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Abstract 

Conventional conceptual models like the Binary Relationship Model (also known as 

NIAM) or the Entity-Relationship Model do not fit well with the promising object oriented 

database systems. In this paper we show that is possible to turn such a conventional 

conceptual model (in particular the Binary Relationship Model) into a truly object oriented 
conceptual model which combines the assets of the conventional model with the 

advantages of the object oriented approach. 

1. Introduction 

In recent years there has been a substantial influence of object-oriented (OO) 

programming languages to the Data Base Management System (DBMS) technology. This 

has resulted in the development of a number of object-oriented data models and systems 
[e.g. 1, 2, 3, 4, 9, 21, 29]. An object-oriented modelling method offers a number of important 

advantages, such as: 

(1) All information is modelled through a single concept, namely objects. Each object has 
its own identity. 

(2) The encapsulat ion mechanism that packs the data (instance variables) and behaviour 

(methods) of an object together, protects the. data from corruption by other objects and 

hide low level implementation details from the rest of the system (information hiding). 

(3) Similar objects are grouped together into classes. All objects belonging to the same class 

are described by the same instance variables and methods. 

(4) The concept of class allows to define new abstract data types which enjoys the same 
rights and privileges of the built-in data types. 

(5) Classes may be organized into subclass hierarchies. The instance variables and the 

methods specified for a class are inherited by all of its subclasses. In addition, the 

subclasses may have properties (instance variables as well as methods) of their own. 

* This work was supported by the Basic Research Action IS-CORE of the Commission of the 
European Communities. 
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This generalization/specialization mechanism allows to abstract away the detailed 

differences of several class descriptions and to factor out the commonalities as a 
common superclass. The technique of inheri tance makes it unnecessary to restate the 

properties of the superclass for the subclasses. In addition it will localize modifications 

due to changing requirements. 

(6) Through the technique of overloading systems are simplified because the same method 

name may be used to activate an operation common to different types of objects but 

differently implemented for each type of object. It also makes the system easier to 
extend; if a new type of object, also bearing this operation is added, the existing objects 

are totally unaffected by this change. 

A special case of overloading is overriding. This technique redefines a method of a class 

in a subclass. It allows special cases to be handled more efficiently and easily without 

having an impact on other objects. 
(7) Objects can also contain other objects. Such objects are usually called composite objects. 

They are important because they can represent far more sophisticated structures than 

simple objects can. 

On the other hand, conceptual data models (sometimes also called semantic models) 
are used during the information analysis stage in the development of an information 
system (IS) to translate the user's information requirements into a supposedly precise, 

complete and unambiguous description, the so-called conceptual schema (CS). One of the 
important functions of such a conceptual schema is to serve as a tool to communicate 

among all parties involved, the semantics of the Universe of Discourse ( the application 

domain containing the given situation), abbreviated UoD. Therefore this description 

should ideally only deal with conceptual issues; i.e. the various object types of the UoD, 

their associations and the integrity constraints. No representation or implementation 
oriented details should be included. Looking too early into problems such as organization of 

the UoD objects into records, normalization, access strategies, representations, etc., distracts 
the specifiers' attention from mastering the real UoD problems. Well known examples of 
early conceptual models are Entity-Relationship models [e.g. 8], Binary Relationship Model 

[e.g. 26, 32], Object-Role Model [e.g. 14], Functional Model [e.g. 28]. 

Later on in the development of an information system, (at least for conventional DBMSs) 

the CS may become input to the design of a data base schema, which is (was) usually 

expressed in terms of record types, key fields and relationships between records. Until now, 

there is no clear connection of a conceptual schema to an OO-DBMS. It may even be 

questioned if a connection to an OO-system is possible and opportune. Some people will 

even argue that OO-data models makes conceptual models completely redundant .  

Although most of the earlier mentioned conceptual models have already incorporated 

some of the attractive features of the CO-approach (e.g. subtype hierarchies together with 

inheritance of properties and aggregation hierarchies) [e.g. 18, 35] there is still a big gap 

between these conceptual models and OO-models. The main reasons for this are: 
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~1) Most of these conventional conceptual models do not support  the specification of the 

behaviour of the IS, and if they support it there is usually a clear separation between the 

description of the information structure (the data) and the functionality Coehaviour) of 

the IS. In OO-approaches specification of data and behaviour is inextricably bound. 

(2) Conventional models describe the UoD as a bunch of entities and their relationships 

and interactions are described from a global viewpoint. The application programs are 

described in a top down way. The approach is usually based on functional 

decomposition- and modular programming techniques. This is completely different in 

the OO-approach. The OO-approach does not start with the tasks or functions to be 

performed by the system, but rather with the objects that are needed in order to perform 

the tasks. Once these objects are correctly represented, they can be used to solve a wide 

variety of tasks including the original one. Objects are specified as general-purpose 

building blocks and their relationships and interactions with other objects are described 

locally. Systems are built by assemble objects. In this sense, the OO-approach is rather a 

bottom up approach. 

(3) OO-systems usual offers a large range of new data types like e.g. sets, arrays, bitmaps .... 

together with the possibility to define others. These are needed because of the complexity 

of the data of non-conventional information systems. Conventional conceptual models 

are not able to support  the specification (at an abstract level) of the use or definition of 

such data types. 

Although in a recent paper [20] Maier argues that it is not possible to define a general 

object oriented data model because of the diversity of the features supported by the current 

available OO-DBMSs, it is our opinion that even in an OO-DBMS environment a 

conceptual schema is still desirable. Its function remains the same as in a conventional 

environment; to serve as a specification reference by giving an unambiguous description of 

the conceptual issues of the system which can also be understood by non-technical persons. 

The graphical representation technique used to represent the specifications plays an 

important role in the success of conceptual models as a communication tool between 

information analysts ,  database experts and non-technical persons. 

Only, the earlier mentioned conceptual models as such cannot be combined with an OO- 

data model without sacrifying a number of the advantages of the OO-approach. 

In this paper we show that it is possible to turn a conventional conceptual model (the 

Binary Relationship Model, also known as NIAM) into an OO-conceptual model without 

sacrifying the main assets of the model. The step from an OO-conceptual schema to an OO- 

implementation will then be much easier and the full power of the OO-approach can then 

be exploited. We have opted for the Binary Relationship Model (BRM) because it has a 

number of abstraction capabilities which are in particular suitable for conceptual 

information analysis. 

The paper  is organized as follows: In section 2 we briefly describe the BR model. 

Section 3 presents our object oriented version of the BR model and in section 4 we 
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summarize differences and similarities between the conventional and the OO-BR model 

and discuss the difference with other approaches. 

2. The Binary Relationship Model (BR model) 

The descriptions of the BR model (under different names) appear in several forms in 
the literature ([12, 16, 19, 22, 24, 25, 26, 32, 34 ...]).The Binary Relationship Model has proven 

to be successful in several large scale industrial projects [e.g. 13, 31]. 

Its main abstraction capabilities are : 

(1) Abstraction from lexical representation. 

The objects of the UoD are classified into lexical and non-lexical objects. Examples of 

non-lexical objects are employees, departments. The lexical objects are objects which 

may be used to represent the non-lexical objects of the UoD; e.g. employee names, 

employee numbers, department names. Although there is an explicit distinction 
between lexical and non-lexical objects no decision what so ever is made about which 

lexical object ( or combination) will be used to represent a non-lexical object. Only 

possible lexical representations are identified. 

(2) Abstraction from instance level. 

This abstraction capability is well known and present in most conceptual models. It 

means that the building blocks are the object types (OT) instead of the individual 

objects. 

(3) Abstraction from a~ega t i on .  

All associations between object types are expressed by means of binary relationships 

(facts). No fore-ordered data organization is imposed. No decision has to be taken 
whether an object is entity or attribute. 

(4) Abstraction by ~eneralization/specialization. 
As in the OO-approach, the BR model supports the notion of object type sub-hierarchy 

and inheritance of properties along this hierarchy. An object type sub-hierarchy captures 

the "is-a" relationship between an object type and its subtypes. Multiple supertypes for a 

subtype are allowed. 

In addition to these abstraction capabilities, the BR model explicitly addresses the issue 

of constraints. Constraints constitute the semantical component of the conceptual schema; 

they ensure that the schema meaningfully reflects the UoD. A large variety of constraint 

types are supported. Other constraints may be expressed in one of the constraint languages 
proposed in the literature [36, 32, 11]. 

We adopt the well known "NIAM" graphical notation [12], [32] for the BR concepts : 
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© a NOLOT - (NOn-Lexical Object Type) 

a LOT -- (.L_exical Object Type). A LOT may  be involved in one fact 

only, with a NOLOT. 

() 

a Fac~. The "boxes" are called Roles. Each Fact involves exactly two 

Object Types (which may  be the same). 

a Sublink - the subtype occurrences implicitly inherit all properties 

of the supertype. Subtypes need not  be disjoint and not  all of  a 

NOLOT's  occurrences need to be in one of its 

subtypes. 

Certain constraint types occur so frequently and are so fundamental  that they have a 

graphical representation as well. We only introduce the graphical representation of some 

constraint types: 

The Identifier constraint (simple functional dependency) is drawn 

as a line over the key-role. 

() 

A Total Role constraint stating that each instance of an OT should 

participate in a given Role is represented by a "V" sign. 

A Total Union  constraint  is a general izat ion of a Total Role 

constraint. Each instance of  the OT should participate in at least 

one of the indicated Roles or Sublinks. 

The Exclus ion constraint expresses the mutual ly  exclusion of a 

number  of Subtypes. 
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A U n i q u e n e s s  constraint is a generalization of the Identifier 

constraint. An instance of an Object Type is identified by an 

instances-combination of the indicated Object Types. 

The classical BR model as such cannot be called object-oriented, because: 

(1) Objects do not have an object identity. They only exist through their properties; objects 

with the same properties are considered to be the same. 

(2) Behaviour of objects is not specified. 

(3) Data cannot be encapsulated into an object. 

(4) There is no way to define new abstract data types. 

(5) There is no concept such as composite object. 

3. An object oriented BR model (OO-NIAM) 

In this section we introduce an object oriented version of the BR model. This is not  

done by simply adding extra features. Instead we build up the OO-BR model from scratch, 

but we follow most of the principles of the classical BR model and combine them with OO- 

principles. 

3.1. Objects, Object Types and Subtypes 

Following the OO-principles, an object is constituted by some private data (the state) 

and a set of operations (the behaviour) inextricably bound to it. In the classical BR model 

the concept of Object Type (OT) is only used to classify objects. In our OO version of the BR 

model, the description of state and behaviour of the objects are encapsulated into the OT. 

The OT defines the attribute relations, methods and constraints of the objects of this type. 

Attribute relations describe the state of an object, methods describe the behaviour of the 

object and the constraints restrict the possible states and the behaviour of an object. We use 

the term properties to denote attribute relations, methods and constraints. 

In addition to the properties of the objects, an OT (which can also be considered as an 

objec0 may also described its own properties; they are called type-properties (type-attributes, 

type-methods and type-constraints). 

As in regular NIAM, an OT will be represented by a circle. 

An OT may be subtype of one or more supertypes. The properties of the supertypes are 

inherited by the subtypes. We keep the strict "is-a" meaning of the BR-model sublink 

concept; each object of the subtype is also an object of the supertype. We also keep the 
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graphical NIAM representation for a sublink; an arrow pointing from the subtype to the 

supertype. The BR-model exclusion and totality constraints expressible on sublinks keep 
their meaning. 

As in Smalltalk [9, 17], we consider a single OT-sub-hierarchy for the entire schema. 

All OTs are ultimately subtype of the pre-defined OT "Object" which capture all objects of 
the UoD. According to the BR model principles, objects are classified into lexical and non- 

lexical objects. This means that the OT "Object" has two (disjoint) (pre-defined) subtypes 
"Lexical Object" and "Non-Lexical Object". The lexical objects may be further divided into 

e.g. "Boolean", "Number", "String" and "Text". See figure 1. 

Ob ect 

figure 1: pre-defined OT sub-hierarchy 

Each UoD-specific OT is a subtype of either "Lexical Object" or "Non-Lexical Object". 

For example, document numbers are lexical objects while documents are non-lexical objects 
(see figure 2). 

ObJeat 

3,,-'" - ~ xlcal Object 
Docmmlnt 

figure 2 : example UoD-specific OTs 
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We make the convention that UoD-defined OTs which are subtypes of "Lexical Object" 

will be represented by a dotted circle and we call them LOTs (similar as in regular NIAM). 

UoD-defined OTs which are subtype of "Non-Lexical Object" will be represented by a solid 

circle and are called NOLOTs  (also similar as in regular NIAM) . By this convention the 

sublink arrow to the respectively supertype "Lexical Object" or "Non-Lexical Object" can be 

omitted (see figure 3). 

• - j _  j "  

Document Do c,lment_Nunt~ r 

figure 3 : graphical convention for LOTs and 
NOLOTs 

The (abstract) data type of a LOT may be specified by declaring the LOT a subtype of one 

of the pre-defined subtypes of "Lexical Object". For an example see figure 4; document 

numbers are defined to be numbers. Note that it is not necessary to specify the data type of 

LOT. It may be left unspecified till the implementation phase. 

Number 

--% 

~t \ , 

~ocu.~r~nt N ~ r  

figure 4 : data type for a LOT 

By introdudng new subtypes of "Lexical Object" new abstract data types may be defined 

by the user himself. See for instance figure 5 where two new lexical types "Name" and 

"Date" are introduced. 



Lexlaal Ob Ject 
'%. 
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figure 5 : example of user defined abstract data types 

Note that in figure 5 we have NOT used the dotted circle convention for "Name" and 

"Date" this to indicate that "Name" and "Date" are UoD independent OTs. This allows the 

user to extend the pre-defined subtype-hierarchy without limitations in a UoD independent 

way. These new defined subtypes can later be used in different conceptual schemas. 

3.2. Object Type Definition 

In the OO-version of the BRM, the OT concept is the mechanism to hide the 

description of the properties of the objects of this type. To describe these properties we will 

use a graphical representation technique very similar to the usual representation technique 

for the BR model. 

The OT under description is represented as a circle embedded in a square. Attribute 

relations are considered to be special facts; they describe binary links between the objects of 

the OT under description and some other objects. The usual BRM constraints are used to 

restrict the possible instances of the attribute relations. For type-attributes the same 

graphical representation as for attribute relations is used but the role connected to the OT 

under description is labelled with a 'T ' .  Figure 6 represent the state part  of the description 

of the OT "Document". The fact F1 is a type-attribute for the OT "Document". It specifies the 

"maximum size" of any document object. The graphical constraints specified for F1 state 

that there is only one maximum size and this value must be known even if there are no 

document objects. 

The objects of "Size", "Title" and "Doc_Number" are encapsulated in Document objects; 

they are called internal OTs because no other object has access to a Document object's Size, 

T i t l e  o r  D o  c - N u m b e r  o b j e c t .  

In addition to internal attributes, an object may also have attributes (or type-attributes) 

which refer to external OTs. External OTs are defined independently of this OT definition. 

To distinguish an external OT from an internal OT, we put  a dotted square around the 
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external OT. In the example of figure 6, the OT "Document" has an attribute relation with 

the external OT "Keyword". 

I D y t e S i z e  7 

F7 of 

E F2 of 

- - - -  ~.  / 

Includlng"FS+~,.,, ~ - -  ' ~  

included_in i/ .......... ~ ............ 

+ ........ '" 

figure 6 : an OT definition 

The difference between an object of an internal OT and an external OT is that an 

internal object can only be accessed by the objects with which it is involved in an attribute 

relation while an external object can be accessed (through its methods) by other objects as 

well. For an external object only the attribute relation is hidden, the objects themselves are 

not hidden. For instance in the example of figure 6, it is not possible for some object to 

access directly the Keyword objects contained in a given Document object because this link 

is hidden in the Document object. However, individual Keyword objects are accessible by 

other objects. 

In addition to the graphical constraints, text constraints to restrict the states of an OT 

may be specified as well. Such a text constraint may access internal objects directly ( or 

through local methods), but properties hidden in the definition of external OTs should be 

accessed through proper methods. An example of a simple text constraint for the OT 

"Document" would be 

ByteSize of Size of a Document is <= ByteSize of Size max of Document 

3.3 Methods 

In addition to attribute relations and constraints the definition of an OT also includes 

a description of the methods of the objects of this type. The definition of a method may be 

given using some OO-language. As for the constraint language, methods may directly access 

the attribute relations and the internal objects of the OT under description, all external 
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objects should be accessed through the proper methods. A description of this language will 
be given elsewhere. An example of such a language can be found in e.g. [33, 11]. 

A method will be graphically represented by a rectangle. A fat arrow points to the OT 

of which it is a method. The OTs of the in- and return-objects are specified by connecting 

the method box and those OTs by in- resp. out-going arrows. The arrows may be labelled 

with a name to distinguish two different in- or return-objects of the same OT. To make the 

difference between an object-method and a type-method, we put a dot inside the OT for an 

object-method. Figure 7 is an example of the graphical representation of the object-method 
"Info" for the OT "Document" Figure 8 is an example of a type-method for the same OT. 

l)<x~mnt 

© 
t 

Info 

• I 

t .......... I 

I,, ~ -- J J # D o e J q ~ z  

figure 7 : an object-method 

~ . - " D o c u m i n t  

New 

f igure  8 : a type-method 

3.4. Fact Types 

In most OO-system, instance variables are the only means for relating objects. We 

have chosen to support also explicit relations. Explicit relations are not encapsulated in 

some object. We have found that during information analysis the explicit representation of 
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relationships between objects may be of great value. Very often there is no conceptual 
reason for considering one object attribute of the other object or vice versa. Introducing a 

new object to represent the relationship between the objects is not always a desirable 

conceptual solution. Representing the relationship in both objects is a kind of redundancy 

which we want to avoid as much as possible during conceptual modelling. In our opinion, 

explicit relations will also meet the so called "ravioli code" problem [30]. "Ravioli code" is 

the OO-version of "spaghetti code", it refers to lots of tiny well structured objects that are 

easy to understand in isolation, but whose interactions are nearly impossible to decipher. 

Other OO-approaches which also support explicit relations are e.g.. [5] and [27]. 

As in regular NIAM, we use fact types to model explicit relations. Figure 9 shows an 

example of an explicit relation between the OTs "Document" and "Folder"; a Folder object 

may contain several Document objects and a Document object may be placed in different 
Folder objects. 

figure 9 : example of an explicit relation 

3.5. Inheritance 

A subtype inherits all properties of its supertypes. Contrary to most OO-systems, we 
only allow a limited form of overriding of the inherited properties. Along the subtype 

hierarchy, inherited attribute relations and constraints can only become more specific. For 

attribute relations inherited by a subtype this means that additional constraints may be 

specified which do not apply to the supertype. Also the OT of the attribute may become 
more specific; i.e. only a subtype of the original OT may be used. 

In this way, at least for the structural part, we avoid problems with multiple 

inheritance. Multiple inheritance raises problems if an OT inherits the same property of 

two (or more) supertypes and the property is differently defined for each supertype. Since 
we only allow specialization, the subtype inherits the spedalizations given for each 

supertype. This will not cause any problems; in the worst case no object will ever satisfy the 

specialization. However, such a situation can be detected by a CASE (Computer Aided 
DEsign) tool. For an example of such a tool see [10, 12]. 

An example of inheritance of attribute relations is given in figure 10. In the graphical 

representation, the inherited attribute relation are shadowed. The additional constraints 

and the more specific OT are drawn in full lines. 
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Sprite Doe~nt ded in Sprite F~yword 

figure 10 : example of inheritance and 
specialization of attribute relations 

Figure 10 shows an example; a Sprite_Document is defined as a subtype of a 

Document (see figure 6). They may only include Keywords which are registrated as 

Sprite Keywords (OT-specialization of F5). Each Sprite_Document must refer to at least 

one Sprite_Keyword (extra constraint for FS). 

Another example is given in figure 11. A Template_Document is a subtype of 

Document (see figure 6). A Template_Document includes a Style_Definition (extra 
attribute) but has no Keywords (extra constraint for F5). The latter is graphically represented 

by putt ing a vertical bar on the role connecting the OT "Keyword"  to the OT 

"Template_Document".  

~ l a t G  Doctu~nt  F5 

figure 11 : example of subtype definition 

The implementation of the methods can be overwritten completely. So for methods 

we have to deal with the multiple inheritance problem. For a possible solution we refer to 
the literature [6, 7]. 

3.6. Type constructors 

It is possible to see type constructors such as collection, bag, set, tree, list,.., as objects 
(see figure 12). 
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Non~xlcalObJect 
! 

4 
figure 12 : pre-defined type constructors 

The definition of these OTs as pre-defined OTs make it possible for the user to define 

UoD-specific subtypes of these OTs which inherit all built-in methods such as e.g. first/next 

for "List". Usually, UoD-specific subtypes of the OTs of the "Collection" family-tree (such as 

e.g. "Keyword_List", "Document_Set") only restrict the elements of these collection to a 

certain UoD-specific OT. If this is the case, we make the convention that the OT is not 

represented as a subtype of "Collection" or one of its subtypes, but the name of the OT is 

composed of the name of the chosen type constructor and the name of the OT of the 

elements, e.g. "Lis tof  Keyword" is a List Collection of Keyword objects. 

Of course the user is free to define new UoD independent subtypes of "Collection" or 

other type constructors (like e.g. bitmaps) in order to accommodate his needs. 

3.7. Meta Object Types 

Ots, fact types, constraints, methods, etc. may also be considered as objects of some 

(meta-)OTs. These meta-OTs together form the meta-schema which describe the OO-BR 

model. 

We can consider the meta-schema as an integral part  of the model, deriving a self- 

describing system. This has several advantages, for a detailled discussion see e.g. [23]. One 

of the advantages is that OTs may then be used as in- and return-objects for methods. In this 

way objects may be asked for their type(s) (OTs), OTs may be asked for their subtypes, 

methods, attribute relations and so on. 
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6. Conclusions 

In the previous section we have presented an object oriented version of the well 

known Binary Relationship Model (also known as NIAM). The new model has been built 

from scratch following most of the principles of the conventional BRM in combination 

with OO-principles. The differences and similarities with the conventional BR model can 

be summarized as follows. 

In contrast with the conventional BRM, the OO-BRM supports: 

(1) encapsulation of properties, 

(2) specialization of inherited properties, 

(3) specification of (abstract) data types for texical object types, 

(4) definition of new abstract data types, 
(5) type constructors as object types, 

(6) definition of new type constructors, 

(7) specification of the behaviour of objects as an integrated part. 

The following BRM characteristics still apply for the OO-BRM: 

(1) same graphical representation, 

(2) same support for constraint specification (see also below), 

(3) distinction between lexical and non-lexical object types, 
(4) explicit relationship between object types, 

(5) same subtype mechanism. 

In principle, for supporting the specification of constraints the OO-BRM has the same 
capabilities as the conventional BRM. However because of the encapsulation principles of 

the OO-BRM, constraints which involve properties of multiple object types have to be 
expressed differently. A constraint defined in the context of one object type can only access 

the properties of an other object type through the methods of this object type. As a 

consequence, it will be less obvious which are all the properties involved in a certain 

constraint. On the other hand, the definition of OTs may be changed without affecting the 

constraints attached to other OTs. This is not always the case for the conventional BRM. 

Related work can be divided into two groups. To the first group belong the newly 
defined object models e.g. [15, 33, 37, 38, 39]. These models are fully object oriented but have 
the disadvantage to be new and not be related with a well-tried and widely accepted model. 

Therefore it will be hard to introduce them in the sort term into big companies. 

The second group contains work that extends the conventional models (mainly the E- 

R model) with OO-features such as complex objects, subtypes, generalizations and new data 

types e.g. [18, 35]. Although these extensions are valuable contributions to the models, they 

do not turn the model into a real object oriented model. We would rather call them object 
directed. 
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We argue that our model is truly object-oriented. Very important in achieving this 

goal was the introduction of a single subtype hierarchy, including type constructors and 
abstract data types, of which each user-defined object type is implicitly a subtype. 

We believe that the proposed OO-BR model is a valuable contribution in order to 
reduce the gap between conventional conceptual models and the promising OO-DBMSs. In 

conventional environments the BR model has proven to be successful. By turning it into a 

truly OO model without actually affecting its main characteristics, it will also be possible to 

benefit from the advantages offered by the OO-approach when it is used in a non- 
conventional environment which demands for an OO solution. 
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