
TOOLS AND TECHNIQUES OF ANNOTATED PROGRAMMING

VICTOR N. KASVANOV

Academy of Sciences of the U.S.S.R
Siberian Branch

Institute of Informatlcs Systems
Novosibirsk 630090, U.S.S.R.

Annotated programming is a method of program processing which
takes into account program application information a priori
known and conveyed in annotations. A model for annotated
programming is described within whose framework mar4y kinds of
practical work with programs (e.g. partial evaluation and opti-
mization) can be performed. A transformatzon machine concept and
some tools for annotated program transformations are considered.

I n t r o d u c t i o n

Transformation techniques are gaining in importance for both

theoretical and technological programming. Systems of equivalent

transfox~matlons have been conventionally used in the optimizing

compilers [I-3] and are currently widely applied in mechanical

aids for supporting the program development process [4,5]. The

long-range objective of program transformation paradigm is to

essentially improve the construction, reliability, maintenance

and extendibility Of software. The current state-of-the-art of

program transformation is still rather far from supporting these

ambitious goals, and research continues along a variety of

diverse paths [6].

In the paper, we outline transformational approach to program

concretization, whereby a given general-purpose program can be

correctly transformed into multitude of more qualitative

special-purpose programs. A concretization transformation is

aimed at improving a given program without disturbing its

correctness in a given restricted and stable context of its

applications. In addition to the restricted sets of program

inputs and outputs some suitable criterion of program quality

can be defined by program application context. For example,

118

memory, time or reliability may be considered as program quality

criteria by the context given.

According to the approach presented, any source program 18

considered as a base for constructions of a number of different

specialized programs. Every construction starts with the source

program and an application context conveyed in formalized

conmments (annotations). Some program annotations can be formed

in parallel with the development of the source program, others

are added by users and describe a specific context of source

program applications. Then a series of concretizing trans-

formations is applied to the annotated general-p~ose program (

either automatically or interactively with the user), which

results in a correct and qualitative specialized program.

A well-known example of program specialization is the

so-called partial evaluation (or mixed computation) of programs

on partially given inputs [7]. Partial evaluation can be applied

to compiling, program generation, including compiler generation

and generation of a compiler generator, and metaprogramming

without order-of-magnitude loss of efficiency [8].

C o n c r e t l z a t l o n problem

Investigations of transformation systems and their

applications to various kinds of program manipulations show that

during performing transfor~nations it is important to take into

account information known about application context of program

transformed, as well as to employ generalizi~ and specializing

transformations which are nonequivalent.

Unlike the equivalent transformations that preserve the func-

tions calculated by programs transformed, generalizing trans-

formation can convert a source program to such a result one that

solves a more general problem than the source program (for

example, function calculated by result program can be obtained

from source program function by the addition of further

parameters or results). Specialization is in some ways the

complement of generalization. A well-known example of specia-

lizing transformation is the so-called partial evaluation (or

mixed computation) of programs on partially given inputs [7,8].

119

similar to distinguishing optimizing transformations among

all equivalent ones it is possible to distinguish among

generalizing and specializing transformations the so-called

concretizing transformations aimed at optimization of source

program in a restricted and stable context of program

applications [9]. Every concretizing transformation is aimed at

improving the program given according to a given qualitative

criterion (e.g. memory, time or reliability) without disturbing

the meaning of the program in a given restricted context of its

application.

Let us illustrate the concretization problem with an example

of a simple Pascal-procedure El which computes in X the solution

of linear equation system represented by a triangular matrix A

and a vector B

PROOEDURE El (A:MATRIX; B:VECTOR; VAR X:VECTOR);

VAR I,K:INTEGER; Z:REAL;

BEGIN X[I] :=B[I]/A[I ,I] ; FOR I:=2 TO N DO BEGIN Z:=O;

FOR K:=I TO 1-I DO Z:=Z+A[I,K]*X[K]; X[I]:=(B[I]-Z)/A[I,I]

END END.

If ES deals only with a diagonal matrix A and qualitative

criterion is a program length then the procedure can be replaced

by the following improved version of El

PROCEDURE E2 (A:MATRIX;B:VEOTOR; VAR X:VECTOR);

VAR I:INTEGER; BEGIN FOR I:=1 TO N DO X[I]:=B[I]/A[I,I] END.

In another context, if the single goal of any application of

El is to compute the first element of X, the following version

of the procedure El is more qualitative with respect to all main

criteria of program quality

PROCEDURE E3 (A:~TRIX; B:VECTOR; VAR X:VEOTOR);

BEGIN X [I] : : B [1] / A [1 , I] END.

It should be noted that to our time most needs of

concretizations are satisfied by using such universal tools of

pro~ text construction as macro generators and editors. But

the approach to automatization of concretizations is not

convenient for programmers because it makes high demands to

programmer~. Under the approach an end user must progranmme all

specialization processes of its own program.

120

Concretlza~lon and c o m ~ l l l ~

Assume that a given program, P, is to be run repeatedly on a

range of inputs to produce a range of outputs. Similar to

partial evaluation [8] we consider two-stage process:

- at the first stage a context of applications of P is given

to produce a specialized program which is equivalent to P on the

ranges of its inputs and outputs and is better than the original

P by the quality measure given by the context ,

- at the second stage the specific data values in the input

range is given to produce the results from the output range.

Note that in partial evaluation at the first stage only a

part of the inputs is given~ and partial evaluation can be used

for compiling, program generation (including compiler

generation), metaprogramming without order-of-magnltude loss of

efficiency. Sot applications of program conoretization include

partial evaluation and its applications as well.

Let us consider some examples of the application.

General context-free parsing algorithms (e.g., Earley' s

parser) are notoriously 81ow, whereas parsers for specific

grmmmars are efficient enough to be a standard part of modern

compiler technology. Concretization of a general context-free

parser in context of a particular context-free grammar cant at

least in principle, make dramatic improvements in efficiency.

Suppose an interpreter I for some lang~mge L is given. The

input to I is a program F and an input data to 2. The result of

concretizing I to the given program P (i~e~ in the context of

applications defined by P as input program of I) will be a

program that takes the same input data as P and is equivalent to

P . Sot the eoncretization will trmmslate the program P from the

language Z into the language output by the concretizator.

Oonoretizators are pro~ systems that treat programs as

data objects and can be used also to generate a program

generator automatically from a given general-purpose program.

Suppose now that the eoncretlzation process itself can be

programmed, so there is a program S which transforms any input

pair W a program P, a context C > into specialized version PC of

the program P for the context C. Let also that S will be used

121

only to concretize the same fixed program Q as P, regardless of

the the value of C. Then the result of concretizing the

oonoretizator S is the progr~m SQ that transforms a context C

~or Q into QC" For example, the following three cases are

possible:

- parser generator SQ , if Q is a general parser, O is a

context-free grammar G and QC is a parser for L(G),

- compiler generator S I , if Q is interpreter for some

language L, C is a source program in the language Z and I c is a

target program,

- generation of a compiler generator S S , if Q is the

concretizator S , C is an interpreter S for some language L, QC

is compiler for the language L interpreted by I.

Annotated programs

The main idea of concretization is to take advantage of the

known context in which only some program executions are

admissible and only some of their results are used to tailor

that program to the context, with the objective of realizing a

more qualitative (in the meaning defined by the context)

computation of the used results. But modern high-level languages

do not have enough means of description of contexts of program

applications.

So, it is natural to pass ~rom program to program with

annotations in which context information can be conveyed [9].

As a basic language let us consider a high-level language,

for example, Pascal. The basic lan~e is assumed to be

extended by adding the annotations which are formalized com~nents

in the basic programs and relevant for the semantics of the

program annotated. In particular, every annotation-assertion is

evaluated and if it is false, the execution is inadmissible

(beyond the context of program applications). So, annotations-

assertions are intended to state certain properties of the

program at its particular "places", and these properties can be

used for solving problems of program conoretization.

For example, the annotated procedure

PROCEDURE E4;

122

BEGIN {~ Z: I ; w=2; $}

I F X>O T H ~ Z :=Z+ I ELSE BE~IN Y:=X+I ; Z : :W

{~ DEAD(Y); ~}

END;

where DEAD(Y) sets that the our~ent value of Y is unused under

any application of E4 can be correctly transformed into

PROCEDURE E5; BEGIN Z: =2 END;

It is assumed that the following properties hold.

Annotations added to a basic program specify a ooverlng

context. It is guaranteed that any actual application from the

context described will be admissible by annotations, but some

admissible applications may be beyond the actual context.

Annotated programs are subjected to concretizing trans-

formations as a whole. It means that the transformations can

change not only the basic program but their annotations as well.

Annotations intended to specify the context can be

represented in the form of directives as well. Unlike assertion

being predicate oonstr~aints on admissible memory states,

annotation-directive can be either a statement that will change

current memory state every time the annotation is reached during

possible execution of the program annotated [10] or name of a

concretizing transformation allowed for application at the

corresponding annotated program point by the context [3].

Below an example of annotated Pascal-function which computes

~(-I)' is presented. The example illustrates how)ix2i+1/(21+I
assertions and directives can be used to form tracing algorithm

which gathers some information about program execution to verify

its correctness.

FUNOTION E6 (X,E:REAL) :REAL;

VAR A,B,C,D,S:R2AL; {$ I:INTEGER; $}

($ FUNOTION P (X:REAL;N:INTEGER) :REAL;

BEGIN IF N=O THEN P:=I ELSE P:=P(X,N-I),X END;

FUNCTION F (N:INTEGER) :INTEGER;

BEGIN IF N=O THEN F: =I ELSE F: =F (N-1) ~N END;

FUNCTION Er,~ (X:REAL| N:INTEGER):REAL;

BEGIN ~:=P(-I ,N),P(X,R'N-I)/F(2,N-I) END;

FUNCTION SUM (X:REAL;N:INTEGER) :REAL;

VAR I:INTEGER; S:REAL;

123

BEGIN S:=O; FOR 1:=I TO N DO S:=S+~Lk"~(X,I); SUN:=S
$}

BEGIN A:=-2; B:=O; C:=X; S:=X; D:=-SQR(X); {$ I:=O; $}

WHILE ABS (C) >E DO

BEGIN {$ A=S*I-2; B=2,I*(2'I+I); C=MLN~(X,I);

S=SU~(XlT); ABS(O)>E; $}

A:=A+8; B:=B+A; C:=C*D/B; S:=S+C; {$ I:=I+1; $}

mVD; {$ S=S~(Xll); ABS(~T~(Xll))<=E; $} ~.4:=S

END;

Model for annotated programlng

A program model described below is based on large-scale

program schemata that covers a broad class of program8 and their

transformations [5, 6].

Let S = {s} be a set of memory states such that for any state

s~S a partition of the set o~ all variables V = {v} into two

sets A(s) and I(s) of cccess~bZe and ~ncccess~b~e variables,

respectively, is given and for every accessible v~A(s) its value

s(v) is defined. Let s I and s 2 be two memory states, s I and s 2

are eq~ or~ c~ 8et of the variables W~V if for any v~ W either

sl(v) = s2(v) or v~(sl)nI(s2), s I e~x~ s 2 (denoted by s2~<

s I) if s I and s 2 are equal on the set A(s2).

A ~o~c~a % is a tuple (g,f,p,r,a,d) which consists of

(I) a ~'~o~Gph g = (X,U,xo,Yo) , where Xo~X is the erL~Py
statement having no ingoing arcs (i.e. IE(Xo) = ~) and only

one outgoing arc denoted by u 0 (i.e. 0Ur(x0) = {Uo}) and Y0~X is

the e~ statement having no outgoing arcs (i.e. 0UT(y O) --~)I

and for every arc u = (x I ,x2)~U the functions source(u) = x I and

target(u) = x 2 are defined;

(2) a function of ~or~ tt'c~nsJ'orw~tf.on f : X~(S~S);

(3) a function of cont~o~ tr'ons2"eT" p : X~(S~U);

(4) ~ n t and resu~ functions a,r: X~(s~2V);

(5) G~pZ~coD~ty predicate d : X~(S~{~r~le,false}),

such that £or any vcV, x~X and s,s I,s2~S the following

properties hold:

(S) the memory states s and f(x)(s) are equal on the set

v\~(x) (s)

124

(2) if s I and s 2 are equal on a(x)(s S) then d(x)(s I) =

d(x)(s2), p(x)(s I) = p(x)(s2), a(x)(s I) = a(x)(s2), r(x)(s I) =

r(x)(s 2) and the memory states f(x)(s I) and f(x)(s 2) are equal

on the set r(x)(s 1);

(3) if l(s)na(x)(s) ~ ~ , then d(x)(s) is false;
(4) a(Xo)(S)= A(f(Xo)(S)), a(Yo)(S) = ~ and for every

x~{xO,Y O} the memory states s and f(x)(s) are equal on the set

A(f(x) (s));

(5) p(x)(s) is an arc u outgoing from x, i.e. source(u) = x.

In other words, for any x the functions f(x), a(x), r(x),

p(x) and d(x) describe semantics of the statement x. The

execution of x at a given memor~j state s terminates normally if

d(x)(s) is if'de, and results in defining the new memory state

f(x) (s) and the new executed statement targe~(p(x) (s)). During

the execution current values of variables v~a(x)(s) are used and

new values are assigned to variables v~r(x)(s). For example, if

x is the statement IF VI> 0 TH~g V2:=I/(V3-1) ELSE V4:=I/(V5+1)

and s I and s 2 are two memory states such that s I(VI)>0, s I (V3)=

=I, s2(Vl)~<O and s2(VS) ~ -I, then a(x)(s I) = (VI,V3}, r(x)(s I)=

= (v2}, a(x)(s 2) = (vl,vs}, r(x)(s 2) = (v4}, d(x)(s 2) is true

and d(x) (s I) is false.

The program % computes function % :S~S defined by the

following rules. The value of the function for a given memory

state s I is dejected (% is cL1ypZ~cgzble to s I) and equal to s 2 if

there is a finite sequence seq(%,s I) = (x o = x °, s c, u °, x I , s I ,

u I ,... ,x n, sn,un,x n+1= yo) called an ezecut~o~ sequence of ~ on

s I such that s O = f(x O)(s I), so =f(Yn)! sn) and for any i the

following properties hold: ~d(xi)~s I-!) is ~rue, s i =
f(xi)(s i-I), u i = p(xi)(s i-I) and x i = ~arget(u i-I). If there is

no finite execution sequence seq(%,s I) then ~ is ~noppZ~ccbZe to

s I and the value %(s I) is tyK~e~. If the value %(s I) is

defined then the variables v~a(XO)(S I) are called the G~gLm~nZ8

of %(s I).
Let %1 and %2 be two programs. %1 gene~c]~zes %2 if for any

memory state s 2 which %2 is applicable to, there is such a
memory state s I that s I is equal to s 2 on the set of arguments
of ~2(s2), %1 is applicable to s I and %2(s2)~<%1 (s I). %1 and %2

are equipment programs if they compute the same function.

125

Let a nonempty set of objects called o2note~on8 be given. It

is assumed that the set is divided ~nto two disjoint subsets:

Gsse,pt~on8 E = {e} and d~Pect~ue8 Q = {q}. Every assertion e~E

is a plmdleate on S. A memory state s is said to be sdm~ss~ble

with respect to e, denoted sse, if e(s) is ~rue. It is assumed

that E contains minimum and maximum elements ~ and r such that

any memory state is admissible with respect to l and

inadmissible with respect to ~• Every directive qEQ is a

statement on S. In other words, the functions f, a and r and

the predicate d of any program are extended on the set Q. It is

assumed that Q contains an ~dent~ty directive qo such that

q0(s)=s, a(qo)(S)=r(q0)(s)=~ for any s~S, and for any s£S and

any WsV there is such a directive qs,w~Q that for all s SoS the

following three properties hold: a(qs,w) (s I)=@, r(qs, W) (s I)=W

and s and Z(qs,W)(sS) are equal on W

Anno~e~e~ p~ogrGm %1 is a triple (%,m,t) where % is a program

on which %1 is besed, m and t are annotating functions which

attach to every are u of % some assertion m(u)¢E and directive

t(u)~Q. Like basic programs, any annotated program 71 computes

a function ?[I :S~S. The function is defined by the Zollowing

rules. For a given s IES the value ~I (s i) is de~ned (%1 is

eppZZoobEe to s I) and equal to s o if there is a finite execution

sequence seq(~1,sl) = (x°=xo,~ ° ,u °, s °, x I, ~I, u I, ;1 ,...,xn,
sn, u n, sn, x n 1 =Yn) such that ~0 = f(xn) (s I), s9 = f(yn)(sn)

and for any i the following properties hold. I d(x~)(si-1~ and
d(t(ui))(~i) are ~rue, ~i = f(x i)(~i-1), u i = p(x i)(s i-I), x i =

Sarge~(u i-S), ~is m(ui)and s i = t(ui)(~i). Thus, the equivalence

and generalization relations are defined on the set of all

annotated and basic programs.

For example, the annotated function

FUNOTION POWERI (X:REAL; N:INTEGER) :REAL;

BEGIN {$ N:=5; $} Y:=I;

WHII~ N>0 DO BEGIN WHILE NOT 0DD(N) DO

BEGIN N:=N DIV 2; X:=SQR(X) END; N:=N-I; Y:=Y*X

END; POWER1 : =Y

END

is equivalent to the basic function

I~OTION POWER2 (X:REAL; N:INTEGER)|

126

BEGIN Y:=SO~(SQR(X))*X; POWER2:=Y END

generalizes the annotated function

FUNCTION POWER3 (X:REAL;N:INTEGER);

BEGIN (8 N=5; $) POWERS:=SQR(SQR(X))*X END

but is not equivalent to it.

Trans fo rma t ion machlue for program concre t l za t lon

The class of correct transformations of annotated programs

covers various kinds of work with basic programs. It contains

both all equivalent transformations and a number of such

nonequivalent transformations which specialize or generate a

basic program to be transformed, in particular partial

evaluation.

So, the approach permits specializing and generalizing

transformations of basic programs to reduce to equivalent

tr~nsfor~nations of annotated programs and to employ for their

investigation equivalent transformation techniques developed in

terms of program schemata theory [12].

Another advantage of the approach outlined above is the

possibility to perform global transformations of basic proglmms

by iterative application of elementary transformations of

annotated programs.

To construct annotated program transformation tools, we may

make use of the concept of an abstract device which has

elementary transformations as its instruction set and is called

a transformation machine [13].

Various processes of cor2ect transformations of annotated

progrmms seem to have a relatively small number of underlying

elementary transformations being correct in the class of all

annotated programs, Thus, it is possible to develop a trans-

formation machine (TM), whose data and instructions are the

annotated programs and their transformations, respectively [14].

Transformations used as TM instructions are of the three types:

(I) instructions for moving active points about the programs

processed; they make one or few points of the program accessible

for transformations; (2) control instructions to express higher

level transform~ation rules in terms of lower ones; (3)

127

elementary transfor~nations which are rules of correct

transformations of annotated programs which alone are able to

modify the program processed.

Thus unlike the transformation machine described in [13], TM

employs no instructions whose application correctness depends

not only on the fragment transformed , but on program as a

whole. So, every program in the TM instruction lan~e is a

program processor,i.e, it defines a correct transformation of

any annotated program.

The set of all elementary tr~Lnsformations of TM is subdivided

into four subsets: property and schematic transformations to be

outlined below, elementary 'transformations which reflect the

semantics of language constructions (e.g. CASE const OF const:

statement; sequence END => statement) and elementary

transformations that originate from object domain laws (e.g.,

I +2=>3; exp*1 =>exp; exp/O =>error~-division-by-zero).

The subset of the schematic transformations includes removing

and inserting inaccessible fragments; removing and inserting

useless computations; replacing the terms according to their

properties; replacing the variables; deadlock standardization;

copying the fragments and pasting copies together; folding and

unfolding for functions and procedures,~emoving and inserting

unessential branches.

Property transformations are intended to generate new

annotations by extracting information from a basic program

constructions, to propagate information taking into account the

property modification which originates from a relevant language

construction and to update annotations through the new

information logically inferred from current annotations.

The transformation implemented by TM can be either applied

automatically or as programmer-guided manipulation of annotated

programs. This process may involve significant system-programmer

interact ions.

TM instruction language also allows writing procedures to

define more complex rules in terms of elementary ones and

contains a set of built-in procedures. For example, there are

built-in procedures for data flow analysis for the extraction of

such properties as equality of terms, ranges of variables and a

128

number of properties which can be described by finite sets of

predicates. Different strategies of program transformations can

be expressed in the instruction language as procedure with

transformations beir~ formal parameters. For example, there are

built-in procedures to realize algorithms of data flow analysis,

to convert various constructions of annotated program into

canonical forms, for logical inference and so on.

Instruction set of TM must be extensible. But prograramer must

be able to prove the correctness of added basic transformations.

Soj there is a great interest in constructing such a

metamechanism which assists the programmer with extension of

instruction set of TM.

Too l s fo r program concre~ lza t lon

The transformation approach described above enables us to

construct program transforming tools of various types. An

example is a program transformer that realizes a collection of

connected program processors and is used as technological module

in the progran~ning environment. Also, the implementation is

possible of the so-called conoretization systems being an

integrated device for constructlr~ program oonoretizators.

With respect to main criteria of program quality, among

program ooncretizators the following types of tools can be

distinguished.

Source-to-source optimizers. They aim at improving basic

programs in conventional for the optimizing compiler way, but

they transform progrmms on source language level and take into

account the parameters of both compilation and execution

environment.

Conoretizators making annotated programs more clear and self

descriptive. They annotate program by assertions on its semantic

properties (such as invariants for term equality, control flow

graph and so on), improve the program structure by renaming

objects, inserting descriptions, etc.

Instrumentation tools. They make debugging version of a

source program by adding basic language statements which test

program properties described in the annotations.

129

Verification tools aimed at a static check of a source

annotated program for correctness and supplementing it with

annotations which present discrepancies discovered in the

program. For example, the tools can elicit the so-called

implausibility properties (redundant actions, non-initialized

variables, infinite execution, useless objects, over-complicated

data organization and etc.) due to certain discrepancies between

the progx~n text and the executions which it represents; a test

for implausibility permits static detection of some dynamic

errors and formal detection of some informal errors [15].

Reducers. They eliminate redundant objects and constructions

from a source annotated prog1~ms. Reducers are aimed at

improving a program given according to all main qualitative

criteria by way of the maximal use of the information contained

in its annotations.

It should be noted that some conventional tools in which

program processing does not always terminate or goes beyond the

limits of a basic language can be replaced by concretizators as

well. For instance, instead of an interpreter, the progr~ammer's

environment may utilize a oonoretizator which performs a basic

program from transfoxm~ations of the program annotated and

constructs the evaluation tr~ce in the annotations having

user-deflned form. Other concretizators of annotated programs

can be used as tools for partial evaluation and specialization

of basic programs.

Conoretization systems [3] are based on the tr~ausformation

machine concept and support operational environments ensuring

safe and rapid programming of a variety of program processors,

as well as their application in combinations usually impossible

(e.g., to optimize the debugging version of a source program).

Reliability of tools implemented by means of the

concretization systems is provided by applying only such

transformations that preserve the meaning of the program

processed. The language level for writing transformation tools

is getting higher, which contributes to a greater automation of

program development. It should be noted that tools can be

extended and implement self-descriptive processes of program

130

transformation (the history of development is presented by a

sequence of applied transformations).

In the environment supported by a concretization system it

seems practical to create experimental tools for program

tra~f01~ation as well as tools for "single" and "individual"

applications, i.e. tools constructed to transform a specific

program or designed for one programmer.

If basic and implementation languages of concretization

system are the same, mutual applications of program processors

will be possible which would provide us with the opportunity to

make a compiler from an interpreter, a compiler generator from a

partial evaluator and other applications usually considered as

motivations ~or partial evaluation [7,8].

Conclus ion

Usually process of program development by successive

application of transformations starts with specification (that

is a formal statement of a problem or its solution) and ends

withan execution program. In the paper, an attempt is made to

formulate tools and techniques of annotated progranmming, whereby

a general-purpose program can be annotated by known information

about a specific context of its applications and correctly

transformed into a specialized program which is equivalent to

the original on the context-defined ranges of inputs and outputs

and is better than it by quality measure given by the context.

Tools and techniques of annotated program transformations can

be used for partial evaluation, compiling, program generation

(including compiler generation), and metaprogram~ing without

order-of-magnitude loss of efficiency.

References

I. ~ShOV A.P. ALPPEA - an automatic programming system of

high efficiency, J.ACM, voi.13, N 1, 1966, p.17-24.

2. K6~dy K.N. A survey of compiler optimization.- In:

Program Flow Analysis: Theory and Applications, Englewood

Cliffs, Prentice-Hall, 1981, P.5-54.

131

3. ~eayenou V.N. Optimizing transformations of programs,
Nauka, Moscow, 1988.- 336 P. (in Russian).

4- E~shov A.P. The transformational approach in software

engineering, In: Software Engineering, Abstracts of the reports

to the All-Union Conference, Plenary sessions and general

material, Institute of Cybernetics, Ukrainian Academy of

Science, Kiev, 1979, p.12-26.

5. P~-~sh H., S~e~~en R. Program transformation systems,

AOM Oomput. Surveys, vol.15, N 3, 1983, p.199-236.

6. FeG~hsr I.S. A survey and classification of some program

trans fox,nation approaches and techniques, In: Program

Specification and Transformation, North-Holland, Amsterdam,

1987, p.165-195.

7. Ershou A.P. On the partial computation principle,

Information Processing Letters, vol.6, N 2, 1977, p.38-41.

8. New GenePGt~on Computing, Special Issue: Selected Papers

from the Workshop on Partial Evaluation and Mixed Computation,

vol.6, Nos. 2,3, 1988.

9. KGSyGnOV V.N. Practical approach to program optimization,

Preprint N 135, Computing Center, Siberian Branch of the USSR

Academy of Sciences, Novosibirsk, 1978.- 43 p. (in Russian).

10. KSsy~ov V.N. Annotated program transformations, In:

Lecture Notes in Computer Science, voi.405, 1989, p.171-180.

11. KGSyG~O~ V.N. Basis for progrmm optimization, In: Proc.

IFIP Congress 83, North-Holland, Amsterdam, 1983, p. 315-320.

12. E~shou A.P. Theory of program schemata, In: Prec. 1-PIP

Oongress 71, North-Holland, Amsterdam, 1971, p.28-45.

13. E~sAOv A.P. The transformational machine: theme and

variations, In: Lecture Notes in Computer Science, voi.118,

1981, p.16 -32.

14. KeSyCSou V.N. , Sube~j'e~d V.K. Tools for program

transformations, In: Informatika-88: Acres du seminaire

Franoo-Sovetique, INRIA, Roquenoourt, 1988, p.89-1OO.

15. Kesyenou V.N., Po~Zos~n I.V. Application of optimization

techniques to correctness problems, In: Oonstr~oting Quality

Software, Proc. IFIP TO 2 Working Conf., North-Holland,

Amsterdam, 1979, p.237-248.

