
Optimizing Directly Executable LR Parsers

Peter Pfahler
Universitgt-GH Paderborn

Warburger Strafle 100
D ~790 Paderborn, West Germany

A b s t r a c t

Traditionally, LR parsers are implemented as table interpreters. A parser generator creates
tables whose entries are interpreted by the parser driver. Recent research shows that much
faster LR parsers can be obtained by converting the table entries into directly executed code.

This paper introduces new techniques for optimizing directly executable parsers. The opti-
mization methods proposed here are based on the analysis of the characteristical properties
of large programming language grammars. They include a new structure for the parsing al-
gorithm, an adaptation of the classical chain rule optimization and a systematic approach to
stack access minimization. A parser generator based on these techniques was developed. It gen-
erates directly executable LR parsers running up to seven times faster than comparable table
interpreting parsers.

1 Introduction

There are two classes of parsing methods for the syntax analysis phase of a compiler. The
first class, called LL parsing, represents a top-down approach: LL parsers recognize the input
starting at the root of the parse tree. They can be implemented either by a set of recursive
procedures ("recursive descent") or by table interpretation. The second class, called LR parsing,
corresponds to a bottom-up construction of the parse tree. LR parsers, also called shift-reduce
parsers, are traditionally implemented by a fixed driver routine interpreting parser tabIes.

Since LR grammars have more expressive power than LL grammars, most programming lan-
guage grammars are specified in LR form. Thus, the implementation of syntax analysis for
these languages requires an LR parser generator to construct the parser tables. During syntax
analysis the table entries have to be interpretively executed by the driver routine. Due to the
interpretative nature of LR parsers and the fact that LR parsing requires far more stack accesses
than LL parsing, there is clearly a speed disadvantage in LR parsing.

This fact has recently lead to the investigation of directly programmed, non interpreting LR
parsers. Pennello [Pen86] proposes to translate the parsers finite state control into assembly
code. Each parser state becomes a code memory address. The table entries for each state are
converted into low level statements which perform the shift and reduce actions directly. Pennello
reports a speed-up factor of 6.5 compared to an interpretative LR parser implemented in PascM.
On the other hand the directly programmed assembler parser was nearly four times larger than
the interpretative version.

Horspool and Whitney [HOW90], [WhH88! present a directly programmed parser which is simi-

180

lar in structure to Pennellos. It is implemented in the C language (or in assembler). Horspool
proposes several optimization methods for the directly executable parser. These optimizations
aim at both the reduction of parser size and the increase of speed. There are low level opti-
mizations like branch chaining and the translation of conditional sequences into binary search
or switch statements. Very much like in parser table compression techniques, the code for states
with equal or similar actions is shared, leading to a substantial decrease in size. Furthermore,
the number of states which have to be pushed onto the parser stack is minimized. This push
minimization eliminates the push operation for 271 of 345 states in Horspools C language parser
example. A speed-up factor of 5 to 8 is reported compared to an interpretative parser generated
by yacc [Joh75]. The increase of the source code size is by a factor of almost 3 (object code size
increased by about 40 percent).

In this paper we propose some new optimization techniques for directly executable LR parsers.
Based on the analysis of several "real-life" grammars we propose a new algorithmic structure of
the parsing program. This program structure differs from Pennellos and Horspoots and leads
to both speed-up and size reduction. This parser organization is presented in chapter 3 after a
short introduction to LR parsing in chapter 2~

In chapter 4 we describe the classical parser optimization of chain rule elimination and its benefits
for the directly executable paxser. By chain rule elimination our parser generator is able to
remove a substantial amount of states from the directly executable parser. Furthermore, chain
rule elimination considerably increases the parser speed by removing all redundant, generation
time computable state transitions.

As an extension of Horspools minimal push optimization, we present a systematic approach
to minimize stack access. This optimization is supported by the proposed parser structure,
chain rule elimination and a new transformation called "rule splitting". It can be modeled as a
solution of the well-known vertex cover problem on undirected graphs. Stack access minimization
is described in chapter 5.

It should be stressed here that none of the transformations described below changes the purser's
behavior with respect to production reductions and the semantic actions that might be asso-
ciated with them. For the sake of brevity of this paper, we omit the discussion of low level
coding optimizations and size reduction by code sharing. The interested reader can refer to
[Pen86], [HOW90] and to work on parse table optimization like [DDH84]. Furthermore, we do
not discuss the problems of integrating error recovery schemes like RShrichs [RSh80] in directly
executable Ll~ parsers with push minimization. These problems are still investigated. However,
we believe that it is possible to reconstruct the original parsers state stack to find a minimal
cost continuation from an error state.

2 LR Parsing

Before investigating the structure of directly programmed LR parsers we introduce the principles
of table driven LR parsing with the help of the small example grammar Expr:

pO : S --> E p4 : T --> F

pi : E --> E + T p5 : F --> a

p2 : E--> T p6 : F --> (E)

p3 : T --> T * F

181

S --> .E
E --> .E÷T
E --> .T
T . - -> .T*F
T --> .F
F --> ,~
F --> .(E) ET•

E

o F - I T - - > T*F.

~[F - - > (B) . 11]

Figure 1: LP~ automaton for the Expr grammar

A LR parser generator (in this case yacc [Joh75]) constructs from this grammar a set of parser
states and a state transition function. These states and transitions are depicted in the LR
automaton shown in Figure 1. Each state contains a set of one or more so-called items. An item
is a grammar rule with a dot in the right hand rule side. Intuitively, this dot specifies how much
of a rule has already been recognized in a given state. So, a dot on the left of a right hand side
means that it can be expected to recognize this rule starting from this state. A dot at the right
end of a rule means that the recognition of this rule is completed and the parser might reduce
according to this rule.

The parser generator converts the state transition function into the parser tables shown in
Figure 2. Yacc created default entries for single r-entries in a T-table row by placing them in
all free columns. This modification is frequently applied by parser generators and is guaranteed
not to change the parsers behavior with respect to the location where input errors are detected.
Shift/reduce transitions are not generated by yacc.

The table interpreting parser driver uses a state stack whose top element corresponds to the
current state. It performs the following actions depending on the current state s and the next
input symbol t:

if T[s,t] = sl : "shift to state i"
Read the next input symbol, push state i and make it the current state

if T[s,t] = rj : "reduce according to rule j"
Execute the semantic action associated with rule j. Pop the stack lrhs(j) times (lrhs =
length of the right hand rule side). The origin state for this rule reduction is now on
the top of the stack. Determine the continuation state by consulting the N-Table. Entry
N[origin,lhs(j)] specifies the continuation state (ths(j) is the nonterminM on the left hand
side of rule j). Push the continuation state onto the stack and make it the current state.

if T[s,t] = undefined : "error"
Report a syntax error, t ry to recover from it or exit.

if T[s,t] = acc : "accept"
Accept the input as syntactically correct and halt.

182

6
1
2
3
4
5
6
7
8
9
10
11

a + * () EOF
s4 s5

r2
r4
r5
s4
s4
s4

S6 acc

r2 s7 r2 r2 r2
r4 r4 r4 r4 r4
r5 r5 r5 r5 r5

s5
s5
s5

s6 s l l
rl rl s7 r l r l r l
r3 r3 r3 r3 r3 r3
r6 r6 r6 r6 r6 r6

E T F
1 2 3

8 2 3
9 3

10

T-TABLE N-TABLE

Figure 2: Parser Tables for the Expr grammar

In the following we will use the notion of reduction path for reduce entries: A reduction path
consists of the origin state of a reduction, the states to be popped (including the current one)
and the continuation state. We write " 0 (pl p2 .. pn) C" to mean: pop states pn (the current
one) to pl off the stack, find origin state 0 on top of the stack and goto continuation state C.
For every reduce entry (reduction item) in the parser table (LR automaton) we can compute a
set of associated reduction paths. This set of reduction paths will be named reduction situation.

Example: The reduction situation in state 10 in the Expr parser has the following three reduc-
tion paths:

6 (9 710) 9
5 (2 7 10) 2
0 (2 710) 2

To give an impression of the complexity and table size of real programming language LR parsers,
Figure 3 contains some characteristic data for a ANSI-C grammar, a Modula2 and a Modula3
grammar compared to our small Expr example.

3 D i r e c t l y E x e c u t a b l e L R P a r s e r s

A straight forward translation of LR tables into directly executable code generates a block of
code for each state. This code is labeled by the state number. It contains actions for reading
the input (if the state is accessed by a terminal transition) and pushing the state number onto
the parser stack. Then the actions in the parser table row for this state are coded.

Example: State 2 of the Expr parser is coded as follows:

S2 : scan() ;
push(2) ;
if (token == '*') goto $7;
goto red2; /* E --> T */

183

Rules
Terminals
Nonterminals
States
Shift entries
Reduce entries
N-Table entries
Origin states
Continuation states

ANSLC
213
82
64

367
1902
218

1572
114
184

MOD2
240

70
123
420
759
287
642
154
236

MOD3
296
128
111
521

4792
350

2814
154
247

Expr

5
3

12
13
6
9
4
6

Figure 3: Characteristic data for programming language LR parsers

In case of a reduction according to rule r the parser jumps to the label generated for this rule.
There the parser pops the stack, remembers the left hand nonterminai of r and, if necessary,
executes semantic actions associated with rule r. Then it branches to the code that implements
the nonterminai transitions.

Example: The reduction according to rule 2 for the Expr parser is coded as follows:

red2 : pop(1); lhs = E;

outprod("E --> T"); /* semantic action */

goto continuation;

Depending on the topmost state s on the stack the parser branches to the translation for row s
in the N-table. The continuation state is found by comparing the left hand nonterminai of rule
r with all symbols for which there is a goto entry in state s.

Example: The N-table for the Expr parser is coded as follows:

continuation :

switch (top)

{ case 0 : {if (lhs == E) goto $I;

if (lhs == T) goto $2;

goto S3;}

case 6 : {if (lhs == E) goto $8;

if (lhs == T) goto $2;

goto S3;}

case 6 : {if (lhs == T) goto $9;

goto S3;}

case 7 : goto SIO;
}

This program organization which is the basis for both Pennellos and Horspools directly pro-
grammed parsers is summarized in the abstract program representation in Figure 4.

Using the grammar characteristics from Figure 3, we can give an impression of both size and
operation of the straight forward and unoptimized parsing program. The average number of shift
and reduce actions per state corresponds to the worst case number of token comparisons in our
linear conditional sequence for every state. The average number of generated ths comparisons

184

! ~ shift
s~te:

~L
reduce

Figure 4: Program structure for directly executable LR parsers

ibr determination of the continuation state is computed by the number of goto entries divided
by the number of states containing goto entries. It corresponds to the maximal number of lhs
comparisons that have to be executed ibr the average reduction. The following table shows the
results for our example grammars (the last branch in a conditional sequence is unconditional
and not counted):

token comparisons t
lhs comparisons

ANSI-C I MOD2 [MOD3
4.7 1.4 - 8.8

12.7 3.2 17.2

Expr
0.6

1.25

A closer look at the reduction action shows, that for every reduction according to rule r the
ibllowing steps have to be taken on tlle average:

* 1 jump ("goto redr;")
* 1 pop stack
. 1 lhs assignment
• 1 semantic action
• i jump ("goto continuation;")
• 1 switch(top)
• #goto entries / #origin states -1 lhs comparisons (maximal)
• i jump to the continuation state

Note that the lhs comparisons cannot be combined for a given origin state since every nonter-
mined transition leads to a different continuation state. Also, there is exactly one default goto
action which can be used instead of the last comparison (the "-1" in the computation above).

We propose a different program organization for the directly executable parser: First we observe
that most rules have only one state they are reduced in. Therefore, we can save the additional
jump to the middle code block of Figure 4 by integrating the reduction actions into the first code
block. Due to the rules which are reduced in more than one state this transformation slightly

185

!
=[,~ta~e: ~ I sh i f t :,[

r e d u c e

- g o t o

Figure 5: Modified program structure for directly executable LR parsers

increases the size of the parser program, but there are other important reasons (described in
section 5) for treating multiple rule reductions individually.

The second modification can easiest be described in terms of the parser table: By inverting
the access to the N-table, we can find the continuation state by inspecting the column for the
left hand nonterminal in the row for the top of stack state. Transferring this simple inverting
of N-table access ("reverse goto ') and the individual reduce actions to the directly executable
parser leads to the program structure shown in Figure 5. Reduce actions are integrated in the
first program block ("action part"). For determining continuation states we create a program
block for every nonterminal in the second block ("goto part").

A reduction in this modified program organization takes:

• 1 pop stack
• 1 semantic action
• 1 jump ("goto redlhs;")
• #goto entries / #nonterminals - #equaltargets top comparisons (maximal)
• 1 jump to the continuation state

The top of stack comparisons for a given nonterminal can clearly be combined since in practice
many continuation entries for a nonterminal are identical. This fact is also used in the default
goto action in which we can combine all origin states which lead to the most frequent continuation
state ("#equaltargets"). For the Expr example grammar the continuation state determination
by reverse goto looks as follows:

Example:
redE : if (top == 5) goto $8;

goto $1;

redT : if (top == 6) goto $9;

goto $2;

redF : if (top == 7) goto SIO;
goto $3;

We notice that aH continuation states can be determined by exactly one top comparison. The
tab~ in Figure 6 5sts the necessary comparisons for the ANSLC grammar. It shows that
the continuation state for 75 percent of the nonterminals can be determined by 2 or less top

186

I I't'l 10i t i' t'011 l' l' f nonterminais 22 16 10 1 3 1 2 2 2 1 1 1 1 1

Figure 6: Top comparisons for the nonterminals of the ANSI-C grammar

comparisons (0.75 on the average). The nonterminal which requires 42 top comparisons for 43
different continuation states is the symbol "identifier" with the single rule "identifier ~ name".
This nonterminal is clearly a candidate for chain rule elimination. This optimization obviates
the need for continuation computation by determining the continuation states individually in
the origin states during parser construction. Chain rule elimination is described in section 4.

For the ANSI-C example the reverse goto transformation leads to a decrease in the program size
for the continuation determination from 1802 source lines to 357 lines. The object code size for
this program part decreases from 33114 bytes to 13906 bytes.

4 Chain Rule El iminat ion

A chain rule is a grammar production with a right hand side of length 1. Chain rules are most
often used for descriptions in expression contexts (like "expr --* term") or for the collection of
related language concepts (like "statement -+ if-stat I while-stat I assign-stat ..."). As Waite and
Goos [WAG84] point out, chain rules are semantically meaningless and "reductions according to
chain productions simply waste time". They report that the parse of the statement '% := b" of
their example language LAX requires 11 reductions of length I before the form "name ~ expr"
is reached.

We propose to integrate chain rule elimination into a parser generator for directly executable LR
parsers. Chain rule elimination is a special case of the classical shift/reduce optimization for LR
parsers: If there is a transition from state sl to state s2 on symbol x (terminal or nonterminal)
and the only action in state s2 is the reduction according to rule r, this reduction can immediately
be performed in state sl without entering s2. Thus, shift/reduce optimization saves one state
transition and (in table driven LP~ parsers) one push operation for state s2. States like s2 are
often called LR(0) reduction states.

In the directly programmed parser structure proposed here (figure 5) shift/reduce optimization
has the disadvantage of drastically increasing the size of the action code block since the pop
action and the code for semantic actions for reductions in LR(0) reduction states must be copied
to all their predecessor states (The ANSI-C grammar e.g. yields 169 LR(0) reduction states
which together have 1768 predecessors). The alternative reduction code block in the middle of
figure 4 avoids this copying but reintroduces the jump that was to be saved by the shift/reduce
optimization.

In contrast to shift/reduce optimization, the chain rule elimination we propose considers only
LtL(0) reduction states that reduce according to a chain rule. One advantage is clearly that
(normally) no semantic actions need to be copied to predecessor states because most chain rules
are semantically irrelevant. Furthermore, no pop operation is required since the "pop(i)" for
chain rules is eliminated by not pushing LR(0) reduction states. The other, most important
advantage is that the parser doesn't have to consult the N-table to determine the continuation
state of a LR(0) chain rule reduction. The continuation state can be determined at parser

187

construction time, since the origin state is always equal to the predecessor of a LR(0) chain
reduction state (due to the right hand side length of 1).

Repeated continuation computation for ~'chains" of chain rules finally yields a non LR(0) chain
reduction state for continuation. The code blocks for LR(0) chain reduction states can be
eliminated from the directly executable parser. Thus, chain rule elimination saves program size
as well as execution time by avoiding redundant branches.

Example: In the Expr example the code for states 3 and 4 can be removed. The chain rule
optimized version of state 0 looks as follows (semantic actions are included to illustrate the
"invisible" steps):

SO : if (term == 'a ~)

{outprod(i'F --> a") ;

outprod("T --> F") ;

goZo S2CT;}

if (term == '(')

{gozo SS;}

error () ;

S2CT stands for "$2 chain target", which is a label immediately above S2's code block where
an additional scan() operation (the one from $4) is executed.

Chain rule elimination works similar for nonterminal transitions. If the continuation state c for
a reduction with origin state o is a LR(0) chain reduction state reducing according to rule r the
parser can directly branch to the next continuation state N[o,lhs(r)]. This redundant branch
optimization is also applied repeatedly.

The situation is different if the continuation state c is determined by a default goto action
combining several origin states. In this case the next continuation state cannot be uniquely
determined. Still the directly programmed parser can be optimized by directly branching to the
continuation code for lhs(r).

Example: After chain rule elimination the continuation code for nonterminal F of the Expr
grammar looks as follows:

redF : if (top == 7) goto SIO;

goto redT;

For the ANSI-C grammar chain rule elimination eliminated 73 parser states. 1610 redundant
braaches could be eliminated. The longest chain of reductions that could be removed at parser
construction time had a length of 3. The Modula2 and Modula3 parsers contained 61 and 126
LR(0) chain reduction states.

5 Stack A c c e s s M i n i m i z a t i o n

In conventional LR parsers every state which is entered during parsing is pushed onto the parser
stack. As Horspool and Whitney [HOW90] point out, most of these states on the stack are
simply popped off again without ever being consulted for the determination of a continuation
state. Since only potential origin states are used for finding continuations, it is immediately
obvious that only origin states need to be pushed. For our grammar examples this simple parser
optimization saves the pushes for 253 of 367 states for ANSI-C, for 266 of 420 states for Modula2
and for 367 of 521 states for Modula3. In the Expr parser we can reduce the states to be pushed
from 12 to 4.

188

Clearly stack push minimization requires a modification of the pop actions associated with rule
reductions. The number of states to be pushed is no longer equal the the right hand production
side. Instead, the so-called pop count is determined by the number of pushed states in the pop
lists of the reduction paths associated with each reduce situation.

Two kinds of problems can occur: If a rule is reduced in more than one state its pop count may
not be equal in all of these states. This poses no problem in our parser implementation because
reductions are handled individually in the states they occur in. The other, more serious so-called
pop count conflict arises if there are different pop counts for a single reduction situation. This
occurs if on different paths to a reduction state a different number of states is pushed. Horspool
proposes to duplicate the states on the reduction path to achieve an unambiguous pop count.
Another solution was implemented in our parser generator: By inspecting the state stack the
parser can determine the correct number of entries to be popped.

Example: If a reduction situation consists of the reduction paths

10 (120) 64
11 (17 120) 70
12 (12o) 70

the generated pop code looks as follows:

p o p (l) ; i f (top == 17) p o p (i) ;

Pop count conflicts occur rather rarely in programming language parsers. For the ANSI-C
grammar we encountered 3 conflict situations for the push minimization described so far. Thus
the time and space penalty for solving pop count conflicts can be neglected.

In the following we present a systematic method to further decrease the number of states that
have to be pushed.

One source for further minimization is the chain rule elimination already described. If the origin
state of a chain rule reduction has only one nonterminal transition, this origin state clearly
doesn't have to be stacked. Another source of push minimization is due to the default goto
entries in the continuation code block. Suppose in all reduction situations according to rule r
that have a state s as an origin state, the continuation state N[s,lhs(r)] is determined by a default
goto action. Then state s is obviously never needed on top of the stack. Its push operation can
be eliminated if this elimination does not uncover a conflicting origin state on top of the stack.
In the latter case s has to be pushed to "hide" its stack predecessor.

The additional push minimization described above is heavily dependent on both a clever choice
of default goto actions and on the amount of continuation states that can be determined by
default actions.

The latter, Mthough appearing fixed by the parser grammar, can be increased by a transforma-
tion we call reduction splitting : Suppose a rule r: X --* w is reduced in more than one parser
state. It can easily be shown that the sets of origin states for these different reduction situations
are disjoint. Therefore, the continuation state can be determined by inspecting only individu-
ally relevant origin states. In terms of the directly executable parser this leads to a split of the
continuation code block for nonterminal X into blocks X1~ X2 .. Xn, one Xi for each individual
reduction situation. This reduction splitting clearly speeds up the continuation determination as
compared to a combined continuation code block for nonterminal X. Furthermore, the amount
of continuations that are determined by default actions is increased.

189

B s--> .A ~ s--> B. 0(3 6) 3
S--> .a 2] 4(7 6) 7
A - - > . A a

A:::
A - - > .a S -->A. A a . 6 =
B - - > . a b A 0 A - - > A . a 3

I F s" ~b'A ~ A --> .Aa 1 A -> a. . ~ , B --> abA.

A --> A.a 7 B --> a.bA

0(1)3 I a -~ A-->a. B
4(8) 7

t a

Figure 7: Example of reduction splitting

Figure 7 shows a trivial example for reduction splitting: The two reduction situations for rule
"A --~ a" and the reduction situation for "A --+ Aa" lead to the creation of the reduction code
blocks

redlA : goto $3;

red2A : if (top == 0) goto $3;

goto $7;

(The reduction in state 8 is removed by chain rule elimination. For this trivial example the code
for "redlA" is not generated by the parser generator because the single continuation state can
be branched to directly from state 1.)

The problem of stack access minimization can be formulated as follows: Consider a~ reduction
situations for which the continuation state has to be determined at parse time. These are all
reduction situations after reduction splitting that are not eliminated by chain rule optimization
and lead to more than one continuation state. Find the minimal number of origin states that
have to be stacked in order to be able to determine the continuation state in all these reduction
situations.

To determine the globally optimal solution for this minimization problem, we construct the so-
called push graph, It contains one node for every origin state and an undirected edge between
two nodes if there is a reduction situation where the corresponding origin states lead to different
continuation states. Informally, an edge between two origin states means that at least one of
these states must be pushed in order to be able to determine the continuation. (The states
that have to be pushed to hide conflicting predecessor origin states are initially marked as push
states.)

The push minimization problem now corresponds exactly to the well-known vertex cover problem:

Given: A graph G = (V,E)

Problem: Find a minima/ vertex cover, i.e. a subset V1 C V, such that for each edge
{u,v} 6 E at least one of u and v belongs to 1/1 and for all other V~ with this property:
I Y~ I_>1 v~ I.

190

The vertex cover problem is known to be NP-complete. A simple approximation strategy covers
the nodes in the order of falling vertex degree. The integration of this strategy into our parser
generator resulted in a considerable reduction of the number of states to be pushed. Nevertheless,
there is one severe problem with this approach: The push graph does not reflect the fact that
for reasons of parser size and speed the most frequent continuation state should be accessed by
a default goto action. In fact there were cases where the vertex cover algorithm resulted in very
bad continuation code blocks. (e.g. a code block with two continuation states, one accessed by
12 different origins, one by only one origin state ol. Since ol was decided not to be pushed, the
continuation code block had to contain 12 top comparisons followed by one default goto for ol.)

We propose to solve this obvious trade-off between stack access minimization and code quality
in favor of the latter: The algorithm for push minimization implemented in our parser generator
first decides to push all origin states that do not lead to one of the most frequent continuation
states of a reduction situation. For the remaining states the push graph is constructed. The
vertex cover for this graph which is already partially covered by the first step is completed by
the approximation algorithm sketched above. While only slightly increasing the number of stack
states, this algorithm generates short and fast continuation code blocks.

The results of the stack access minimization for the example grammars are summarized in the
following table. This table also illustrates the importance of reduction splitting for stack access
minimization

~_2AN SI-C
origin states | 114
stack states ~ 10~
reduction splits

M O D ~

154 1 154 1 4
86 1 98 1 3
47 I __51 I 0

6 Experimental Results and Conclusion

The implemented parser generator uses the yacc [Joh75] parser generator as a front end. The yacc
generated parser states and transitions are read. After the various transformations described
above the directly executable parser is generated as a C language program.

The following results were obtained for the directly executable ANSI-C parser run on a Sun4
sparc station. We measured the execution time of the generated parser for three different input
programs:

lexer: the source code of the (table driven) lexical analyzer for ANSLC

pcl: a collection of "typical" otherwise unrelated C language program parts

fapa: the source code of the parser generator for directly executable LR parsers (excluding
parser table input).

The characteristics of the three input programs are summarized in the table below.

lexer
pcl
fapa

Size in bytes
26422
44440
25229

Size in lines
1823
4040
1435

Size in tokens
10520
17373
7049

191

We compared the run times of a yacc generated parser to the unoptimized straight forward
directly executable parser from section 3 figure 4 and three versions of the parser generated by
our parser generator: The basic "reverse goto" version, the chain rule eliminated version and
the additionally stack minimized version. The following table shows the results. The times
measured are for the parser procedure and do not include the time for lexicai analysis. There
were no semantic actions. Each experiment was run 10 times. Times are given in milliseconds.

lexer
pc1
fapa

yacc

732

904

368

unopt, direct
686
539
227

reverse go to lcha in elim I minpush
237 [127 I 110
338 183 156
145 69 69

These results indicate a speed-up factor between 5.3 and 6.6 compared to the table driven
parser. The most considerable speed-up is due to the "reverse goto" organization and the chain
reduction elimination while the effect of push minimization is less significant.

Note that our prototype parser generator does not yet include low level coding optimizations
like application of binary search instead of linear conditional sequences for the determination
of continuation states. A further increase in speed could be expected from such optimizations.
Furthermore, our generator version does not stress the aspect of code size reduction in the
action part. The only transformation it applies is merging states which are completely identical
(including chain rule reductions). This leads to parser sizes which are 7 times larger than the
yacc parser with respect to source lines. The size of the directly executable purser's binary
(including a table driven scanner generated by fez) is about 50 % larger than the lex/yace
executable. Following Horspools results we can expect a further size reduction by applying
quite simple optimizations. Horspoot achieved this size reduction without a significant parsing
speed penalty.

Both space and time measurements were optained on the base of nnoptimized compilation of
the parser sources. With RISC target processors this lead to a large amount of unfilled delayed
branching slots for the conditional sequences of the directly executable parser. Enabling a simple
postpass peephole optimization resulted in a size reduction of 22 % for the directly executable
parser binary and a speedup of about 10 %. The yacc generated purser's size and speed could
not be improved by this optimization.

For the future we plan the integration of both code sharing and simpler code saving transfor-
mations. Furthermore, we believe that the parser speed can still be increased. One source for
further speed-up surely lies in an intelligent arrangement of token comparisons. By placing
the comparisons for the most probable terminals first, a significant reduction of token compar-
isons can be expected. This does not necessarily require profiling experiments, but can also
be achieved by a reasonable terminal code assignment following well known frequency statistics
(e.g. [wai861).

A similar transformation could be successful in the continuation code blocks: There is no need
for the used mapping of state labels to pushed state numbers (as long as labels are no first class
objects). By an intelligent state number mapping the fast continuation determination could be
supported for many reduction situations. First ideas include the mapping of origin states leading
to equal continuations to mutually disjoint integer intervals. Thus, the continuation state could
be determined by range checking instead of single top comparisons.

192

7

[DDH84]

[owg0]

[3oh75]

[Pen86]

[Wai86]

[WAG84]

[WhHS8]

R e f e r e n c e s

Dencker, P., Durre, K. and Heuft, J., Optimization of Parser Tables for Portable
Compilers, ACM Trans. on Prog. Lang. and Systems, 6 (1984), 546-572.

Horspool, R. N. and Whitney, M., Even faster LR Parsing, Software - Practice
and Experience (to appear) (1990).

Johnson, S. C., Yacc - yet another compiler compiler, Computing Science Tech-
nical Report 32~ AT&:T Bell Labs, Murray Hill, N.Y. (1975).

Pennello, T. J., Very fast LR Parsing, Proc. 1986 Syrup. on Compiler Construc-
tion, ACM SIGPLAN Notices 21 (t986), 145-151.

R5hrich, J., Methods for the automatic Construction of Error Correcting Parsers,
Acta, Informatica 13 (1980), 115-139.

Waite, W. M., The cost oflexical analysis, Software - Practice and Experience
15 (1986), 473-488.

WaRe, W. M. and Goos, G., Compiler Construction, Springer-Verlag, 1984.

Whitney, M. and Horspool, R. N., Extremely Rapid LR Parsing, Proc. Workshop
on Compiler-Compiler and High-Speed Compilation, Berlin G.D.R (1988).

