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Annotated programming is a method of program processing which 
takes into account program application information a priori 
known and conveyed in annotations. A model for annotated 
programming is described within whose framework mar4y kinds of 
practical work with programs (e.g. partial evaluation and opti- 
mization) can be performed. A transformatzon machine concept and 
some tools for annotated program transformations are considered. 

I n t r o d u c t i o n  

Transformation techniques are gaining in importance for both 

theoretical and technological programming. Systems of equivalent 

transfox~matlons have been conventionally used in the optimizing 

compilers [I-3] and are currently widely applied in mechanical 

aids for supporting the program development process [4,5]. The 

long-range objective of program transformation paradigm is to 

essentially improve the construction, reliability, maintenance 

and extendibility Of software. The current state-of-the-art of 

program transformation is still rather far from supporting these 

ambitious goals, and research continues along a variety of 

diverse paths [ 6 ]. 

In the paper, we outline transformational approach to program 

concretization, whereby a given general-purpose program can be 

correctly transformed into multitude of more qualitative 

special-purpose programs. A concretization transformation is 

aimed at improving a given program without disturbing its 

correctness in a given restricted and stable context of its 

applications. In addition to the restricted sets of program 

inputs and outputs some suitable criterion of program quality 

can be defined by program application context. For example, 
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memory, time or reliability may be considered as program quality 

criteria by the context given. 

According to the approach presented, any source program 18 

considered as a base for constructions of a number of different 

specialized programs. Every construction starts with the source 

program and an application context conveyed in formalized 

conmments ( annotations ). Some program annotations can be formed 

in parallel with the development of the source program, others 

are added by users and describe a specific context of source 

program applications. Then a series of concretizing trans- 

formations is applied to the annotated general-p~ose program ( 

either automatically or interactively with the user ), which 

results in a correct and qualitative specialized program. 

A well-known example of program specialization is the 

so-called partial evaluation (or mixed computation) of programs 

on partially given inputs [7]. Partial evaluation can be applied 

to compiling, program generation, including compiler generation 

and generation of a compiler generator, and metaprogramming 

without order-of-magnitude loss of efficiency [8]. 

C o n c r e t l z a t l o n  problem 

Investigations of transformation systems and their 

applications to various kinds of program manipulations show that 

during performing transfor~nations it is important to take into 

account information known about application context of program 

transformed, as well as to employ generalizi~ and specializing 

transformations which are nonequivalent. 

Unlike the equivalent transformations that preserve the func- 

tions calculated by programs transformed, generalizing trans- 

formation can convert a source program to such a result one that 

solves a more general problem than the source program (for 

example, function calculated by result program can be obtained 

from source program function by the addition of further 

parameters or results). Specialization is in some ways the 

complement of generalization. A well-known example of specia- 

lizing transformation is the so-called partial evaluation (or 

mixed computation) of programs on partially given inputs [7,8]. 
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similar to distinguishing optimizing transformations among 

all equivalent ones it is possible to distinguish among 

generalizing and specializing transformations the so-called 

concretizing transformations aimed at optimization of source 

program in a restricted and stable context of program 

applications [9]. Every concretizing transformation is aimed at 

improving the program given according to a given qualitative 

criterion ( e.g. memory, time or reliability) without disturbing 

the meaning of the program in a given restricted context of its 

application. 

Let us illustrate the concretization problem with an example 

of a simple Pascal-procedure El which computes in X the solution 

of linear equation system represented by a triangular matrix A 

and a vector B 

PROOEDURE El (A:MATRIX; B:VECTOR; VAR X:VECTOR); 

VAR I,K:INTEGER; Z:REAL; 

BEGIN X[I ] :=B[I ]/A[I ,I ] ; FOR I:=2 TO N DO BEGIN Z:=O; 

FOR K:=I TO 1-I DO Z:=Z+A[I,K]*X[K]; X[I]:=(B[I]-Z)/A[I,I] 

END END. 

If ES deals only with a diagonal matrix A and qualitative 

criterion is a program length then the procedure can be replaced 

by the following improved version of El 

PROCEDURE E2 (A:MATRIX;B:VEOTOR; VAR X:VECTOR); 

VAR I:INTEGER; BEGIN FOR I:=1 TO N DO X[I]:=B[I]/A[I,I] END. 

In another context, if the single goal of any application of 

El is to compute the first element of X, the following version 

of the procedure El is more qualitative with respect to all main 

criteria of program quality 

PROCEDURE E3 (A:~TRIX; B:VECTOR; VAR X:VEOTOR); 

BEGIN X [ I ] : : B [ 1 ] / A [ 1 , I ]  END. 

It should be noted that to our time most needs of 

concretizations are satisfied by using such universal tools of 

pro~ text construction as macro generators and editors. But 

the approach to automatization of concretizations is not 

convenient for programmers because it makes high demands to 

programmer~. Under the approach an end user must progranmme all 

specialization processes of its own program. 



120 

Concretlza~lon and c o m ~ l l l ~  

Assume that a given program, P, is to be run repeatedly on a 

range of inputs to produce a range of outputs. Similar to 

partial evaluation [ 8 ] we consider two-stage process: 

- at the first stage a context of applications of P is given 

to produce a specialized program which is equivalent to P on the 

ranges of its inputs and outputs and is better than the original 

P by the quality measure given by the context , 

- at the second stage the specific data values in the input 

range is given to produce the results from the output range. 

Note that in partial evaluation at the first stage only a 

part of the inputs is given~ and partial evaluation can be used 

for compiling, program generation ( including compiler 

generation ), metaprogramming without order-of-magnltude loss of 

efficiency. Sot applications of program conoretization include 

partial evaluation and its applications as well. 

Let us consider some examples of the application. 

General context-free parsing algorithms ( e.g., Earley' s 

parser ) are notoriously 81ow, whereas parsers for specific 

grmmmars are efficient enough to be a standard part of modern 

compiler technology. Concretization of a general context-free 

parser in context of a particular context-free grammar cant at 

least in principle, make dramatic improvements in efficiency. 

Suppose an interpreter I for some lang~mge L is given. The 

input to I is a program F and an input data to 2. The result of 

concretizing I to the given program P (i~e~ in the context of 

applications defined by P as input program of I ) will be a 

program that takes the same input data as P and is equivalent to 

P . Sot the eoncretization will trmmslate the program P from the 

language Z into the language output by the concretizator. 

Oonoretizators are pro~ systems that treat programs as 

data objects and can be used also to generate a program 

generator automatically from a given general-purpose program. 

Suppose now that the eoncretlzation process itself can be 

programmed, so there is a program S which transforms any input 

pair W a program P, a context C > into specialized version PC of 

the program P for the context C. Let also that S will be used 
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only to concretize the same fixed program Q as P, regardless of 

the the value of C. Then the result of concretizing the 

oonoretizator S is the progr~m SQ that transforms a context C 

~or Q into QC" For example, the following three cases are 

possible: 

- parser generator SQ , if Q is a general parser, O is a 

context-free grammar G and QC is a parser for L(G), 

- compiler generator S I , if Q is interpreter for some 

language L, C is a source program in the language Z and I c is a 

target program, 

- generation of a compiler generator S S , if Q is the 

concretizator S , C is an interpreter S for some language L, QC 

is compiler for the language L interpreted by I. 

Annotated programs 

The main idea of concretization is to take advantage of the 

known context in which only some program executions are 

admissible and only some of their results are used to tailor 

that program to the context, with the objective of realizing a 

more qualitative (in the meaning defined by the context) 

computation of the used results. But modern high-level languages 

do not have enough means of description of contexts of program 

applications. 

So, it is natural to pass ~rom program to program with 

annotations in which context information can be conveyed [9]. 

As a basic language let us consider a high-level language, 

for example, Pascal. The basic lan~e is assumed to be 

extended by adding the annotations which are formalized com~nents 

in the basic programs and relevant for the semantics of the 

program annotated. In particular, every annotation-assertion is 

evaluated and if it is false, the execution is inadmissible 

(beyond the context of program applications). So, annotations- 

assertions are intended to state certain properties of the 

program at its particular "places", and these properties can be 

used for solving problems of program conoretization. 

For example, the annotated procedure 

PROCEDURE E4; 
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BEGIN {~ Z: I ;  w=2; $} 

I F  X>O T H ~  Z :=Z+ I  ELSE BE~IN Y:=X+I  ; Z : :W 

{~ DEAD(Y); ~} 

END; 

where DEAD(Y) sets that the our~ent value of Y is unused under 

any application of E4 can be correctly transformed into 

PROCEDURE E5; BEGIN Z: =2 END; 

It is assumed that the following properties hold. 

Annotations added to a basic program specify a ooverlng 

context. It is guaranteed that any actual application from the 

context described will be admissible by annotations, but some 

admissible applications may be beyond the actual context. 

Annotated programs are subjected to concretizing trans- 

formations as a whole. It means that the transformations can 

change not only the basic program but their annotations as well. 

Annotations intended to specify the context can be 

represented in the form of directives as well. Unlike assertion 

being predicate oonstr~aints on admissible memory states, 

annotation-directive can be either a statement that will change 

current memory state every time the annotation is reached during 

possible execution of the program annotated [10] or name of a 

concretizing transformation allowed for application at the 

corresponding annotated program point by the context [3]. 

Below an example of annotated Pascal-function which computes 

~(-I )' is presented. The example illustrates how )ix2i+1/(21+I 
assertions and directives can be used to form tracing algorithm 

which gathers some information about program execution to verify 

its correctness. 

FUNOTION E6 (X,E:REAL) :REAL; 

VAR A,B,C,D,S:R2AL; {$ I:INTEGER; $} 

($ FUNOTION P (X:REAL;N:INTEGER) :REAL; 

BEGIN IF N=O THEN P:=I ELSE P:=P(X,N-I ),X END; 

FUNCTION F (N:INTEGER) :INTEGER; 

BEGIN IF N=O THEN F: =I ELSE F: =F (N-1) ~N END; 

FUNCTION Er,~ (X:REAL| N:INTEGER):REAL; 

BEGIN ~:=P(-I ,N),P(X,R'N-I )/F(2,N-I ) END; 

FUNCTION SUM (X:REAL;N:INTEGER) :REAL; 

VAR I:INTEGER; S:REAL; 
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BEGIN S:=O; FOR 1:=I TO N DO S:=S+~Lk"~(X,I); SUN:=S 
$} 

BEGIN A:=-2; B:=O; C:=X; S:=X; D:=-SQR(X); {$ I:=O; $} 

WHILE ABS (C) >E DO 

BEGIN {$ A=S*I-2; B=2,I*(2'I+I); C=MLN~(X,I); 

S=SU~(XlT); ABS(O)>E; $} 

A:=A+8; B:=B+A; C:=C*D/B; S:=S+C; {$ I:=I+1; $} 

mVD; {$ S=S~(Xll); ABS(~T~(Xll))<=E; $} ~.4:=S 

END; 

Model for  annotated programlng 

A program model described below is based on large-scale 

program schemata that covers a broad class of program8 and their 

transformations [5, 6]. 

Let S = {s} be a set of memory states such that for any state 

s~S a partition of the set o~ all variables V = {v} into two 

sets A(s) and I(s) of cccess~bZe and ~ncccess~b~e variables, 

respectively, is given and for every accessible v~A(s) its value 

s(v) is defined. Let s I and s 2 be two memory states, s I and s 2 

are eq~ or~ c~ 8et of the variables W~V if for any v~ W either 

sl(v) = s2(v) or v~(sl)nI(s2), s I e~x~ s 2 (denoted by s2~< 

s I) if s I and s 2 are equal on the set A(s2). 

A ~o~c~a % is a tuple (g,f,p,r,a,d) which consists of 

(I) a ~'~o~Gph g = (X,U,xo,Yo) , where Xo~X is the erL~Py 
statement having no ingoing arcs (i.e. IE(Xo) = ~ ) and only 

one outgoing arc denoted by u 0 (i.e. 0Ur(x0) = {Uo}) and Y0~X is 

the e~ statement having no outgoing arcs (i.e. 0UT(y O) --~ )I 

and for every arc u = (x I ,x2)~U the functions source(u) = x I and 

target(u) = x 2 are defined; 

(2) a function of ~or~ tt'c~nsJ'orw~tf.on f : X~(S~S); 

(3) a function of cont~o~ tr'ons2"eT" p : X~(S~U); 

(4) ~ n t  and resu~ functions a,r: X~(s~2V); 

(5) G~pZ~coD~ty predicate d : X~(S~{~r~le,false}), 

such that £or any vcV, x~X and s,s I,s2~S the following 

properties hold: 

(S) the memory states s and f(x)(s) are equal on the set 

v\~(x)  (s) 
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(2) if s I and s 2 are equal on a(x)(s S) then d(x)(s I) = 

d(x)(s2), p(x)(s I) = p(x)(s2), a(x)(s I) = a(x)(s2), r(x)(s I) = 

r(x)(s 2) and the memory states f(x)(s I) and f(x)(s 2) are equal 

on the set r(x)(s 1); 

(3) if l(s)na(x)(s) ~ ~ , then d(x)(s) is false; 
(4) a(Xo)(S)= A(f(Xo)(S)), a(Yo)(S) = ~ and for every 

x~{xO,Y O} the memory states s and f(x)(s) are equal on the set 

A(f(x) (s)); 

(5) p(x)(s) is an arc u outgoing from x, i.e. source(u) = x. 

In other words, for any x the functions f(x), a(x), r(x), 

p(x) and d(x) describe semantics of the statement x. The 

execution of x at a given memor~j state s terminates normally if 

d(x)(s) is if'de, and results in defining the new memory state 

f(x) (s) and the new executed statement targe~(p(x) (s)). During 

the execution current values of variables v~a(x)(s) are used and 

new values are assigned to variables v~r(x)(s). For example, if 

x is the statement IF VI> 0 TH~g V2:=I/(V3-1 ) ELSE V4:=I/(V5+1 ) 

and s I and s 2 are two memory states such that s I(VI)>0, s I (V3)= 

=I, s2(Vl)~<O and s2(VS) ~ -I, then a(x)(s I) = (VI,V3}, r(x)(s I)= 

= (v2}, a(x)(s 2) = (vl,vs}, r(x)(s 2) = (v4}, d(x)(s 2) is true 

and d(x) (s I ) is false. 

The program % computes function % :S~S defined by the 

following rules. The value of the function for a given memory 

state s I is dejected (% is cL1ypZ~cgzble to s I) and equal to s 2 if 

there is a finite sequence seq(%,s I ) = (x o = x °, s c, u °, x I , s I , 

u I ,... ,x n, sn,un,x n+1= yo ) called an ezecut~o~ sequence of ~ on 

s I such that s O = f(x O)(s I), so =f(Yn)! sn) and for any i the 

following properties hold: ~d(xi)~s I-! ) is ~rue, s i = 
f(xi)(s i-I ), u i = p(xi)(s i-I) and x i = ~arget(u i-I ). If there is 

no finite execution sequence seq(%,s I ) then ~ is ~noppZ~ccbZe to 

s I and the value %(s I) is tyK~e~. If the value %(s I ) is 

defined then the variables v~a(XO)(S I ) are called the G~gLm~nZ8 

of %(s I ). 
Let %1 and %2 be two programs. %1 gene~c]~zes %2 if for any 

memory state s 2 which %2 is applicable to, there is such a 
memory state s I that s I is equal to s 2 on the set of arguments 
of ~2(s2), %1 is applicable to s I and %2(s2)~<%1 (s I ). %1 and %2 

are equipment programs if they compute the same function. 
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Let a nonempty set of objects called o2note~on8 be given. It 

is assumed that the set is divided ~nto two disjoint subsets: 

Gsse,pt~on8 E = {e} and d~Pect~ue8 Q = {q}. Every assertion e~E 

is a plmdleate on S. A memory state s is said to be sdm~ss~ble 

with respect to e, denoted sse, if e(s) is ~rue. It is assumed 

that E contains minimum and maximum elements ~ and r such that 

any memory state is admissible with respect to l and 

inadmissible with respect to ~• Every directive qEQ is a 

statement on S. In other words, the functions f, a and r and 

the predicate d of any program are extended on the set Q. It is 

assumed that Q contains an ~dent~ty directive qo such that 

q0(s)=s, a(qo)(S)=r(q0)(s)=~ for any s~S, and for any s£S and 

any WsV there is such a directive qs,w~Q that for all s SoS the 

following three properties hold: a(qs,w) (s I )=@, r(qs, W) (s I )=W 

and s and Z(qs,W)(sS) are equal on W 

Anno~e~e~ p~ogrGm %1 is a triple (%,m,t) where % is a program 

on which %1 is besed, m and t are annotating functions which 

attach to every are u of % some assertion m(u)¢E and directive 

t(u)~Q. Like basic programs, any annotated program 71 computes 

a function ?[I :S~S. The function is defined by the Zollowing 

rules. For a given s IES the value ~I (s i) is de~ned (%1 is 

eppZZoobEe to s I ) and equal to s o if there is a finite execution 

sequence seq(~1,sl) = (x°=xo,~ ° ,u °, s °, x I, ~I, u I, ;1 ,...,xn, 
sn, u n, sn, x n 1 =Yn) such that ~0 = f(xn ) (s I), s9 = f(yn)(sn) 

and for any i the following properties hold. I d(x~)(si-1~ and 
d(t(ui))(~i) are ~rue, ~i = f(x i)(~i-1), u i = p(x i)(s i-I), x i = 

Sarge~(u i-S ), ~is m(ui)and s i = t(ui)(~i). Thus, the equivalence 

and generalization relations are defined on the set of all 

annotated and basic programs. 

For example, the annotated function 

FUNOTION POWERI (X:REAL; N:INTEGER) :REAL; 

BEGIN {$ N:=5; $} Y:=I; 

WHII~ N>0 DO BEGIN WHILE NOT 0DD(N) DO 

BEGIN N:=N DIV 2; X:=SQR(X) END; N:=N-I; Y:=Y*X 

END; POWER1 : =Y 

END 

is equivalent to the basic function 

I~OTION POWER2 (X:REAL; N:INTEGER)| 
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BEGIN Y:=SO~(SQR(X))*X; POWER2:=Y END 

generalizes the annotated function 

FUNCTION POWER3 (X:REAL;N:INTEGER); 

BEGIN (8 N=5; $) POWERS:=SQR(SQR(X))*X END 

but is not equivalent to it. 

Trans fo rma t ion  machlue for program concre t l za t lon  

The class of correct transformations of annotated programs 

covers various kinds of work with basic programs. It contains 

both all equivalent transformations and a number of such 

nonequivalent transformations which specialize or generate a 

basic program to be transformed, in particular partial 

evaluation. 

So, the approach permits specializing and generalizing 

transformations of basic programs to reduce to equivalent 

tr~nsfor~nations of annotated programs and to employ for their 

investigation equivalent transformation techniques developed in 

terms of program schemata theory [12]. 

Another advantage of the approach outlined above is the 

possibility to perform global transformations of basic proglmms 

by iterative application of elementary transformations of 

annotated programs. 

To construct annotated program transformation tools, we may 

make use of the concept of an abstract device which has 

elementary transformations as its instruction set and is called 

a transformation machine [13]. 

Various processes of cor2ect transformations of annotated 

progrmms seem to have a relatively small number of underlying 

elementary transformations being correct in the class of all 

annotated programs, Thus, it is possible to develop a trans- 

formation machine (TM), whose data and instructions are the 

annotated programs and their transformations, respectively [14]. 

Transformations used as TM instructions are of the three types: 

(I) instructions for moving active points about the programs 

processed; they make one or few points of the program accessible 

for transformations; (2) control instructions to express higher 

level transform~ation rules in terms of lower ones; (3) 
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elementary transfor~nations which are rules of correct 

transformations of annotated programs which alone are able to 

modify the program processed. 

Thus unlike the transformation machine described in [13], TM 

employs no instructions whose application correctness depends 

not only on the fragment transformed , but on program as a 

whole. So, every program in the TM instruction lan~e is a 

program processor,i.e, it defines a correct transformation of 

any annotated program. 

The set of all elementary tr~Lnsformations of TM is subdivided 

into four subsets: property and schematic transformations to be 

outlined below, elementary 'transformations which reflect the 

semantics of language constructions ( e.g. CASE const OF const: 

statement; sequence END => statement ) and elementary 

transformations that originate from object domain laws (e.g., 

I +2=>3; exp*1 =>exp; exp/O =>error~-division-by-zero). 

The subset of the schematic transformations includes removing 

and inserting inaccessible fragments; removing and inserting 

useless computations; replacing the terms according to their 

properties; replacing the variables; deadlock standardization; 

copying the fragments and pasting copies together; folding and 

unfolding for functions and procedures,~emoving and inserting 

unessential branches. 

Property transformations are intended to generate new 

annotations by extracting information from a basic program 

constructions, to propagate information taking into account the 

property modification which originates from a relevant language 

construction and to update annotations through the new 

information logically inferred from current annotations. 

The transformation implemented by TM can be either applied 

automatically or as programmer-guided manipulation of annotated 

programs. This process may involve significant system-programmer 

interact ions. 

TM instruction language also allows writing procedures to 

define more complex rules in terms of elementary ones and 

contains a set of built-in procedures. For example, there are 

built-in procedures for data flow analysis for the extraction of 

such properties as equality of terms, ranges of variables and a 
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number of properties which can be described by finite sets of 

predicates. Different strategies of program transformations can 

be expressed in the instruction language as procedure with 

transformations beir~ formal parameters. For example, there are 

built-in procedures to realize algorithms of data flow analysis, 

to convert various constructions of annotated program into 

canonical forms, for logical inference and so on. 

Instruction set of TM must be extensible. But prograramer must 

be able to prove the correctness of added basic transformations. 

Soj there is a great interest in constructing such a 

metamechanism which assists the programmer with extension of 

instruction set of TM. 

Too l s  fo r  program concre~ lza t lon  

The transformation approach described above enables us to 

construct program transforming tools of various types. An 

example is a program transformer that realizes a collection of 

connected program processors and is used as technological module 

in the progran~ning environment. Also, the implementation is 

possible of the so-called conoretization systems being an 

integrated device for constructlr~ program oonoretizators. 

With respect to main criteria of program quality, among 

program ooncretizators the following types of tools can be 

distinguished. 

Source-to-source optimizers. They aim at improving basic 

programs in conventional for the optimizing compiler way, but 

they transform progrmms on source language level and take into 

account the parameters of both compilation and execution 

environment. 

Conoretizators making annotated programs more clear and self 

descriptive. They annotate program by assertions on its semantic 

properties (such as invariants for term equality, control flow 

graph and so on), improve the program structure by renaming 

objects, inserting descriptions, etc. 

Instrumentation tools. They make debugging version of a 

source program by adding basic language statements which test 

program properties described in the annotations. 
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Verification tools aimed at a static check of a source 

annotated program for correctness and supplementing it with 

annotations which present discrepancies discovered in the 

program. For example, the tools can elicit the so-called 

implausibility properties (redundant actions, non-initialized 

variables, infinite execution, useless objects, over-complicated 

data organization and etc. ) due to certain discrepancies between 

the progx~n text and the executions which it represents; a test 

for implausibility permits static detection of some dynamic 

errors and formal detection of some informal errors [15]. 

Reducers. They eliminate redundant objects and constructions 

from a source annotated prog1~ms. Reducers are aimed at 

improving a program given according to all main qualitative 

criteria by way of the maximal use of the information contained 

in its annotations. 

It should be noted that some conventional tools in which 

program processing does not always terminate or goes beyond the 

limits of a basic language can be replaced by concretizators as 

well. For instance, instead of an interpreter, the progr~ammer's 

environment may utilize a oonoretizator which performs a basic 

program from transfoxm~ations of the program annotated and 

constructs the evaluation tr~ce in the annotations having 

user-deflned form. Other concretizators of annotated programs 

can be used as tools for partial evaluation and specialization 

of basic programs. 

Conoretization systems [3] are based on the tr~ausformation 

machine concept and support operational environments ensuring 

safe and rapid programming of a variety of program processors, 

as well as their application in combinations usually impossible 

(e.g., to optimize the debugging version of a source program). 

Reliability of tools implemented by means of the 

concretization systems is provided by applying only such 

transformations that preserve the meaning of the program 

processed. The language level for writing transformation tools 

is getting higher, which contributes to a greater automation of 

program development. It should be noted that tools can be 

extended and implement self-descriptive processes of program 
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transformation (the history of development is presented by a 

sequence of applied transformations). 

In the environment supported by a concretization system it 

seems practical to create experimental tools for program 

tra~f01~ation as well as tools for "single" and "individual" 

applications, i.e. tools constructed to transform a specific 

program or designed for one programmer. 

If basic and implementation languages of concretization 

system are the same, mutual applications of program processors 

will be possible which would provide us with the opportunity to 

make a compiler from an interpreter, a compiler generator from a 

partial evaluator and other applications usually considered as 

motivations ~or partial evaluation [7,8]. 

Conclus ion 

Usually process of program development by successive 

application of transformations starts with specification ( that 

is a formal statement of a problem or its solution ) and ends 

withan execution program. In the paper, an attempt is made to 

formulate tools and techniques of annotated progranmming, whereby 

a general-purpose program can be annotated by known information 

about a specific context of its applications and correctly 

transformed into a specialized program which is equivalent to 

the original on the context-defined ranges of inputs and outputs 

and is better than it by quality measure given by the context. 

Tools and techniques of annotated program transformations can 

be used for partial evaluation, compiling, program generation 

( including compiler generation ), and metaprogram~ing without 

order-of-magnitude loss of efficiency. 
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