TOOLS AND TECHNIQUES OF ANNOTATED PROGRAMMING
Victor N. Kasvanov

Academy of Sciences of the U.S.S5.R
Siberian Branch
Institute of Informatics Systems
Novosibirsk 630090, U.S.S.R

Annotated programming is a method of program prooessing which
takes into acoount program application information a priori
known and conveyed in annotations. A model for annctated
programming is desoribed within whose framework many kinds of
practiocal work with programs (e.g. partial evaluation and opti-
mization) can be performed. A transformation machine concept and
some tools for annotated program transformations are considered.

Introduction

Transformation techniques are gaining in importance for both
theoretical and technological programming. Systems of equivalent
transformations have been conventionally used in the optimizing
compilers [1-3] and are currently widely applied in mechanical
aids for supporting the program development process [4,5]. The
long-range objective of program transformation paradigm is tfo
essentially improve the construction, reliability, mainienance
and extendibility of software. The current state-of-the-art of
program transformation is still rather far from supporting these
ambitious goals, and research oontinues along a variety of
diverse paths [6].

In the paper, we outline transformational approach to program
concretization, whereby a given general-purpose program can be
correctly f{ransformed into multitude of more qualitative
special-purpose programs. A concretization transformation is
aimed at Improving a given program without disturbing its
ocorreotness in a given restrioted and stable ocontext of its
applications. In addition to the restricted sets of program
inputs and outputs some suitable criterion of program quality
can be defined by program application context. PFor example,

118

memory, time or reliability may be considered as program quality
criteria by the context given.

According to the approach presented, any source program is
considered as a base for consiructions of a number of different
specialized programs. Every construction starts with the source
program and an application context oconveyed in formalized
comments (annotations). Some program ammcotations can be formed
in parallel with the development of ihe source program, others
are added by users and desoribe a specific context of Bource
program applications. Then a Beries of conoretizing trans-
formations is applied to the annctated general-purpose program {
either automatically or interactively with the user), which
resulis in a correct and qualitative specialized program.

A well-known example of program specialization is the
so—called partial evalustion (or mixed computation) of programs
on partially given inputs [7]. Partial evaluation can be applied
to compiling, program generation, including compiler generation
and generation of a compiler generator, and metaprogramming
without order-of-magnitude loss of efficiency [8].

Concretization problem

Investigations of transformation systems and their
applications to various kinds of program manipulations show that
during performing transformations it is important to take into
account information known about application context of program
transformed, as well as to employ generalizing and specializing
transformations which are nonequivalent.

Unlike the equivalent transformations that preserve the func-
tions calculated by programs transformed, generalizing trans-
formation can converi a source program to such a result one that
solves a more general problem than the source program (for
example, function calculated by result program can be obtained
from souroce program function by the addition of further
parameters or resulis). Specialization is in some ways the
complement of generalization. A well-known example of speoia-
lizing transformation is the so-called partial evaluation (or
mixed computation) of programs on partially given inputs [7,8].

119

Similar to distinguishing optimizing transformations among
all equivalent ones it is possible to distinguish among
generalizing and specializing transformations +the sBo-called
concretizing transformations aimed at optimization of source
program in a restricted and stable context of program
applications [9]. Every concretizing transformation is aimed at
improving the program given according to a given qualitative
criterion (e.g. memory, time or reliability) without disturbing
the meaning of the program in a given resiricted context of its
application.

Let us illustrate the concretization problem with an example
of a simple Pascal-procedure E1f which computes in X the solution
of linear equation system represented by a triangular matrix 4
and a vector B
PROCEDURE E1 (A:MATRIX; B:VECTOR; VAR X:VECTOR);

VAR I,K:INTEGER; Z:REAL;

BEGIN X[1]1:=B[11/A[1,1]; FOR I:=2 TO N DO BEGIN Z:=0;

FOR K:=1 TO I-1 DO Z:=Z+A[I,K1*X[K]; X[I1:=(BII]-Z)/AI1,1]

END END.

If E1 deals only with a diagonal matrix A and qualitative
oriterion is a program length then the procedure can be replaced
by the following improved version of Et
PROCEDURE B2 (A:MATRIX;B:VECTOR; VAR X:VECTOR);

VAR I:INTEGER; BEGIN FOR I:=1 TO N DO X[I]:=B[I]/A[I,I] END.

In another context, if the single goal of any application of
E1 is to compute the first elsment of X, the following version
of the procedure E1 is more qualitative with respect to all main
criteria of program quality
PROCEDURE E3 (A:MATRIX; B:VECTOR; VAR X:VECTOR);

BEGIN X[11:=B[11/A[1,1] END.

It should be noted that to our time most needs of
concretizations are satisfied by using such universal +tools of
program text construction as maoro generators and editors. But
the approach to autcmatization of oconeretizations is not
convenient for programmers because it makes high demands to
programmers. Under the approach an end user must programme all
specialization processes of its own program.

120

Concretization and compiling

Assume that a given program, P, is to be run repeatedly on a
range of inputs tc produce a range of outputs. Similar to
partial evaluation [8] we consider two-stage process:

- at the first stage a context of applications of P is given
to produce a specialized program which is equivalent to P on the
rangee of its inpuis and outputs and is better than the original
P by the quality measure given by the context ,

- at the second stage the specific data values in the input
range is given to produce the results from the output range.

Note that in partial evaluation at the first stage only a
part of the inputs is given, and partial evaluation ocan be used
for compiling, program generation (including compiler
generation), metaprogramming without order-of-magnitude loss of
efficiency. So, applications of program concretization include
partial evaluation and its applications as well.

Let us consider some examples of the application.

General contexi-free parsing algorithms (e.g., Earley's
parser) are notoriously slow, whereas parsers for specific
grammars are efficient enocugh to be a standard part of modern
compiler technelogy. Concretization of a general ocontext-free
parser in contexi of a pariiocular contexi-free grammar ocan, at
least in principle, make dramatic improvements in efficiency.

Suppose an interpreter I for some language L im given. The
input to I is a program P and an input data to P. The result of
concretizing I to the given program P (i.e. in the context of
applications defined by P as input program of I) will be a
program that takes the same input data as P and is equivalent to
P . So, the concretization will itranslate the program P from the
language L into the language ocutput by the concretizator.

Coneoretizators are program systems that treat programs as
data objects and can bhe used also tfo generate a program
generator automatically from a given genesral-purpose program.

Suppese now that the concoretization process 1tself ocan be
programmed, so there is a program S which transforms any input
pair < a program P, a context C > into specialized version PG of
the program F for the context . Let alseo that § will be used

121

only to concretize the same fixed program @ as P, regardless of
the the value of C. Then the result of ooncretizing the
coneretizator S is the program SQ that transforms a context C
for g into QG' For example, the following three cases are
possible:

- parser generator SQ y i @ is a general parser, C is a
context-free grammar G and QG is a parser for L(G),

- compiler generator SI s, 1if @ is interpreter for some
language L, C is a source program in the language L and IC is a
target program,

- generation of a compiler generator SS s 1f @ is the
concretizator S , C is an interpreter S for some language I, QG
is compiler for the language I interpreted by I.

Annotated programs

The main idea of concretization is to take advantage of +the
known context 1in which only some program executions are
admissible and only some of their results are used to tailor
that program to the contexi, with the objective of realizing a
more qualitative (in the meaning defined by the context)
computation of the used resulis. But modern high-level languages
do not have enough means of description of contexts of program
applications.

So, it is natural +to pass from program to program with
annotations in which context information can be conveyed [9].

As a basic language let us consider a high-level language,
for example, Pascal. The basic Ilanguage is assumed to be
extended by adding the annotations which are formalized comments
in the basic programs and relevant for the semantios of the
program annotated. In particular, every amnotation-assertion is
evaluated and if it is false, the execution is inadmissible
(beyond the context of program applications). So, annotations-
assertions are intended to state ocertain properties of +the
program at iis partiocular "places", and these properties can be
used for solving problems of program conoretization.

For example, the annotated procedure
PROCEDURE E4;

122

BEGIN {$ Z=1; W=2; $}

IF X>0 THEN Z:=Z+1 ELSE BEGIN Y:=X+1; Z:=W END
{$ DEAD(Y); $}

END;
where DEAD(Y) sets that the current value of ¥ iz unused under
any application of B4 can be correctly transformed into
PROCEDURE B5; BEGIN Z:=2 END;

It is assumed that the following properties hold.

Ammotations added tc a basic program specify a covering
context. It is guaranteed that any actual application from the
oontext desoribed will be admissible by annotations, but some
admissible applications may be beyond the actual context.

Annotated programs are subjected %o concretizing trans-
formations as a whole. It means +that the t{ransformations oan
change not only the basioc program but their annctations as well.

Amnotations intended to specify the oontext ocan be
represented in the form of directives as well. Unlike assertion
being predicate oconstraints on admissible . memory states,
anmotation~directive can be either a statement that will ohange
current memory state every time the anncotation is reached during
possible exeocuiion of the program amnotated [10] or name of a
coneretizing transformation allowed for application at the
corresponding ammotated program point by the context [3].

Belov an gxample of annotated Pascal-function which computes

z (—1)1x21+1/(21+1)! is presented. The example illusirates how
agsertions and directives can be used tc form itracing algorithm
which gathers some information about program execution to verify
its correctness.

FUNCTION E6 (X,E:REAL):REAL;

VAR A,B,C,D,S5:REAL; {$ I:INTEGER; $}
{$ PUNCTION P (X:REAL;N:INTEGER):REAL;

BEGIN IF N=0 THEN P:=1 ELSE F:=P(X,N-1)*X END;
FUNCTION F (N:INTEGER):INTEGER;

BEGIN IF N=0O THEN F:=1 ELSE F:=F(N-1)*N END;
FUNCTION ELEM (X:REAL; N:INTEGER):REAL;

BEGIN ELEM:=P(-1,N)*P(X,2%N~1)/F(2*%N-1) END;
PUNCTION SUM (X:REAL;N:INTEGER):REAL;

VAR I:INTEGER; S:REAL;

123

BEGIN S:=0; FOR I:=1 TO N DO S:=S+ELEM(X,I); SUM:=S END;
$}
BEGIN A:=-2; B:=0; C:=X; S:=X; D:=-8QR(X); {$ I:=0; $}
WHILE ABS(C)>E DO
BEGIN {$ A=S*I-2; B=2*I*(2%I+1); C=ELEM(X,I);
S=SUM(X,I); ABS(C)>E; $}
A:=A+8; B:=B+A; C:=C*D/B; S:=8+C; {$ I:=T+1; $}
END; {$ S=SUM(X,I); ABS(ELEM(X,I))<=E; $} E4:=
END;

Model for amnotated programming

A program model described below is based on large-scale
program schemata that covers a broad class of programs and their
transformations [5, 6].

Let 8 = {8} be a set of memory states such that for any state
8eS a partition of the set of all variables V = {v} into two
sets 4(s) and I(s) of accessible and {naccessible variables,
respectively, is given and for every accessible ved(s) its value
g(v) is defined. Let 31 and 52 be two memory states. s1 and 52
are equal on a 8et of the variables W<V if for any ve W either
si(v) = sg(v) or veI(s’)nI(sZ). s’ expands s° (denoted Dby szs
51) it s1 and 52 are equal on the set A(sz).

A program ® is a tuple (g,f,p,T,a,d) which consists of

(1) a flowgraph g = (X,U,xo,yo), where x eX 1s the eniry
statement having no ingoing arcs (i.e. IN(x)= $) and only
one outgoing arc denoted by U (i.e. GUT(XO) {uo}) and yOEX iBs
the exit statement havzng no outgoing aros (i.e. OUT(yO) =F 3},
and for every arc u = (x ,x YeU the functions souwrce{u) = x1 and
target (u) = x° are defined;

(2) a function of memory transformation £ : X=(S=5);

{(3) a function of control trangfer p : X=(5=U);

(4) argument and result functions a,r: X=(S=2');

(5) applicability predicate 4 : X=(S={true,false}),
such that for any veV, x¢X and s,s ,5°¢S the following
properties hold:

(1) the memory states s and f(x)(s) are equal on the set
V\r(x)(s);

124

(2) if s! and &° are equal on a(x)(s1) then d(x)(s1)
a(x)(s%), px)(s!) = p(x)(s®), ax)(s!) = ax)(s?), r@)(s")
r(x)(sa) and the memory states r(x)(s1) and I(x)(sz) are equal
on the set r(x)(s');

(3) if I(s)na(x)(8) # ¥ , then d(x)(s) is false;

(4) a(xy)(s) = A(£(x5)(s)), alyy)(s) = @ and for every
xe(xo,yO} the memory states 5 and £{x)(s) are equal on the set
A(f(x)(8));

(5) p(x)(8) is an arc u outgoing from x, i.e. source(u) = x.

In other words, for any x the funotions f(x), a(x), r(x),
p(x) and d{(x} desoribe semantics of the statement x. The
execution of x at a given memory state = terminates normally if
d(x)(s) is true, and resulis in defining the new memory state
£(x)(s) and the new exeocuted statement target(p(x)(s)). During
the execution current values of wvariables vea(x)(s) are used and
new values are assigned to variables ver(x)(s). For example, if
X ig the statement IF V1> O THEN V2:=1/(V3-1) ELSE V4:=1/(V5+1)
and 51 and 52 are two memory states such that 31(V1}>0, 31(V3)=
=1, 82(V1)<0 and 5°(V5) # -1, then a(x)(s') = {V1,V3}, r(x)(s')=
= {V2}, a(x)(s®) = {V1,¥5}, r(x)(s®) = {V4}, d(x)(s®) is true
and d(x)(s1) is false.

The program % computes funciion T :S»8 defined by the
following rules. The value of the function for a given memory
state s, is defined (% is applicable to s;) and equal to s, if
there is a finite sequence seq(m,s,) = (X, = xo, so, up, x1, 51,
u1,...,xn, 5n,up.xn+7= ¥o) called an ezecution sequence of T on
s, such that g = £(x5) (84)s 8, =f§y0)gsn) and for any i the
following properties hold: d(xl)(sl"q) is true, st =
f(xi)(si_1), ul = p(xi)(sia1) and xt = target(ui'1). If there is
no finite execution sequence aeq(w,s1) then ® is {napplicable to
s, and the value T(s,) is undefined. If the value %(s,) is
defined then the variables vea(xo)(s1) are called the arguments
of %(51).

Let ©' and T° be two programs. 7! generalizes %2 if for any
memory siate 52 which %2 is applicable %o, there 1is such a
memory state s' that ' 1is equal to 5% on the set of arguments
of wg(ug), % is applicable to 8! and w2(32)4%1(s1). ! and w2
are equivalent programs 1f they compute the same function.

il

125

Let a nonempty set of objeots called annotations be given. It
is assumed that the set is divided into two disjoint subsets:
aagertiona E = {e} and directives Q = {q}. Bvery assertion echE
iz g predleate on 3. A memory state s is said to be admtssidble
with respect to e, denoted s«e, if e(s) is true. It 1is assumed
that E contains minimum and maximum elements 1 and + such that
any memory state is admissible with respect to + and
inadmissible with respect %o 1. Every directive qeQ is a
statement on S. In other words, the functions f, a and r and
the predicate d of any program are extended on the set Q. It 1is
assumed that Q contains an t{dentity directive gq, such that
qo(s)=s, a(qO)(s)=r(q0)(s)=¢ for any s¢S, and for any s€5 and
any WsV there 1s such a directive qs weQ that for all s1eS the
following three properties hold: a(qs W)(s V=@, r(qs W)(s =W
and s and f(qs w)(s) are equal on W .

Annotated program % is a triple (%W,m,t) where ™ is a program
on which %1 is based, m and t are annotating functions which
attach to every arc u of T some assertion m(u)eE and directive
t(u)eQ. Like basic programs, any annotated program % computes
a function T :S=S. The function is defined by the rollowing
rules. For a given 84€S the value T (51) is defined (% is
applicable to s,) and equal to 52 if there is a finite sxecution

sequence seq('n:1,s1 (x =Xg» s ,up, go, x1, "1, u1, st ,...,xn

sn, un, st R xn+1 ~y0) such that so = I(xo)(s)y B4= f(yo)(s)
and for any i the following properties hold. d(xg)(s 1) and
a(th) (3 are troe, sl - L)(s’L 1), = pxh)(s 11y, 2t =
target(ui), BT m(u Jand s = t(u)(s }. Thus, the equivalence
and generalization relations are defined on the set of all
armotated and basic programs.
For example, the annotated function
FUNCTION POWER1 (X:REAL; N:INTEGER):REAL;
BEGIN {$ N:=5; $} Y:=1;
WHILE N>O DO BEGIN WHILE NOT ODD{N) DO
BEGIN N:=N DIV 2; X:=BQR(X) END; N:=N-1; Y:=Y*X
END; POWER1:=
END
is equivalent {o the basic function
FUNCTION POWER2 (X:REAL; N:INTEGER);

126

BEGIN Y:=SQR(SQR(X))*X; POWER2:=Y END
generalizes the amnotated funotion
FUNCTION POWER3 (X:REAIL;N:INTEGER);

BEGIN {$ N=5; $} POWER3:=SQR(SQR(X))*X END
but is not equivalent to it.

Transformation machine for program concretization

The class of correct transformations of annotated programs
covers various kinds of work with basic programs. It contains
both all equivalent +transformations and & number of such
nonequivalent transformations which specialize or generate a
basic program to be transformed, in particular partial
evaluation.

So, the approach permits specializing and generalizing
trangformations of basic programs to reduce to equivalent
transformations of amnotated programs and to employ for their
investigation equivalent transformation techniques developed in
terms of program schemata theory [12].

Another advantage of the approach outlined above is the
possibility to perform global transformaticons of basic programs
by iterative application of elementary t{ransformations of
annotated programs.

To construct amnotated program transformation tools, we may
make use of the concept of an abstract device which has
elementary transformations as its instruction set and is called
a transformation machine [13].

Various processes of correct transformations of annotated
programs seem to have a relatively small number of underlying
elementary transformations being correct in the class of all
annotated programs. Thus, it is possible to develop a frans-—
formation machine (TM), whose data and instructions are the
annotated programs and their transformations, respectively [14].
Transformations used as TM instructions are of the three types:
(1) instructions for moving active points about the programs
processed; they make one or few points of the program accessible
for transformations; (2) control instructions io express higher
level +transformation rules in terms of lower ones; (3)

127

elementary transformations which are rules of correct
transformations of amnnotated programs which alone are able to
modify the program processed.

Thus unlike the transformation machine deseribed in [13], TM
employs no instructions whose application correctness depends
not only on the fragment transformed , but on program as a
whole. So, every program in the TM instruction language is a
program processor,i.e. it defines a ocorrect transformation of
any annctated program.

The set of all elementary transformations of TM is subdivided
into four subsets: property and schematic transformations to be
outlined below, elementary 'transformations which reflect the
semantics of language constructions (e.g. CASE const OF const:
statement; Bequence END => Biatement) and elementary
transformations that originate from object domain laws (e.g.,
1+2=>3; exp*=>exp; exp/0 =>error-division-by-zeroc).

The subset of the schematic transformations includes removing
and inserting inacoessible fragments; removing and inserting
useless computations; replacing the terms aoccording to their
properties; replacing the variables; deadlock standardization;
copying the fragments and pasting copies together; folding and
unfolding for fumctions and procedures,remcving and inserting
unessential branches.

Property transformations are intended to generate new
annotations by extracting information from a basic program
constructions, to propagate information taking into account the
property modification which originates from a relevant language
consiruction and to wupdate annotations through the new
information logically inferred from current annotations.

The transformation implemented by TM ocan be either épplied
automatically or as programmer-guided manipulation of annotated
programs. This process may involve significant system—programmer
interactions.

TM instruction language also allows writing procedures to
define more oomplex rules in terms of elementary ones and
contains a Bet of built-in prooedures. For example, there are
built-in procedures for data flow analysis for the extraction of
such properties as equality of terms, ranges of variables and a

128

number of properties which can be desoribed by finite sets of
predicates. Different strategies of program transformations can
be expressed in the instruction language as procedure with
transformations being formal parameters. For example, there are
built-in procedures to realize algorithms of data flow analysis,
to oconvert varicus constructions of annotated program into
canonical forms, for logical inference and 80 on.

Instruction set of TM must be extensible. But programmer must
be able to prove the correctness of added basic transformations.
So, there is a great interest 1in oonstructing such a
metamechanism which assists the programmer with extension of
instruction set of TM.

Tools for program concretization

The transformation approach described above enables us 1o
construct program iransforming tools of various types. 4in
example is a program transformer that realizes a collection of
connected program processors and is used as technological module
in the programming environment. Also, the implementation is
possible of the 8o-called concretization systems being an
integrated device for constructing program concretizators.

With respect to main oriteria of program quality, among
program concretizators the following types of tools ocan be
distinguished.

Source—-to-gource optimizers. They aim at improving basic
programe in oconventional for the optimizing compiler way, but
they transform programs on sBcurce language level and take into
account the parameters of both compilation and execution
environment.

Conoretizators making amnctated programs more olear and self
descriptive. They annotate program by assertions on its semantic
properties (such as invariants for term equality, ocontrol fiow
graph and so on), improve the program structure by renaming
objects, inserting descriptions, stc.

Instrumentation tools. They make debugging version of a
source program by adding basio language statements whioh test
program properties deseoribed in the annotations.

129

Verification tools aimed at a static check of a source
annotated program for correctness and supplementing it with
annotations which present discrepancies discovered in the
program. For example, the tools ocan elicit the so-called
implaugibility properties (redundant actions, non-initialized
variables, infinite execution, useless objects, over-complicated
data organization and etc.) due to certain discrepancies between
the program text and the executione which it represents; a test
for implausibility permiis static detection of some dynamic
errors and formal deteotion of some informal errors [15].

Reducers. They eliminate redundant obJeots and constructions
from a source annotated programs. Reducers are aimed at
improving a program given according to all main qualitative
oriteria by way of the maximal use of the information ocontained
in its annotations.

It should be noted that some conventional tools in whioch
program processing does not always terminate or goes beyond ihe
limits of a basic language can be replaced by concretizators as
well. For instance, instead of an interpreter, the programmer's
environment may utilize a oconoretizator whioh performs a basio
program from transformations of +the program annotated and
constructs the evaluation +trace in the annotations having
user-defined form. Other concretizators of annotated programs
can be used as tools for partial evaluation and specialization
of basic programs.

Conoretization systems [3] are based on the i{ransformation
machine oconcept and support operational environments ensuring
safe and rapid programming of a variety of program processors,
as well as their application in combinations usually impossible
(e.g., to optimize the debugging version of a source program).

Reliability of +tools implemented by means of the
coneretization systems is provided by applying only such
transformations that preserve the meaning of the program
processed. The language level for writing transformation tools
is getting higher, which contributes to a greater automation of
program development. It should be noted that tools can be
extended and implement self-descriptive processes of program

130

transformation (the history of development is presented “y a
sequence of applied transformations).

In the environment supported by a concretization system it
seems practical to create experimental +tools for program
transformation as well as tools for ‘"single® and “individual®
applications, i.e. tools constructed to transform a specific
program or designed for one programmer.

If basic and implementation languages of concretization
gsystem are the same, mutual applications of program processors
will be possible which would provide us with the opportunity to
make a compiler from an interpreter, a compiler generator from a
partial evaluaitor and other applications usually considered as
motivations for partial evaluation [7.8].

Conclusion

Usually process of program development by successive
application of transformations starts with specification ({ that
is a formal statement of a problem or its solution } and ends
with an execufion program. In the paper, an attempt is made to
formulate tools and techniques of annotated programming, whereby
a general-purpose program can be annotated by known information
about a specific context of iits applications and correctly
transformed into a specialized program which is equivalent to
the original on the oontext-defined ranges of inputs and outputs
and is better than it by quality measure given by the context.

Tools and techniques of annotated program transformations can
be used for partial evaluation, compiling, program generation
(including compiler generation), and metaprogramming without
order-of-magnitude loss of efficiency.

References

1. Ershov A.P. ATPHA - an automatic programming system of
high efficiency, J.ACM, vol.13, N 1, 1966, p.17-24.

2. Kennedy K.N. A survey of compiler optimization.- In:
Program PFlow Analysis: Theory and Applications, Englewood
Cliffs, Prentice-Hall, 1981, p.5-54.

131

3. Kasyanov V.N. OQOptimizing {ransformations of programs,
Nauka, Moscow, 1988.- 336 p. (in Russian).

4. Ershov A.P. The transformational approach in software
engineering, In: Software Engineering, Abstraois of the reports
to the All-Union Conference, Plenary sessions and general
material, Institute of (ybernetics, Ukrainian Academy of
Soience, Kiev, 1979, p.12-26.

5. Partsh H., Steinbruggen R. Program transformation systems,
ACM Comput. Surveys, vol.15, N 3, 1983, p.199-236.

6. Feather ¥.S5. A sui'vey and classification of some program
transformation approaches and techniques, In: Program
Specification and Transformation, North-Holland, Amsterdam,
1987, p.165-195.

7. BErshov A4.P. On the partial oomputation principle,
Information Processing Letters, vol.6, N 2, 1977, p.38-41.

8. New Generation Computing, Special Issue: Seleoted Papers
from the Workshop on Partial Evaluation and Mized Computation,
vol.6, Nos. 2,3, 1988.

9. Kasyanov V.N. Practical approach to program optimization,
Preprint N 135, Computing Center, Siberian Branch of the USSR
Academy of Sciences, Novosibirsk, 1978.— 43 p. (in Russian).

10. Kaey(mov V.N. Amotated program transformations, In:
Leoture Notes in Computer Science, vcl.405, 1989, p.171-180.

11. Kasyanov V.N. Basis for program optimization, In: Proo.
IFIP Congress 83, North-Holland, Amsterdam, 1983, p.315-320.

12. Brshov A.P. Theory of program schemata, In: Proc. IFIP
Congress 71, North-Holland, Amsterdam, 1971, p.28-45.

13. BErshov A.P. The transformational machine: +theme and
variations, In: Lecture Notes in Compuier Science, vol.118,
1981, p.16 -32.

14. Rasyanov V.N., Sabelfeld V.K. Tools for program
transformations, In: Informatika-88: Actes du seminaire
Franco-Sovetique, INRIA, Roguencouri, 1988, p.89-100.

15. EKasyanov V.N., Pottosin I.V. Application of optimization
techniques to correctness problems, In: Constructing Quality
Software, Proc, IFIP TC 2 Working Conf., North-Holland,
Amsterdam, 1979, p.237-248.

