value is to be used at intermediate points of an interval. The benefit here is that we can 
now easily determine the snapshot at time 9:15, which is given in Figure 14. 

Location Degrees Interval 

Class room 19.5C [8:00, 9:00) 
Class room 22.5C [9:00,10:00) 
Kitchen 24.0C [9:00,10:00) 

Figure 13. History relation derived from the journal in Figure 3 

Location Degrees 

Class room 22.5C 
Kitchen 24.0C 

Figure 14. A correct snapshot 

5. Temporal Operations 
In this section, we define various operators on our two domain types (event times and 

intervals), most of which are taken from [2]. Using these operators, it is straightforward to 
extend the usual relational operations (select, project, join, and others) for event as well as his- 
tory relations. 

We use the variables t, u, v to denote the time and date of events, and variables T, U, V 
to denote time intervals. We define two functions, nun and max, which, when applied to inter- 
vals, return the starting and finishing event times. Thus, if T is the interval It, u), then m/n (T) = 
t and max (T) = u. 

Let  T ,U,V to denote the time intervals between events t and u, u and v, and t and v, 
respectively. We denote by I TI the size of an interval T. Then the following transformations 
hold: 

t = m i n ( T ) = m i n ( V )  lTl=u-t 
u = max  (T) = min (U) I U l = v - u 
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v =max(U) =max(V) IVl=v-t 

IVI=ITI+IUI 

5.1. Temporal Comparison 
For database searching, the primary operations is comparison. It can be applied to pairs 

of events, to pairs of intervals, and to combinations of both. Temporal comparison occurs so 
frequently in daily life, we have words (e.g. before, after, etc.) for the various cases with fairly 
well understood semantics. Using these words can help avoid errors when dealing with histori- 
cal databases. 

5.1.1. Event Comparisons 

The comparison operations for events are listed in Table 3. 

Name Definition 

t BEFORE u t < u 
t A T u  t = u  
t AFTER u t > u 

Table 3. Comparing events 

5.1.2. Interval Comparisons 

When we want to deal with independent events, and see if they coincide, interval com- 
parison is appropriate. First we may want to see if one interval is longer or shorter than 
another, and then we may want to check how intervals occur relative to each other. The two 
size comparisons given in Table 4 are symmetric. 

Name Definition 

TLONGER U ( m a x ( T ) - m i n ( T ) )  > ( m a x ( U ) - m i n ( U ) )  
T SHORTER U (max (T) - min (T)) < (max (U) - min (U)) 

Table 4. Comparing Interval Sizes 

Dealing with the relative position of intervals is necessary when we evaluate actions that 
take time to develop an effect. For instance, a drug has to be in the body for some time before it 
can affect a disease. An analysis of medical data has to take those lags into account. 

Comparison of interval positions is more complex than comparing event occurrences. 
When we compare intervals the comparison must hold for all time points within the intervals. 
We assess completeness of our operations by considering the start-points (m/n (T)), finish- 
points (max (T)), and the relative length of both intervals. Table 5 presents the terms and illus- 
trates eleven conditions. Four symmetric cases, DURING and SPANS, and the last three condi- 
tions are symmetric for U,T are listed to provide the full terminology. They provide the basis 
for a complete comparison algebra on intervals, so that no decomposition into event rime.stamps 
is required. The three event comparisons for the two pairs of points in each interval actually 
permit 2 × 3 2 ---> 18 comparison cases. Of those five are invalid, since they require that we have 
intervals with max (U) < m/n (U). Three cases are symmetric for U longer than T and vice 
versa. For two of those cases, STARTS and FINISHES, we do not have common distinctive 
terms; they are not shown in Table 5. 
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Name Definition 

1. T BEFORE U max(T) < min(U) 
2. T UNTIL U max(T) = rain(U) 
3. T LEADS U min(T) <_ min(U), max(T) < max(U), min(U) < max(T) 
4. T STARTS U rain(T) = min(U), max(T) < max(U) 
5. T EQUALS U rain(T) = rain(U), max(T) = max(U) 
6. T DURING U min(T) > min(U), max(T) <max(U) 
7. T SPANS U rain(T) < min(U), max(T) > raax(U) 
8. T FINISHES U rain(T) > rain(U), max(T) = max(U) 
9. T LAGS U min(T) > rain(U), max(T) > max(U), min(T) < max(U) 
10. T FROM U min(T) = max(U) 
11. T AFTER U max(T) > rain(U) 

Table 5. Comparing intervals 

[unique] 

[Complement of 6.] 
[Symmetric with 4.] 
[Symmetric with 3.] 
[Symmetric with 2.] 
[Symmetric with 1.] 

5.1.3. Comparing Events and Intervals 

Although algebras typically do not permit comparison of different domain types, we find 
that such comparisons occur frequently in practice. Quite unambiguous are the comparisons 
shown in Table 6. The terms themselves are overloaded, so that a system has to know the tem- 
poral domain type to carry the operations correctly. 

Name Definition 

t BEFORE T t < min (T) 
t DURING T t > m/n (T), t < max (T) 
t AFTER T t > max (T) 

Table 6. Comparing events and intervals 

5.1.4. Temporal Computation 

We define some additional operations on intervals which will be useful in the next sec- 
tion when we use the history operator H to create a history from a journal. We will need to 
concatenate (cat) or shorten (uncat) history tuples. 

Given a pair of intervals T and U, the operation T cat U is defined iff T UNTIL U holds, in 
which case 

T cat U = [rain (T), max (U)). 

The operation T uncat U is defined iff either T STARTS U or T FINISHES U holds. If 
T STARTS U, then 

and if T FINISHES U, then 

T uncat U = [max (T), max (U)), 

T uncat U = [min (U), rain (T)). 

When we convert event data to histories, each event tuple is converted into a history 
tuple by replacing each time attribute by an interval. The cat and uncat operations are used to 
replace different history tuples with adjoining intervals for the same object by a single history 
tuple with larger interval as the time attribute. 
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6. Operations on Temporal Relations 

We now deal with proper histories only. Relations that are less constrained introduce 
more complexity and will not be discussed here. One way to ensure that a history is proper is 
by augmenting each object identifier by the time attribute. 

We define two operations: H to compose a proper history from journal data and I to 
create a snapshot at a given instance in time from a proper history. But first we show how we 
can derive a temporal sequence from a journal or a history. 

We denote relations throughout as R (S,E) where E is the temporal extension with n tem- 
poral tuples el. An attribute containing temporal information is denoted as At, with event or 
interval values ai in tuple el. 

6.1. The Temporal Sequence 

The constraints imposed on journals and histories mean that we can establish a temporal 
sequence. Within a journal or a history we can speak of the NEXT, CURRENT, or PRIOR event 
or interval. When there is no NEXT tuple the result is uc. When there is no PRIOR tuple, the 
result is A. 

A proper history requires a contiguous sequence. If there is truly an interval with 
unknown information it must be represented explicitly. This is done by specifying a tuple with 
the interval and a value of null (A) or none or n.a. if it is known to be missing or not applicable. 
Specifically, 

NEXT(ec) := {ei : objectc = objecti, rain (al) = max(at)}. 

The PRIOR tuple is found similarly. CURRENT operation is defined in Section 6.2.1. 

6.2. The History Operator 

The history operator H converts event information to a history. It depends on the assump- 
tion that the journal of the events has been made complete. We showed an example of what 
might be needed to complete a journal in Section 4.2. There are two phases to generating a his- 
tory: 

I. An interval is created for every event on an object. 

2. Adjoining intervals are merged to create larger intervals. 

More formally, suppose we are given a journal R with attributes S and a temporal extension E. 
Let as denote the interval in tuple ei. The history operation H is defined as follows: 

H(R(S,E)) := { el = ( objecti, ai)} 

where objecti ~ S and for each ea ~ S, whenever NEXT(el)  = ed, ai = ai cat aa. 

Any tuple ed of R processed in this manner is not distinctly represented in the history 
H(R). This reduction is reminiscent of the reduction that is required to avoid duplicate entries 
during projection, Here we wish to avoid duplicate information in adjoining intervals. 
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6.2.1. Computation of Snapshots 
A snapshot (I) provides object information as of a given point in time. The most frequent 

snapshot is one that obtains CURRENT information, but any other time value may be used. The 
definition of result values from temporal relations is quite straightforward. The snapshot at a 
time t is determined as follows: 

I(R(S,E)) := { objecti : ei E R and rain (ai) < t < max(a/)} 

All other relational operations (such as projection, selection, and join) map straightfor- 
wardly into event and history relations, specifics will be given in [24]. 

7. Conclusion 

In this paper, we present an algebra which addresses the issue of time granularity in tem- 
poral relations. The algebra permits merging, abstraction, and other computations to reduce 
temporal information. Often the factual data collected at the source is at too fine a granularity 
to be useful to the decision maker. The data have to be aggregated, merged with other data, 
etc., before we have the information needed for decision making. Many of these tasks are tradi- 
tional functions of application programs. However, when applications are shared by many 
users, it is important that they be consistent. Since one of the roles of a DBMS is to assure con- 
sistency, it is reasonable that not only shared data, but also shared computations are handled by 
the DBMS. 

We have shown that it is wise to have both explicit journal and history representations in 
view of the need to make semantic choices when converting events to histories and snapshot 
results explicit, as shown in Section 4.2. An implicit conversion cannot capture the range of 
options that might be needed. 

With these considerations, we have also defined a representation and corresponding 
operations for temporal data. The relational temporal algebra is a straightforward and sound 
extension of the relational algebra. A requirement for an algebra is that the results of opera- 
tions on objects are in turn objects of the same type. The relational algebra satisfies that condi- 
tion since all results are in turn relations. An implementation need not be resu'icted to today's 
traditional relational DBMS's. Formulation as nested relations [18,19] are likely to provide 
more efficient processing. 

An obvious question is whether the proposed extensions are worth the increased com- 
plexity. We believe that this is so. Many data-processing applications deal with temporal 
information. The operational semantics of time are not well captured by operations that expect 
integer, real, or characterstring types. Programmers have to repeatedly code operations which 
recreate temporal semantics. However, for any single application a less general collection of 
representations and operations are adequate so that the programmer selected representations, 
the granularity, and the result types differ from case to case. Mismatch problems when combin- 
ing temporal information are frequent. Errors are common and high-level integration is inhi- 
bited [5]. 

By using uc in the temporal domain instead of the usual now, we can record in the data- 
base expectations about the future. It would be interesting to extend this capability to allow 
consideration of alternate futures. As far as we know those complexities have never been 
rigorously addressed. 
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