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Abstract This paper is dedicated to the presentation of a new static analysis of programs conceived for 

discovering linear congruence equations satisfied by integer valued variables (or more generally by any set 

of integer values abstracted from a program). This analysis generalizes both P. Granger's arithmetical 

congruence analysis and M. Karr's affine equation analysis. An example shows that it can provide valuable 

results for automatic vectorization. 
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1 Introduction 

Static analysis of programs (or semantic analysis, or abstract interpretation) consists in determining 

automatically semantic informations about programs (ie partly describing their behavior at run-time); in 

practice, it provides valuable results for optimizing and proving them. It has been given a precise and 

formal framework by P. & R. Cousot in [2, 3, 4]. The way it works consists in interpreting programs on 

some predefined non-standard (abstract) domain, so that such interpretations always terminate and yield 

approximate but safe results - -  namely invariants satisfied by the analyzed program. In practice, the design 

of a new analysis essentially comes to the choice of both a convenient and relevant abstract domain. 

Here we present a new analysis conceived to discover systems of linear congruence equations satisfied 

by the integer valued variables of programs. More precisely, at a given control point of a given program, 

for a family (Xi)l<~<_.n of n integer valued variables, the result of this analysis (ie the discovered invariant at 

the considered control point) will be a system of equations of the form 

~ aixi =-" c [m], 
i=1 

where a l  . . . . .  ~xn, c, m are integers and - stands for the arithmetical congruence relation (ie a - b [m] if 

and only if 3 k ~ Z, a = b+km). 
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The most evident practical interest of the discovery of such properties concerns variables used as array 

indices; in particular, they can be especially useful to perform automatic vectorization, as we shall see an 

example in Section 8 - -  so that our analyzer can be thought as a part of a vectorizing compiler. This 

analysis may also be practically relevant to study some integer values abstracted from programs or data- 

types, such as the length of a list (or of a stack) or the value of a loop counter or the value of a 

communication counter in parallel programs, as defined by N. Mercouroff [12]. 

1.1 Semantic analyses of numerical variables 

Let us now briefly survey the existing semantic analyses dedicated to the numerical variables of programs. 

They are divided in two types: the independent and the relational ones, according as they relate the values 

taken by different variables or not. The ancestor of all is constant propagation, yielding invariants such as 

x = a (where x is a variable and a belongs to Z or Q). For a field (e.g. Q), M. Karr has generalized it to a 

relational version [9]: the corresponding invariants are systems of affine equations, ie of the form 

~ otixi = c. 
i=1 

Besides, P. & R. Cousot have extended constant.propagation to interval analysis [2], providing invariants 

such as x e [a, b], x < a, etc. Finally, P. Cousot & N. Halbwachs have generalized both preceding 

analyses by the analysis of linear restraints among variables of a program [5]; the corresponding abstract 

properties are systems of linear restraints of the type 

~ otixi < c. 
i=1 

As regards integer valued variables, P. Granger has extended constant propagation to arithmetical 

congruence analysis [7], with abstract properties of the type x = c [m]. So the analysis here presented 

generalizes both arithmetical congruences and M. Karr's systems of affine equations (since the congruence 

modulo 0 is the equality relation). Let us finally give the different results yielded by all these analyses 

applied to the following program fragment (where the two ....... 's stand for Boolean expressions not taken 

into consideration): 

i :=0 ;  j : = 0 ;  k :=0;  

while do 

i :=/+4; 

if then j :=j+4 

else j :=j+12; 

k := k+4; 

od; 

At the control point immediately following the last assignment, constant propagation obviously gives no 
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information, but M. Karr's affine equation analysis yields i = k, interval analysis yields i, j ,  k >- 4, linear 

restraint analysis returns the system 

/ < j - <  3i 

i > 4  

i = k  

while congruence analysis obtains i , j ,  k = 0 [4], and finally our relational congruence analysis computes 

the system 

i - j [ 8 ]  

i -- 0 [4] 

i = k  

1.2 O v e r v i e w  

In Section 2 we shortly recall the notions prerequisite to a good understanding of the following: first the 

usual design method of a semantic analysis framework as presented in [4], secondly the notion of 

congruence analysis in an abelian group given in [7]. Section 3 is dedicated to the characterization of the 

approximate lattice (ie the abstract domain) associated with systems of linear congruence equations: we 

exhibit two types of representation for its elements. Then in Section 4 we specify algorithms performing the 

corresponding lattice operations, namely comparison and least upper bound (lub). Section 5 deals with 

abstract assignment: abstract addition and multiplication and division by a constant are characterized. 

Section 6 is devoted to solving linear congruence equations and performing corresponding conditionals. 

The complexity of the analysis is studied in Section 7, then in Section 8 two examples are presented, one of 

them specially dedicated to automatic vectorization. Section 9 concludes this paper by a number of further 

issues. 

2 Preliminaries 

2.1 Design of a semantic analysis framework 

First let us briefly recall the main features of semantic analysis of programs as defined by the Cousots [2, 3] 

and especially the systematic design method of a semantic analysis framework presented in [4], which will 

be followed hereafter. 

The operational semantics of a program P can be classically specified by a relation on a set of states S. 

With the aim of characterizing the set D of all reachable states (viz the set of all descendants of the entry 

states), this relation can also be viewed (by a point to point extension) as an isotone operator F on the 
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powerset P(S) partially ordered by set inclusion such that the set D is equal to the least fixed point (lfp) of F 

in the complete lattice P(S)(c); it is called static or collecting semantics. This characterization of D suggests 

to compute it in an iterative way, but such an iteration may be infinite: determining D is indeed an 

undecidable problem. The basic idea of (approximate) semantic analysis of programs is to make this 

computation always possible by replacing the complete lattice P(S)(~) by a simpler, approximate one, and 

F by an approximate operator on the approximate lattice, in such a way that the corresponding iteration is 

guaranteed to terminate, yielding an approximate, but safe result (ie a set Da such that D is included in Da). 

This can be done by means of a pair of adjoined functions: 

DEFINITION 1 Let L(_<) and M(<) be two complete lattices and ix be a mapping from L to M and ybe a 

mapping from M to L; ( ~  ~ is a pair of adjoined functions if and only if 

V x ~ L, V y ~ M, ix(x) < y ¢=~ x < y(y). 

In practice, a will be called abstraction function and yconcretization function. The interest of this 

notion for our purpose immediately stems from the following result: 

PROPOSITION 1 Let F be an isotone operator on L(<) and Fa an isotone operator on M(<) greater than 

or equal to ix o F o y, then 

lfp(F) < ~(lfp(Fa)). 

So when L(-<) is P(S)(c_), the set ?(lfp(Fa)) can stand for Da; moreover, if the complete lattice M(<_) 

has been correctly chosen, this set can be automatically computed. For instance, if M(_<) is finite or satisfies 

the ascending chain condition (ie any increasing sequence is stationary), then lfp(Fa) can indeed be 

calculated as the result of an iterative computation. In practice, the design of a semantic analysis framework 

therefore amounts to the choice of a suitable approximate complete lattice M(<) and the determination of an 

approximate operator Fa. Moreover, Fa can be synthesized from the approximate operators associated with 

the operators on P(S)(c_) standing for the primitive operations in the programming language, and only 

these ones must be determined in practice. 

There exist alternative ways for specifying a semantic analysis framework, using for instance an upper 

closure operator on the complete lattice P(S)(c_) or a Moore family of it. Let us simply recall the definition 

of a Moore family of a complete lattice: 

DEFINITION 2 A Moore family E of a complete lattice L(<) is a subset of L completely closed under 

greatest lower bound (glb), ie V S c E, AS  ~ E. 

Hence E contains the greatest dement of L(<) and is itself a complete lattice (for <), and 

(2x.A{y e E / x < y}, 2x~x) 

is a pair of adjoined functions, so that one can choose equivalently a Moore family of P(S)(c_) or a pair of 

adjoined functions. However, once a Moore family has been chosen, its elements must be given a computer 

representation. We proceed in such a way hereafter, with S equal to [1, p] x Z n, corresponding to a 

program with p control points and n integer valued variables; moreover, so-called partitioning results allow 

us to restrict S to Z n, so representing the semantics of the program at a single control point. 



173 

After this design stage, the semantic analyzer remains to be actually programmed: this phase essentially 

amounts to adding the abstract operators (on the approximate lattice) corresponding to the primitive 

operations of  the programming language to a kernel consisting of two modules: one that transforms any 

program into a system of fixed point equations (to unknowns in the approximate lattice), and one that 

solves this system iteratively. 

2.2 Congruence analysis in an abelian group 

Now following the methodology described in the previous paragraph, we have to select a Moore family of 

the complete lattice T(Zn)(c_) suitable for stating congruence properties relating integer valued variables of 

programs. With this object, we use the general notion of congruence analysis in an abelian group presented 

in [7]; precisely, this one amounts to the algebraic definition of a Moore family of the complete lattice 

P(G)(c) (dealing with congruence properties), where G is an additive group (in our special case, G will be 

zn). More details about the following notions are available in any treatise on elementary algebra, for 

instance [8, 11]; here we simply recall that any subset of G of the form 

a+H= {x~ G / 3  h e  H,x=a+h} 

where a is an element of G and H is a subgroup of G, is called a coset (of H) in G; a+H is also the class 

containing a with respect to the congruence relation modulo the subgroup H, and a is said to be a 

representative of the coset and H the (unique) modulo of the coset. Moreover, for any element b of a+H, 

a+H = b+H. Any singleton {a} (= a+{0}) of G is a coset in G, so is G (= 0+G) itself. Let us then state 

(see [7]): 

PROPOSITION 2 The union of  the singleton {O} and of the set of all cosets in the abelian group G is a 

Moore family of the complete lattice P(G)(c). 

This Moore family, used as an approximate complete lattice (for set inclusion), is called hereafter 

congruence lattice of G and denoted C(G)(c). The lattice operations in C(G)(c_), especially comparison (ie 

set inclusion) and lub denoted v ,  have to be characterized, and this can be simplified by the following 

formulas (proved in [7]). Za denotes the subgroup generated by a, ie { .... -a-a,  -a, O, a, a+a . . . .  } and 

HI+H 2 the subgroup sum of H 1 and//2, ie {x • G / 3 hl • H1, h2 • H2, x = hi+h2}. 

PROPOSITION 3 Let al+H1 and a2+H2 be two cosets in G; then: 

i) {al+H1 ~ a2+H2} ¢:~ {al-a2 e H2} ^ {H1 _oH2} 

ii) al+H1 v a2+H2 = al+Z(al-a2)+Hl+H2 

In other words, these two formulas reduce comparison and Iub in C(G)(~) to operations on subgroups 

of G. In [7], the congruence lattice has been studied for G equal to Z; the following is dedicated to the 

extension of this study to Z n. 
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3 Characterization of the congruence lattice 

First the cosets in the additive group Z n, ie the elements of C(Z n) different from the empty set, must be 

characterized and given a convenient representation. 

3.1 Normalized representation of  cose ts  

Any coset in Z n has form a+H, with a e Z n and H a subgroup of zn; hence it suffices to know how to 

represent H. This can be done using a finite generating system of H (ie a finite set of generators of/'/) by 

the following proposition [8, 11]: 

PROPOSITION 4 Any subgroup o fZ  n is free with basis of  q elements, 0 < q < n. 

This means that H can be represented by a tuple (ei)l<i<_q ofq  linearly independent points of Z n 

generating it (ie H = Zel + ... + Zeq). Such a representation is obviously not unique, since H has 

generally several bases (and often'an infinity), but all of them have the same cardinality q, called by 

definition the rank of H; the rank of a coset in Z n is by definition the rank of its modulo. Under a practical 

point of view, Proposition 4 implies that any coset a+H in Z n with rank q can be represented by a n x (l+q) 

matrix: the coordinates of a form its first row, whereas the q other rows are constituted by the n x q matrix 

M of the coordinates of a basis (ei)l~/_<q of H. Besides, a+H will be also denoted by a+MZ q, meaning that 

it is equal to the image of Z q by the mapping that associates a+MA with any A e Z q (except when q = 0, 

where MZ ° conventionally stands for the singleton {(0 . . . . .  0)} ~ T(zn)). For instance in Z 3, we denote 

equivalently 

+ Z  + Z  

o r  

both standing for the coset 

+ Z 2 , 

{(2+4Z, 3,~+6#, 2+4Z+8/2)) / (~,/2) ~ Z2}. 

This type of representation of a coset by a representative and a generating system of the modulo is called 

parametric representation; when a basis of the modulo is used, it is called normalized representation: we 

choose it for the actual representation of cosets. 
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3.2 Diophantine linear congruence equation systems 

Here we characterize as expected the elements of C(Z n) in terms of linear congruence equation systems, so 

getting another type of representation of them, which will turn out to be useful further. First set (E) the 

Diophantine linear congruence equation 

~ o~ix i = c [m] 
i=1 

to the n unknowns xl . . . . .  xn (oil . . . . .  Otn, c, m • Z) and S the set of all its solutions, and (Eh) the 

associated homogeneous Diophantine linear congruence equation, ie 

~ aixi - 0 [m], 
i=1 

and Sh the set of all its solutions. 

PROPOSITION 5 The set C(Z n) is equal to the set of the solution sets of all systems of linear congruence 

equations. 

PROOF First consider equation (E): the set S of all its solutions is easily shown equal to either the empty 

set or the sum of a solution a • Z n of (E) and of the set Sh of all solutions of equation (Eh). Since Sh is 

clearly a subgroup of Z n, S is either empty or a coset in Z n, therefore always an element of c(zn).  Finally, 

the set of all solutions of a system of such equations, equal to the intersection of elements of c (zn) ,  

necessarily belongs to the Moore family C(Z n) of the complete lattice P(Zn)(c_, u ,  (7). 

Conversely, let C be an element of C(Zn): if C is empty, it can be equivalently defined by any linear 

congruence equation having no solution (eg 2xl - 1 [2]); if C is the singleton Ca}, it is obviously equal to 

the set of all solutions of the linear equation system X = a, where X = (xl . . . . .  xn); otherwise C = a+MZ q, 

with q greater than 0 and equal to the rank of M, and then for any X = (Xl . . . . .  xn) e Z n, 

X •  C ¢:* 3 A ~  zq, x = a + M A .  

Solving this system to the unknown A = (A,1 . . . . .  /~q) in terms of X used as a vector of parameters yields 

the equivalent system of n equations 

( )~i = f i (x l  . . . . .  Xn) 1 < i < q 

f j (x l  . . . . .  Xn) = 0 q + l  < j < n 

where anyj~ (1 < i < n) is an affine form on Q (ie an affine application from O n to Q). Now there exists a 

convenient positive integer mi such that Fi = mifi is an affine form with only integer coefficients; then the 

previous system is equivalent to 

{ mi~,i = Fi(x] . . . . .  Xn) 1 < i < q 

Fj(x] . . . . .  Xn) = 0 q + l  < j  < n 

and finally (xl . . . . .  xn) belongs to C if and only if 
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F i ( x  . . . . .  Xn) =- 0 [rai] 1 < i < q 

F j ( x 1  . . . . .  Xn) = 0 q+ 1 < j < n 

which ends the proof. 0 

This proposition not only achieves the expected characterization of C(Z  n ) (involving in particular that 

it generalizes both arithmetical congruence analysis [7] and linear equation analysis [9]) but provides 

another type of representation of its elements, namely by a system of at most n linear congruence equations. 

This type of representation is clearly suitable for displaying the results of analyses or for entering 

specifications of  programs. Passage algorithms are therefore needed: the proof of Proposition 6 

immediately yields one for passing from a normalized representation to an equation system, using classical 

matrix algorithms [14]. Let us see how it works on the following example: let 

(il I °l C = + 2 Z 2 

0 

be a coset in Z3; (x, y, z) belongs to C if and only if there exists (~,, #) ~ Z 2 such that 

f 
x = ~  

y -- l+~,+2p 

t. z -- 1 +2~ 

Solving this system to the unknowns ~ and # yields 

{ ~1, = x  

/~ = (-x+y- 1)12 

2x-z+l  = 0 

After multiplying the second equation by 2, then eliminating L and #, a representation of C by an equation 

system is eventually reached, viz 

x - 0 [ 1 ]  

- x + y - 1  - 0 [2] 

2x-z+ l  = 0 

the first equation being useless and the second one equivalent to x+y = 1 [2]. So this passage algorithm is 

simply an elimination algorithm; a passage algorithm for the opposite way will be specified below (6.3). 

3.3 Ascending chain condition 

With the purpose of guaranteeing the systematic termination of the analysis, let us prove that the congruence 

lattice c(zn)(~) satisfies the ascending chain condition: let 

Co C C1 C C2 c . . .  c C i c .. .  

be a strictly increasing sequence of elements of c(zn); only Co may be equal to the empty set, hence for 
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any i > 1, Ci is equal to a coset ai+Hi in Zn; moreover, since Ci contains C1, Ci also equals al+Hi. Now 

the sequence deprived of its fwst element Co, ie 

al+H1 c al+H2 c ... c al+Hi c ... 

is obviously isomorphic to the strictly increasing sequence of subgroups of Z n 

H1 o H 2  c ... c Hi c ... 

which is necessarily finite, because the complete lattice of all subgroups of Z n satisfies the ascending chain 

condition [11]. Hence the initial sequence is also finite (although there is no upper bound of its length), 

ensuring that the analysis always terminates. 

4 Lattice operations 

Now that the elements of C(Zn)(~) have been given a convenient representation (using a special symbol for 

the empty set), algorithms achieving the lattice operations on this representation must be specified. In this 

section, only comparison (ie set inclusion) and lub in c(zn)(~) are considered: comparison is needed to 

stop the analysis, whereas lub is used for abstracting loops, glb, viz set intersection, which is needed only 

for combining forwards and backwards analyses, is studied further. 

4.1 Comparison 

Proposition 3 states that a coset al+H] is included in a coset a2+H2 if and only if a l -a  2 belongs to//2 and 

H1 is included in H2; H1 being represented by a basis (ei)l<_i<_q, H1 is included in H2 if and only if all 

vectors el, 1 ~ i < q, belong to//2. So comparison in c(zn)(c)  amounts to testing whether an element of 

Z n, say a, belongs to a subgroup of Z n, say H. Such a test can be immediately achieved as soon as H is 

given a representation by a system of equations: then it suffices to verify that the coordinates of a satisfy the 

system. Moreover, this system can be computed using the algorithm described in 3.2. In practice, with the 

purpose of comparing al+H1 and a2+H2, and if a system of equations characterizing a2+H2 is known, then 

the associated homogeneous system characterizes//2 and can be used directly. For instance, if a2+H2 is the 

coset C used as an example in 3.2, then/-/2 is described by the associated homogeneous system 

x+y  - 0 [2] 

2 x - z  = 0 

and obviously contains 

a = ( i  / 

therefore the coset a+a2+Ze is included in C. 

a n d e =  



178 

4.2 N o r m a l i z a t i o n  a l g o r i t h m  

By Proposition 3, the lub in C(Zn)(_) amounts to adding subgroups of Z n, namely: 

al+H1 v a2+H2 = a]+Z(al-a2)+Hl+H2. 

Hence the resulting coset can be immediately deduced from normalized representations of al+Hl and 

a2+H2: al is a representative of it and its modulo is described by the generating system made up of the 

vector al-a2 and of the basis of H1 and of the basis of H 2, unfortunately not free in general. So a 

normalized representation of this coset can be obtained using an algorithm computing an equivalent but free 

generating system: this algorithm will consist in applying itemtively the so-called normalization algorithm 

that takes as entry a tuple of q+l elements of Z n generating a subgroup H of rank q, and yields a tuple of q 

Iinearly independent vectors of Z n generating H (ie a basis of H). This algorithm is a simple generalization 

of Euclid's algorithm. Ix] denotes the floor of real x, ie the greatest integer less than or equal to x. 

PROPOSITION 6 Let (ei)l~i<_q+ l be a family of q+l elements of Z n generating the subgroup H of Z n 

such that el . . . . .  eq are linearly independent and eq+l = Zlel + . . .  + Zqeq, with Z1 . . . . .  Xq ~ Q; let M = 

(eij)l~i<_n, l~j_~ be the n × q matrix of the coordinates of the q points (ei)l~/_<q and ~ be the function defined 

from {-1, 1} x [1, q] to Q by: ~ x , j )  = x~.j-Lx~.j]. 

while ~ ~ 0 do 

choose (x,j) such that ~(x,j) ~ 0; 

for i = 1 . . . . .  n eij := ~(x, 1)eit+ ... + ~(x, q)eiq; 

f o r / =  1 . . . . .  q , i ~ j  ;q := -~(x, i)/~(x, j); 

Zj := 1/O(x, j); 

od; 

This algorithm terminates and overwrites M with the matrix of the coordinates of a basis of 14. 

PROOF In the following, the point Zlel + ... + ~qeq is also denoted eq+l (consistently with its initial 

value). Now let us prove by induction on the number of iteration steps of the "while" loop that at its entry 

point, the family (el . . . . .  eq+l) is a generating system of H: 

-This is originally true by definition of / / .  

- Assume this is true after k iteration steps: the induction is relevant only when ~ ~ 0, ie when the set 

{(x,j) / O(x,J) ~ 0} is nonempty - -  so that one of its elements can be actually chosen. In this case, the 

point ej is then overwritten with 

q 

E ~(X, i)ei = xeq+l - LXZlJel - . . .  - [ XJ~qJeq, 
i=t 

ensuring that it belongs to Z n. The values of the Zi's are finally modified, corresponding to the (virtual) 

overwriting of eq+l with 
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& 
( ¢)(x, i)/~(x, j) )ei + 1/#(x, j ) e j -  2,1 ( #(x, i)/~(x, j)  )ei, 

i=1 i = j + l  

which is obviously equal to the value of ej at the entry of the loop. Finally, the complete body of the 

"while" loop overwrites (et . . . . .  eq+l) with 

(el . . . . .  ej-1, xeq+l - [x~.lJel - . . .  - Lx;tqJeq, ej+ l . . . . .  eq, ej): 

both of them clearly generate the same subgroup of Z n, viz H, and this proves the property for the k+l th 

iteration step. 

The algorithm terminates when ~ becomes equal to 0, which means that all ~.i's are integer numbers, so 

that eq+t belongs to the subgroup generated by (el . . . . .  eq), which generates therefore H and is necessarily 

a basis of it. Now let us prove that ~ cannot be always different from 0. First set K the greatest subgroup of 

Z n included in the subspace of the Q-linear space Qn generated by H, and choose a basis B of K: the 

existence of K is guaranteed by the structure of complete lattice of the set of all subgroups of Z n partially 

ordered by set inclusion (its lub being the sum of subgroups [8]). Then for any iteration step k, define Vk 

= ldet(el . . . . .  eq)l, where det denotes the determinant relative to basis B: V k is obviously a positive integer, 

since any ei belongs to K (for H is included in K). Now if at the kth step, ~ is different from 0, then 

q 

Vk+l = Idet(el . . . . .  ej-1, ~_~(x, i)ei, ej+l . . . . .  eq)l = ~(x, j)Vk, 
i=1 

where ~(x, j)  ~ ]0, 1 [. Hence if # never equals 0, then (Vk)k~ N is a strictly decreasing sequence of positive 

integers, which is impossible. • 

In practice, starting with M = (ei)l<_i_<q+l involves solving first the system of linear equations 

eq+a = ~1el +. . .  + ~.qeq 

to the unknowns -~1 . . . . .  ;tq ~ Q [14]: if it has no solution, el . . . . .  eq+l are linearly independent, otherwise 

it has only one solution (provided that (ei)l<_i<_q is free) and the algorithm can then start. For instance, 

consider the three elements of Z 3 

b = , C = 

a and b are obviously linearly independent. First solving the equation system 

c = 2 a + ~  

yields the unique solution 

10 16 
/%=T ' / t -  7 " 

Then the algorithm can start with M = (a, b): the first value of ~ is 

2 4 5 
~ 1 , 1 )  = , ~ 1 , 2 )  = 7 '  ~ - 1 , 1 )  = 7 '  ~ - 1 , 2 )  = 7 '  

(and ~is  different from 0); then choosing the couple (1, 2), set 
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c' = ~1,  1)a + ¢(1, 2)b = c--a-2b = 

M becomes equal to (a, c'), Z to-3/2 and p to 7/2, so that the expression of b in terms of a and c' is: 

b = - ~ a +  '. 

At the following step, ¢is the constant function equal to 1/2; now choosing (1, 1), set 

M becomes equal to (b', c'), Z to 2 and # to -1 (viz a : 2b'-c ' ) ,  hence 0 equals 0 and the execution 

terminates. Therefore (b', c') is a basis of the subgroup of Z 3 generated by (a, b, c). 

5 Abstract arithmetical operations 

The design of the analysis must now be achieved by the characterization of the abstract operations 

corresponding to the primitive operations of the programming language. First let us recall the definition of 

this notion [3]: the (best) abstract operator associated to a given operator F on P(Z n) is the operator F '  on 

C(Z n) that associates to any A ~ C(Z n) the least element in C(Zn)(c) containing F(A); any operator F" on 

c(zn)(~) greater than F '  is another suitable abstract operation, but not the best one. This section is devoted 

to abstract assignment, which amounts to abstract basic arithmetical operations; affine transformation and 

multiplication and division by a constant are given here their corresponding abstract operator. 

5.1 Affine transformation 

Here r(H) denotes the rank of H and Ker(u) the set {x ~ Z n / u(x) = (0 . . . . .  O) }. 

PROPOSITION 7 Let F be an affine transformation on Z n, u be its linear part, a e Z n, (ei)l~<_q be a 

basis of  the subgroup H of  Zn; then 

F(a+.H) = F(a + Zel +. . .  + Zeq) = F(a) + ZU(el) +. . .  + Zu(eq) = F(a)+u(H), 

the rank of  u(H) being equal to q-r(Ker(u) n H). 

This is a quite classical result of linear algebra; it implies in particular that F '  coincides with F. In 

practice, F stands for the effect of an assignment of the type 

X1 : =  (7,0 + t~ lX1 + . .  • + a n X n ;  

with a0 . . . . .  an e Z. Hence Proposition 7 specifies how a normalized representation of the coset a+H is 

transformed by the previous assignment into a parametric representation of the resulting coset. When al  is 
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different from 0, the rank of u(H) is q and the result is therefore normalized; when cq = 0, the rank of u(H) 

is equal to q or q-1 and the result is not necessarily normalized. In order to check that it is, the linear system 

• ~.lu(el) + . . .  + ~qU(eq) = (0 . . . . .  O) 

to the q unknowns ~.1 . . . . .  Xq e Q must be solved [14]: if it has only one solution, viz all ~i 's  equal to 0, 

then (u(ei))l<_i<_q is a basis of the subgroup u(H) of Z n, otherwise its rank is q-1 and the discovered 

relationship among the vectors of (u(ei))l<j~ can in~itiate the normalization algorithm (4.2) which yields a 

basis of u(H) when applied to this family. For instance in Z 3, the coset 

(standing for the values of variables x, y, z) is changed by the assignment 

x := 3+4y-z; 

into the coset specified by the parametric representation 

which can be normalized into 

5.2 Multiplication 

ei denotes the vector of  Z n having all its coordinates equal to 0 but the ith equal to 1, pri the projection from 

Z n onto its ith component, gcd(A) denotes the greatest common divisor of  the set A of non-negative 

integers [7, 13]; it can be extended to any subset B of Z by gcd(B) = gcd({ lxl e 1~1 / x  e B }). 

PROPOSITION 8 Let  a = (0, a2 . . . . .  an) e {0} x Z n-1 (n > 2), H be a subgroup o f Z  n included in {0} x 

Z n-l,  (ei)l<_i<q be a basis of  H, with ei = (0, e2i . . . . .  eni) (1 < i < q), k and m e [2, n], F be the operator 

on Z n defined by 

F(xl ,  x2 . . . . .  xn) = (XkXm, x2 . . . . .  Xn) 

Then the abstract image F'(a+H) is equal to the coset a'+H', where a' = a+akamel and H' is the subgroup 
o f Z  n generated by the family (e'i)l_</~+l defined by 

e'i = ei+(akemi+ekiam+ekiemi)el (1 < i < q) 

e'q+l = gcd((ekiemj+ekjemi)l~i<_:q)el 

Moreover, (e'i)l~/_~+l (deprived from e'q+l when e'q+l = (0 . . . . .  0)) is a basis of  H'. 
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PROOF For any couple (i,J) ~ [1, q]2 such that i <j ,  set e"ij = (ekiemj+ekjemi)el: the family (e"ij)l<i<_j_<q 
generates the same subgroup of Z n as e'q+t, by an elementary result of number theory [7, 13]; hence H' is 

generated by the union of (e'i)l<_i_<q and of this family. Besides, set M = (eji)l<_j<_n, l<i_<q the n × q matrix of 

the coordinates of the basis (ei)l<__i~q of H; then H = MZ q and being given (~1 . . . . .  )~q) ~ zq, 

prj,(F(a+M(Zl . . . . .  J~q))) = aj + ~,~ieji (2 < j < n) 
i=1 

whereas on the first component 

prl(F(a+M(~l . . . . .  ~,q))) = (ak + ~ iek i ) (am + ~ i e m i )  
i=1 i=1 

= akam+ ~,t~i(akemi+ekiam)+ ~ ~i~l,jekiemj 
i=1 i=1 j=-i 

= akam + ~(akemi+ekiam) + ~_,~2ekiemi + ~,~iZj(ekiemj+ekjerni) 
i=1 i=1 i=1 i<j 

q q 

= akarn + ~,fli(akemi+ekiam+ekiemi) + ~_,~,i(2i-1)ekiemi 
i=1 i=1 

+ ~ ~_~i~,j(ekiemj+ekjemi), 
i=1 i<j 

which finally implies that 

F(a+M(,~,I . . . . .  Xq) ) = a' + ~ ~,ie'i + ~,d(~i(~i--1)[2 )e"ii + ~ i , ~ j e "  ij. 
i=1 i=1 i=1 i<j 

Hence F(a+H) is included in a'+H' (since ~(~/-1)/2 ~ Z), so is the abstract image F'(a+H). Conversely 

F(a+H) contains 

F(a) = a', F(a+Me'i) = a' +e'i, F(a+M(e'i+e~) ) = a'+e'i+e'y÷e"i j 

(1 < i < j  <q) ,  so that a'+H' must be included in F'(a+H) by Proposition 3. The final result of linear 

independence is obvious. • 

This proposition remains true when q = 0; it specifies both the abstract product and the abstract square 

(for k = m). In practice, the variable Xl of Proposition 8 does not stand for an actual variable, but for an 

auxiliary variable created just before the assignment in order to store temporarily the product and 

conventionally initialized to 0, then immediately deleted. For instance, the assignment 

3C :=  x ' y ;  

is simulated by the sequence of assignments 

u := x.y; x := u; 

where u is a temporary auxiliary variable. By Proposition 8 the first assignment changes the initial coset in 

Z 3 given in the example of 5.1 into the coset in Z 4 
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0 6 0 Z3 
+ 8 0 

12 24 

where u is placed in the fourth position; then the second assignment amounts to a linear transformation and 

can be achieved by 5.1. In particular, a normalization stage may be required: one easily proves that the 

variable u can be safely deleted before this stage. So the previous coset is transformed into the coset in Z 3 

0/+/360  Z 3 

2 9  k, 4 8 0 

finally normalized into 

+ 0 Z 2. 

0 

Moreover, any assignment of a polynomial expression can be simulated by a sequence of assignments of 

linear expressions or simple products; hence it can be treated by 5.1 and 5.2 (by creating as many variables 

as necessary). 

5.3 Division by a constant 

Here we partially specify the abstract operator associated to the division by a constant. Precisely, under the 

assumptions of Proposition 8, let d • H* and Fd and Fm be the operators on Z n respectively defined by 

F d(xl ,  x2 . . . . .  xn) = (xk div d, x2 . . . . .  xn) 

andby 
Fra(xl, x2 . . . . .  xn) = (xk mod d, x2 . . . . .  xn), 

with div and mod defined as in PASCAL, ie for any x • Z, 

x div d = Ofx > 0 then x dive d else - ( -x  div e d)) 

and 

x m o d d  = (if x_>0 then xmoded  else - ( - x  mode d) ), 

where dive and mode respectively stand for the quotient and the remainder of the euclidian division, ie 

verifying for any a • Z and b e H* 

a = b(a dive b)+(a mode b) and 0 < a mode b < b--1. 

Now the abstract images Fd'(a+H) and Fm'(a+H) depend on the values taken by the variable Xk in the coset 

a+H. If  prk(a+H) is a singleton, then the result is immediate; otherwise if prk(H ) is included in dZ, ie all 

et/ 's multiple of d, one can then prove that 

Fd'(a+H) = (if dlak then Fd(a+H) else a+H+Zel) 
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where 

Fd(a+H) = a+(ak div d)el + ~ Z(ei+(eki div d)el) 
i=I 

(the family (ei+(eki div d)th)l<~_<q being obviously free), and that 

Frn'(a+lO = (if d lak then a+H else a+H+Zdel). 

In all cases, ifxl is a temporary auxiliary variable, at most one normalization will be finally necessary. At 

last, if d does not divide all eki'S, a partial result can then be obtained as regards the abstract image 

Frn'(a+H), which can be easily shown included in the coset a+H+Zel n S, where S is the set of all 

solutions of the linear congruence equation Xl =-Xk [d]; hence this coset is a safe approximation of 
Fm'(a+H). Section 6 deals with the general problem of determining a normalized representation of it. 

6 Diophantine linear congruence equations 

This section is devoted to the characterization of the abstract operator on Z n associated with a linear 

congruence equality test. Precisely, being given a coset a+H in Z n and the linear congruence equation (E) 

defined in 3.2, we must determine the least element in C(Zn)(~) containing S n a+H, namely S c~ a+H 

itself, since this set is a coset by Propositions 2 and 5. So we only have to find a normalized representation 

of S n a+H (if not empty). 

6.I General solution of a linear congruence equation 

First let us show how to solve equation (E) in Zn: here we specify an algorithm yielding a normalized 

representation of S. As seen before (in the proof of Proposition 5), S is equal to a+Sh, where a is any 

solution of (E) and Sh the set of all solutions of (Eh); with the purpose of first determining such an a, let us 

state: 

PROPOSITION 9 Let (al . . . . .  an) be an element o f Z  n such that for  any j ~ [1, n], aj is a solution of  the 

linear congruence equation (Ej(al . . . . .  aj-1)) 

OCjX = c o~iai [gcd(tXj+l . . . . .  tr n, m)] 
i=1 

to the unknown x. Then (al . . . . .  an) is a solution of(E); moreover, S is empty if  and only if(E1) has no 

solution; otherwise all the n preceding equations have a solution. 

This proposition can be proved quite easily; it immediately specifies an algorithm which computes a 

solution of (E) by solving successively n Diophantine linear equations to one unknown. Hence another 

algorithm dedicated to this work is needed: Euclid's algorithm [7, 13] is classically used; here a version of it 

suitable for our problem is given (as a matter of convention we set Cl/O -- 0): 
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PROPOSITION 10 Let a,  c, m E Z and (E) be the Diophantine linear congruence equation: o:x - c [m] 

(to the unknown x); let al,  a2, or3, cl, c2, c3 be six integer valued variables. 

(al, Cl) := (a, c); (a2, c2) := (Iml, 0); 

while  a2 ~ 0 do 

(a3, c3) := (a2, C2); 

(t~2, c2) := (al mode or3, (Cl - c3(al dive ct3)) mode Iml)); 

(0~1, el) := (a3, C3); 

od; 

This algorithm terminates with the final values of at and cl satisfying: 

i) (E) has a solution if and only if  aa is a divisor of c. 

ii) In this case, cl/al is a solution of(E). 

So the expected algorithm can be deduced from both these propositions. Let us see an example how it 

works: consider in Z 3 the equation 

4x+5y-5z = 3 [10]; 

first the equation (El) defined in Proposition 9 is determined, namely 

4x = 3 [5]. 

2 is a solution of (El) (obtained by Proposition 10); then equation (E2(2)), ie 

5y = -5  [51 

(to the unknown y) must be solved: Euclid's algorithm yields solution 0. Then this algorithm applied to the 

third equation (E3(2, 0)), ie 

-5z --- -5 [10] 

(to the unknown z) yields solution 1; hence (2, 0, 1) is a solution of the initial equation. 

The second part of our work consists in determining a basis of Sh (which is a subgroup of Z n by 

Proposition 5); it can be immediately deduced from the following proposition which is a corollary of a 

result due to Heger (see [6], page 82): 

PROPOSITION 11 Assuming now an different from O, let (ei)l<_i<_n be a family of  elements of  Z n, with 

ei = (eli . . . . .  eni), 1 < i < n, such that for  any i, j e [1, n], 

gcd(t~i+l . . . . .  Ctn, m) 
{ i < j }  =o { e i j = O } ,  eli - 

gcd(cq . . . . .  t~n, m) 

~ Ocieij ==- -aje j j  [m]. 
i=j+ 1 

Then such a family always exists and either (ei)l~/~-i when m = O, or (ei)l<~<_n when m ~ O, is a basis of 
Sh. 
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Proposition 11 provides a simple way for determining a basis of Sh: set M the n x n matrix of the 

coordinates of the family (ei)l<~_<.n. M is therefore a lower triangular matrix; its diagonal elements are given 

by a simple formula, whereas its elements below the diagonal can be easily computed as solutions of 

solvable linear congruence equations, which can be achieved by using the preceding algorithm (deduced 

from Propositions 9 and 10), Precisely, for a n y j  e [1, n - l ] ,  (ej+lj . . . . .  enj) is a solution of the equation 

~ O~iX i =- -o~jejj [m] 
i=j+l 

tO the unknown (xj+t . . . . .  Xn) ~ Z n-j. For instance, let us determine a basis (el, e2, e3) of the set of all 

solutions of the homogeneous equation 

4x+5y-5z - 0 [10]. 

First the three diagonal elements are e l l =  5, e22 = 1, e33 = 2. Then the couple (e21, e31) is computed as a 

solution of the equation 

5y-5z - -20  [10] 

eg (0, 0), and e32 as a solution of 

-5z -= -5  [10] 

eg 1. Now combining this result with the preceding one, a normalized representation of the coset 

characterized by the equation 

4x+5y-5z - 3 [10] 

is f'mally obtained, namely 

+ 1 Z 3 • 

1 

6.2 Abstract linear test 

Let us now specify the abstract operator corresponding to linear congruence equality test, which simply 

amounts to solving equation (E) in the coset a+H, ie to determining a normalized representation of the coset 

S n a+H. Here A denotes (~xl . . . . .  O~n) considered as a line-vector, whereas all the other vectors, ie X = 

(Xl . . . . .  Xn), Y = (Yl . . . . .  yq), a, b are considered as row-vectors; hence equation (E) can also be written 

A X  - c [m]. 

H is represented by M Z  q, where M is the n x q matrix of the coordinates of a basis of H, assuming 

moreover q > 1 (the case q = 0 being obvious). 

PROPOSITION 12 Let S' be the set of all solutions in Z q of  the linear congruence equation (E') to the 

unknown Y = (Yl . . . . .  Yq) 

A M Y  =- c -Aa  Ira]. 
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Then S n a+MZ q is empty (f and only i f  S" is empty; otherwise S' = b+NZ r, with b e Z q and r e N and N 

a q x r matrix o f  integers o f  rank r, and 

S n a+MZ q = a+Mb+MNZ r 

the rank of  MN being r. 

PROOF X ~ Z n belongs to the set S n a+MZ q if and only if 

AX = c[m] ^ 3 A e Z q, X = a+MA 

if and only if 

if and only if 

if and only ff 

3 A e Z q, A M A  - c -Aa  [m] ^ X = a+MA 

The result about the rank is classical [11]. 

3 A e S',  X = a+MA 

X e a+MS'. 

t 

So this proposition provides an algorithm computing a normalized representation of S n a+MZ q, 

which consists in determining and solving the transformed equation (E') (using the algorithm presented in 
6. t) then finally calculating a+Mb and biN. For instance, with the object of solving the equation 

x-y+2z-5t  = 0 [1t3] 

to the four (so ordered) unknowns x, y, z, t in 

0 + 1 0 1  Z3 ' 
1 4 0  
0 1 1  

first we determine the transformed equation (E') to the unknown (;t, p, v) in Z 3, ie 

4~+5/.t-5v - 3 [10]. 

It suffices then to solve it (which has already be done in 6.1) to obtain a normalized representation of the 
solution coset S c~ a+H, ie 

I i  ] [ i  21  (01/ I i  21  (00 ] I l l  15 3 21  
01  2 01  5 0 0  5 12  Z3" 

0 + 4 0  " + 4 0  " 10  Z 3 = 3 + 5 4 0  

11 11 12  0 2 2  

6.3 Derived algorithms 

An algorithm achieving the intersection of cosets in Z n can be immediately deduced from the previous 
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algorithm (6.2) used iteratively. Starting with two cosets C1 and C2, the first one characterized by a 

normalized representation, the second one by a system of linear congruence equations (possibly deduced 

from 3.2), solving the first equation in C1 (by the previous algorithm), then the second one in the 

normalized result, and so on up to the last equation, finally yields a normalized form of the coset C1 n C2. 

Moreover, this algorithm specialized by setting C1 equal to Z n becomes a passage algorithm from a 

system of linear congruence equations (ie 6"2) to a normalized parametric representation of the coset it 

defines: this is the converse passage algorithm corresponding to the one specified in 3.2. 

7 Complexity of the analysis 

The time complexity of the analysis essentially depends upon two factors, namely the maximal complexity 

of abstract primitive operations (including lattice operations) and the total number of iteration steps before 

convergence, which amounts to the length of strictly ascending chains in c(zn)(c_). Now this length is not 

bounded: by example in C(Z)(c), for any k e H, there exists a strictly increasing chain with length k, eg 

2kz c 2k-lz  C ... C 20Z. 

We then need an additional assumption in order to characterize the actual complexity of the analysis: we 

sha11 suppose that the modulo of  any coset occuring in the analysis has a basis of vectors with ali 

coordinates bounded by some integer d. In other words, there exists d ~ H such that for any a+H occuring 

in the analysis, there exists a basis (ei)l~i_~q of H such that for any i ~ [1, q], lleill _< d (where II(xl . . . . .  xn)ll 

= max(Ixll . . . . .  Ixnl)). 

In PASCAL, integer valued variables belong to the interval [-maxint-1, maxint], so that the only 

relevant cosets, ie describing values that can be actually taken by variables, are those verifying the 

assumption with d = 2maxint+l (then justifying it). Yet we must notice that in practice this "natural" 

assumption is not guaranteed to be always satisfied, although it can be enforced by using a so-called 

widening operator [2, 3]. 

Under this assumption one can show that not only the length of strictly ascending chains in c(zn)(c) ,  

but also the number of iteration steps of the normalization algorithm are bounded. Going back indeed to 

Proposition 6, consider the integer numbers V k defined in the proof: if at the kth step ~ is different from 0, 

then Vk+ 1 = ~x,j')Vk; suppose we have chosen anxin  { 1,-1 } that minimizes ~, then ~ x , j )  is less than or 

equal to 1/2 (since ~ - x , j ) + ~ x , j )  = 1). Now if ~ becomes the zero function at the ruth step, this involves 

that 

V0 v~_~ 

which directly implies that 

m < log2V0. 

But Vo can be easily proved less than or equal to (d'4"q) q, so that f'mally: 

1 
m < q(~log2q + log2d), 
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init. 1st step 2rid step 3rd step 

{2:} O ( i  I / 0 1  I l l  I i  / l i  11 1 + 3 Z + 5 Z 2 
~,.1] ~.2] 2 

+ Z + 35 Z 2 
22  

+ Z + 7 Z 2 
2 

{6:, ~ ( 0 1  I l l  ( i  1 ( i l l  ( i ) ( i l l  1 + 3 Z + 5 Z 2 + 5 Z 2 
~.lJ  ~.2J 2 2 

Table I 

In a very similar way, one shows that the length of any strictly increasing chain of cosets in Z n with rank q 
cannot exceed the previous value, and therefore that the length of any strictly increasing chain in C(Zn)(_) 
is bounded by 

n(n+l) :1. ) 1 + n + ~ ~log2n + tog2d 

After the first O(n 3) multiplications (or divisions) needed to solve the initial linear system, the 
normalization algorithm then requires O(n 2) multiplications at each one of the O(nlog2n) iteration steps, 
hence O(n31og2 n) multiplications for the whole (O(un) denoting any sequence Vn such that Ivn I < alun I for 
some positive number a and n large). The lub in c(zn)(c_), corresponding to at most n+l successive 
normalizations, then requires O(n41og2 n) multiplications; similarly, O(n31og2n) are needed for any abstract 
arithmetical operations (Section 5). Finally, one verifies easily that O(n 3) are required by comparison (4.1) 
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and abstract linear test (6.2), and O(n 4) by the algorithms presented in 6.3. Now we can conclude that the 

total number of multiplications (or divisions) executed for the analysis of a program will not exceed 

o:pn6(log2n) 2 

for some positive number tx (depending on d) and n large, p representing the size of the analyzed program. 

This is a rather satisfactory result when compared to the inherently exponential complexity of linear restraint 

analysis [5]; moreover, it is but an upper bound of the worst case, and the average complexity of the 

analysis is definitely far better. Finally, the preceding results suggest that the complexity might be improved 

by replacing the most expensive algorithms (essentially interesting for their adaptability), namely lub and 

intersection, by more efficient ones (see for instance [6, 10]). 

8 Two examples 

Let us now illustrate with two examples some concrete results provided by the analysis. 

8.1 Iteration sequence 

The first example consists in the simple forwards analysis of a procedure which computes (in variable x) 

the integer square root of variable n: 

x:=O; y:=l; z:=l; 

{1:} 
while y_<n do 

{2:} 
x:=x+ 1; 

{3:} 

z:=z+2; 

{4:} 

y:=y+z; 
{5:} 

od; 
[6:} 

The analysis converges in three iteration steps detailed in Table I. We can immediately notice that once a 

representative has been computed (here at the first iteration step), it is always uselessly recomputed at the 

following steps. This is a quite general fact; in practice this overhead can be easily avoided. We can also 

notice that in one step the moduli are not necessarily deeply changed: for instance at control point { 6:}, the 

second iteration step corresponds to the computation of the lub 
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and the third iteration step to the computation of 

so that only the part of the calculus involved by vector (1, 7, 2) is new: this may be taken into account in 

order to improve the complexity of the analysis. Finally the discovered invariant at the control point { 6: } is 

the equation system 

2 x - z + l  = 0 

x+y-= 1 [21 

to be compared with the exact invariant relating x, y, z: 

( x , y , z )  ~ { ( m , ( m + l ) 2 , 2 m + l l m ~  N}. 

8.2 Automatic vectorization 

Next example shows the interest of the analysis for automatic vectorization; consider the following 

procedure classically used to solve Laplace's equation by numerical means: 

procedure Semi_Iteration(r: integer); 

for i := 1 to N do 

f o r j  := 1 r o N d o  

if ((i+j) mod 2 = r) then 

A[i,j] := (A[i-l,j]+A[i+l,j]+A[i,j-1]+A[i,j+l]) / 4.0; 

od; 

od; 

It is called alternately with r equal to 0 or 1. The analysis of this procedure called with 0 applied to the 

values of the two indices x and y of the array A allows to discover that they satisfy the equation x+y - 0 [2] 

on the left-hand side of the assignment and the equation x+y --- 1 [2] on the fight-hand side. Since the 

intersection of these two cosets is empty, the assignment does not depend upon itself (see [1]). The result is 

similar when the procedure is called with 1, finally implying that the loops can be licitly converted to vector 

form (and all of this can be done automatically). 

9 Conclusion 

We have presented a new semantic analysis framework conceived for discovering linear congruence 

equations satisfied by integer valued variables of programs. This framework is likely to be improved, for 
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instance by using more efficient algorithms as suggested in Section 7, or by representing cosets differently 

(eg by using equation systems, particular representations of matrices, etc.). Besides, we have shown an 

example how it can be useful for automatic vectorization: yet better informations could be obtained with a 

more suitable framework derived from ours (eg by using a fixed modulo and analyzing the representatives). 

N. Mercouroff has suggested its interest for static analysis of communications in parallel programs through 

the analysis of a communication counter [12]. Similarly, it can be used to study other integer abstract values 

(length of a list, depth of a tree, etc.), and for this purpose it must be adapted to natural numbers: for 

instance it can be extended into a more general framework obtained by combining it [4] with other analyses 

(intervals, linear restraints, etc.). 
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