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I NTRODUCTI ON 

Program specialization [Dixon 71] seems to be a promising and powerful 

techniq~ that can lead to new program development methodology. 

By program specialization we understand constructing, when given a 

"general-purpose" program and some restriction on its usage, a more 

efficient "specialized" residual pFogram. Being optimized and simplified 

version of the original program, the residual program, however, must be 

equivalent to the original one when used according to the restriction. By 

specializer we understand a system that, given a program and a restriction, 

will produce a specialized version of the original program. 

Program specialization can be achieved by making use of different 

techniques, such as driving [Turchin 72], fold-unfold method [Burstall 77], 

partial evaluation [Futamura 71], [Beckman 7B], mixed computation 

[Ershov 78], [Bulyonkov 84], the analysis of computational configurations 

[Turchin 79], [Turchin 88], variable splitting [Sestoft 88], and arity 

raising [Romanenko 88]. 

The above techniques deal, for the most part, with two problems: 

control restructuring and data retyping (i.e. changing representation of 

data). 
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As far as the control restructuring is concerned, various 

specialization techniques differ in the extent to which the program is 

reorganized. 

In the case of monovariant specialization any control point in the 

original program Elves rise to zero or one control point in the residual 

program. 

In the case of polyvariant specialization a control polnt can give 

rlse to more than one control point in the residual program. 

In the case of monogenetlc specialization ~ny control point in the 

residual program is produced from a single control point of the original 

program. 

In the case of polygenetic specialization a control point in the 

residual program may be produced from several control points of the 

original program. 

As far as the data representation is concerned, varlous speclallzatlon 

techniques differ in the use they make of retyplng. 

Driving [Turchin 72] and the analysis of conflguratlons [Turchln 79], 

[Turchin 86], which deal wlth functional programs, can be classlfled as 

polyvariant polygenetic methods with retyping. 

Monovariant monogenetic techniques for imperative programs are studied 

in [Ershov 78]. Papers [Bulyonkov 84], [Barzdin 88] concern polyvarlant 

monogenetic specialization techniques for imperative programs. 

The transformational approach [Ershov 81], [Ostrovski 88] is believed 

to include, at least potentially, all conceivable techniques of program 

specialization, not excluding the polygenetic ones. 

Of course, the more powerful techniques tend to be rather expensive~ 

and it is difficult to make them completely automatic. Thus the choice of 

appropriate specialization techniques depends on the class of problems to 

be solved. 

An interesting application of speciallzers is compiler generation. It 

was found by Y. Futamura [Futamura 71] that interpreters can be converted to 

compilers by specializing a specializer wit~ respect to the interpreters. 

Several years later it was realized [Beckman 76] that a transformer of 

interpreters into compilers can be produced by speclalizlng a speclallzer 

with respect to a specializer. 

To put this approach into practice, we have to overcome the following 

difficulty. On the one hand, the specializer has to be sophisticated enough 
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t o  a c h i e v e  n o n - t r i v i a l  s p e c i a l i z a t i o n .  On t h e  o t h e r  hand,  t o  be 

s p e c i a l i z a b l e ,  t h e  s p e c i a l i z e r  c a n ' t  a f f o r d  t o  be t o o  c o m p l i c a t e d .  

The g r o u p  u n d e r  N.D. J o n e s  a t  Copenhagen u n i v e r s i t y  was t h e  f i r s t  t o  

overcome t h e  a b o v e  d i f f i c u l t y  [ J o n e s  85 ] ,  [ S e s t o f t  8 6 ] ,  [ S e s t o f t  8 8 ] .  S i n c e  

e x p e r i m e n t s  had  shown t h e  m o n o v a r i a n t  s p e c i a l i z a t i o n  t o  be  u n s a t i s f a c t o r y  

f o r  t h i s  a p p l i c a t i o n ,  t h e  s p e c i a l i z e r  had  t o  do t h e  p o l y v a r i a n t  

specialization. Again, the monogenetic specialization proved to be adequate 

for the purpose (despite there being a lot of problems that have to be 

dealt with by polygenetic specialization [Turchin 82], [Wadler 88]). 

The usefulness of retyping proved to be more problematic. It was found 

that retyping can be dispensed with at the cost of the residual programs 

having rather unnatural structure. Suppose, for example, that an 

interpreter is to be specialized with respect to a program. Since the 

interpreter is supposed to accept an arbitrary input program, the number of 

variables in this program cannot be known in advance. Thus the variable's 

values are likely to be represented in the interpreter as a single value 

assigned to one of the interpreter's variables. If the specializer is 

unable to split this variable, the residual program will use a single 

variable to represent all the values. A reasonable residual program, 

however, would keep each value in a separate variable [Sestoft 88]. 

To rectify the drawback, the author suggested that the Copenhagen 

specializer should be supplemented with an additional phase, whose purpose 

would be to do variable splitting [Romanenko 88]. In the case of a 

functional language, variable splitting reduces to increasing the number of 

functions' parameters, for which reason this additional phase was given the 

name arity raiser. As pointed out by T. Mogensen arity raising is just a 

special case of retyping, thus any arity raiser is a retyper. 

The arity raiser was found to improve the structure of residual 

programs without making the specializer excessively slow and intricate. 

The alternative to the arity raiser is to split variables on-line, 

i.e. at the time the residual program is being generated [Turchin 86], 

[Mogensen 88]. This approach, however, can result in a mammoth, sluggish 

specializer. 

A s]hort description of the ideas behind the arity raiser can be found 

in [Rom~menko 88]. The present paper gives a detailed account of the 

structure and principles of operation of an arity raiser dealing with 

programs in a subset of pure Lisp. 
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1.THE LANGUAGE MIXWELL 

In the following we consider programs written in the language Mlxwell, 

which is a small subset of pure Lisp and was used as the subject language 

in the Copenhagen speciallzer MIX [Sestoft 86]. Here is Mixwell's abstract 

syntax. 

pgm ~ Program 
fd ~ Fnl~f 
exp, e E Exp 
f ~ FName 
x E VName 

~ Atom 
E SExp 

pgm ::= fdl; ... fdn; 

programs 
function definitions 
expressions 
function names 
variable names 
Lisp atoms 
Lisp S-expressions 

fd ::= f(xl ..... x m) = exp 

exp ::= x I quote S I if exPo then expl else exP2 1 call f(exPl ..... exp m) 

I car(exp) i cdr(exp) [cons(exPl,exp2) [ atom(exp) I equal(exPl,exP2) 

: : =  ~ I (~1 " g2 ) 

A Mixwell program is a list of function definitions, the first 

function being the goal function. The goal function is to be called first, 

and inputs to the program are through the parameters of this function. 

The body of a function is an expression, which is constructed from 

variables appearing in the function's formal parameter list, from constants 

quote and operators car, cdr, cons, atom and equal (as in Lisp), 

condltlonals if and defined function calls call. 

The only data type is well-founded (i.e. non-circular) S-expresslons 

as known from Lisp. 

All primitive and defined functions, except the conditional if, are 

strict in all positions. All parameters are called by value. 

We use some "sintactlc sugar". The keyword call is omitted in cases 

where the name of the function being called Is different from the names of 

the primitive functions, quote ~ can be written as '~, cons(exPl,exp2) as 

exPl :: exp2 , equal(exPl,exp2) as exPl = exp2. Constants (~I " ($2 

.... (Sn " nil) ... )) can be written as ($I $2 "'" Sn )" 

2. SPLITTING A FORMAL PARAMETER 

Suppose the definition of function f in a program has the form 
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f( .... x k .... ) = exp. Then the following transformation will be referred to 

as the splitting of the function's k-th parameter. 

Let x' and x" be two variables different from all formal parameters of 

the function f. Then the splitting of x into x' and x" can be done in two 

steps. 

At the first step, the original definition of f is replaced with 

f( .... x',x",...) = exp[xk--gcons(x',x")] 

where exp[xk--->cons(x',x")] denotes the expression obtained from exp by 

replacing all occurrences of x k with cons(x',x"). 

At the second step, all calls of the function f in all function 

definitions are transformed, each call of the form call f( .... e k .... ) being 

replaced with call f( .... car(ek) , cdr(ek) .... ). 

Thus, the original variable x k is replaced by two new variables x' a/Id 

x" containing enough information for the value of Xk, if needed, to be 

reconstructed. To put it more exactly, the value of x k can be obtained by 

evaluating the expression cons(x',x"). 

The fact that the formal parameter x of the function f is to be split 

into two variables x' and x" will, for the brevity's sake, be written as 

f(x ----)x" :: x"). 

Example. Consider the program f(x) = g(x :: x); g(u) = cdr(u);. By 

g(u ---) u]L :: u2) we get the program f(x) = g(x :: x); g(ul,u2) = cdr(ul :: 

u2);. Then, by splitting the argument in the calls of g we get f(x) = 

g[car(x :: x),cdr(x :: x)); g(ul,u2) = cdr(ul :: 112);. 

This program can be locally optimized, which results in f(x) = g(x,x); 

g(ul,u2) = u2;. Now we see that variable splitting is capable of producing 

parameters whose values are certain not to be needed. Such parameters can 

be recognized by a kind of backward analysis [Hughes 88] and eliminated. In 

the above program we can remove the parameter ul of the function g, which 

gives the program f(x) = g(x); g(u2) = u2;. 

Thus, the principal use of variable splitting consists in paving the 

way for other transformations such as local optimization and elimination of 

unneeded parameters, the latter being, in a sence, s kind of "garbage 

collection at compile time". 

3 .  CONDITIONS OF THE VARIABLE SPLITTING CORRECTNESS 

The program transformation described above can be incorrect. For 
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example, after g(u ---~ul  :: u2) for the program f(x) = g('a); g(u) = u; we 

get f(x) = g(car('a),cdr('a)); g(ul,u2) = ul :: u2;. 

It is evident that the transformed program is not equivalent to the 

original one, because the original program terminates, with the result 

being the atom 'a, whereas the transformed program fails to apply car or 

cdr to the atom 'a and terminates abnormally. Thus we come to the 

conclusion: 

Before splitting a parameter, we must make sure that, 

when the program is run, it is impossible for the para- 

meter's value to be an atom! 

Hence, to split a variable, we need to have a description of the 

structure of its values. Such descriptions will be referred to as types of 

variables. 

4.ANALYSIS OF RUN TIME TYPES 

To describe the structure of values to be taken by a variable, we use 

the following set of types. 

t e Type types 
e Atom Lisp atoms 

t ::= any J atom(A) I cons(tl,t 2) i 

We assume the set of types to be equipped with reflexive partial 

orderin E s recursively defined by the followin E rules: 

(i) z s t -~ any for all types t. 

(ii) cons(t~,t~) -~ cons(t~,t~) if t~ -~ t~ and t~ -~ t~. 

If t'-~t" and t'~t", the type t" is said to be more general than the 

type t'. 

The set of types is a lattice, as for all types t',t"eType there exist 

their least upper bound t' Ut" and their greatest lower bound t" Rt". Each 

set of types Te~(Type) has its least upper bound UT. Thus the set of types 

is a pointed continuous partial ordering (CPO) with the bottom ± 

[Schmidt 86]. It can be easily seen that the set of types has no chains of 

infinite height. In addition, each finite T~P(Type) has its greatest lower 

bound FIT. 
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A t y p e  r e p r e s e n t s  a s e t  o f  S - e x p r e s s i o n s .  More s p e c i f i c a l l y ,  l e t  us 

d e f i n e  an  " a b s t r a c t i o n "  f u n c t i o n  Abs mapping s e t s  o f  S - e x p r e s s i o n s  i n t o  

t y p e s .  Abs i s  d e f i n e d  i n  t e rms  of  an  a u x i l i a r y  f u n c t i o n  Abs '  mapping 

S - e x p r e s s i o n s  i n t o  t y p e s .  

Abs ~ P(SExp) --->Type 
Abs' ~ SExp --)Type 

Abs[E] = U{Abs'[$] 1 $~E} 
Abs'[M] = atom(M) 
Abs'[($' . $")] = cons[ Abs'[$'], Abs'[$"] ) 

Let us define a "concretization" function Co reconstructing the set of 

S-expresslons from a type: 

Co ~ Type --)~(SExp) 

Co[any] = SExp 
Co[atom(M)] = {M} 

Co[consCt',ta)] = {($' $") 1 $'~Co[t'] and $"~Co[tn]} 
Co[±] = {} 

The following relations hold: Abs[Co[t]] = t and E g Co[Abs[E]]. 

Now let x be a variable in a program. The problem is to find a type t 

such that $~Co[t] for all $ that can be taken as value by x when the 

program is run. It can be done by abstract interpretation [Jones 86] of the 

program, which amounts to performing the pro~am's computations using 

abstract values in place of the actual ones. 

[Omi t t ed :  t h e  t y p e  a n a l y s i s  a l g o r i t h m . ]  

The t ype  a n a l y s i s  above can ,  i n  a s e n s e ,  be r e g a r d e d  as  a m o n o v a r i a n t ,  

m o n o g e n e t l c  v e r s i o n  of  t he  " c o n f i g u r a t i o n  a n a l y s i s "  as  u s e d  i n  t h e  

S u p e r c o m p i l e r  [ T u r c h i n  89] ,  [ T u r c h i n  86] .  

S.USING TYPE INFORMATION FOR VARIABLE SPLITTING 

The v a r i a b l e  s p l i t t i n g  t r a n s f o r m a t i o n  a s  d e s c r i b e d  above s p l i t s  o n l y  

one o f  a f u n c t i o n ' s  p a r a m e t e r s .  However, t he  i n f o r m a t i o n  p r o v i d e d  by an  

a rgument  t y p e  d e s c r i p t i o n  i s  s u f f i c i e n t  f o r  a l l  f u n c t i o n ' s  p a r a m e t e r s  t o  be 

s p l i t  a t  once .  

Suppose t h e  t ype  t a s s i g n e d  to  a v a r i a b l e  x c o n t a i n s  some o c c u r r e n c e s  

of  t h e  t y p e  a n y ,  which w i l l  be r e f e r r e d  to  as  "gaps" .  

I t  i s  o b v i o u s  t h a t  a l l  v a l u e s  o f  t he  v a r i a b l e  x c a n  be d i f f e r e n t  o n l y  

a t  p l a c e s  c o r r e s p o n d i n g  to  t he  gaps ,  and must be c o n g r u e n t  a t  a l l  o t h e r  
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places. Therefore, if the type t contains m gaps, any S-expression @~Co[t] 

is completely determined by its parts corresponding to the gaps in the type 

t. This enables the variable x to be retyped by replacing it with m new 

variables, which are to be assigned the parts of the variable's values 

corresponding to the gaps. 

For example, if a function's parameter x has the type cons(cons(any, 

atom(a)), any), then x can be represented by two new parameters ul and u2, 

in which case all occurrences of x in the function's body must be replaced 

with the expression (ul :: 'a) :: u2. 

[Omitted: the algorithm for splitting parameters according their types.] 

8.CODE DUPLICATION RISK 

Example. Consider the program f(z) = swap(unzip(z,'nil,'nil)); swap(v) 

= cdr(v) :: car(v); unzip(u,x,y) = if u='nil then x :: y else unzip(cdr(u), 

car(car(u)) :: x, cdr(car(u)) :: y);. 

Any result produced by the function unzip is of the type 

cons(any, any), hence this type can be assigned to the parameter v of the 

function swap. Thus we can perform swap(v --~vl :: v2). But this gives rise 

to two copies of the expression unzip(z,'nil,'nil), which is bad for two 

reasons. First, duplicating expressions can result in huge programs being 

produced. Second, code duplication can lead to repeated evaluation of 

expressions. Both of the problems arise in the above example. 

The risk of code duplication and repeated evaluation can be avoided by 

following the principle of selector non-introduction: 

I A l l  selectors produced by variable splitting must 

be eliminable by means of local optimization. 

What is the drawback of the type analysis described above? The point 

is that this analysis tells us whether a selector in the program is certain 

to be applicable at run time, whereas we need to know whether the selector 

can he applied symbolically at the time the program is being optimized. 

The feasibility of the simbolic application of a selector to the 

expression exp, obviously, depends upon the structure of the expression 

itself, rather than on the structure of the result to be produced by exp at 

run time. 
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If exp has the form quote (~' ~"), the symbolic application is 

feasible, car(exp) being reducible to quote ~', and cdr(exp) being 

reducible to q u o t e  E". 

If exp has the form exp' :: exp", the symbolic application is 

feasible, car(exp) being reducible to exp', and cdr(exp) being reducible to 

exp". 

On the other hand, if exp has the form if exPo then exp' else exp" or 

call f(exPl . . . . .  exPm), it is impossible to make the symbolic application 

without code duplication. 

If exp is a variable x, the symbolic application may seem to be 

unfeasible. Nevertheless, splitting the parameters throughout the program 

may result in the variable x being split into a new expression, which may 

enable the symbolic applicaton. 

Example. Consider the program f(x) = g(x :: x); g(u) = h(u); h(v) = 

cdr(v);. After g(u --> ul :: u2), we get f(x) = g(x,x); g(ul,u2) = h(ul :: 

u2); h(v) = cdr(v);. Now, after h(v --) vl :: v2), we get f(x) = g(x,x); 

g(ul,u2) = h(ul,u2); h(vl,v2) = v2;. 

7.ANALYSIS OF OPTIMIZATION TIME TYPES 

As (:an be seen from the above, we need to know the structure of 

symbolic values assigned to variables at the time the program is being 

optimized, rather than the structure of ordinary values assigned to 

variables at the time the program is run. Thus, what we are really 

interested in are the optimization time types, rather than the run time 

types. 

To find them, we can use the same set of types as has been used for 

analyzing the run time types. 

Suppose we have a program defining functions fl ..... fh" Let 

F = {fl ..... fh }, and, for each f~F, xf,j be its j-th parameter, a(f) be 

its arity, and bodyf be its body, so that the definition of f has the form: 

f(xf, I ..... xf, a(f)) = bodyf 

Let 8 e Env = VName --, Type be an environment assigning a type to each 

parameter of a function. Let ~ • ArgDescr = F --~ Env be an argument type 

description assigning types to each function's parameters. Let 

p ~ ResDescr = F --> Type be a result type description assigning a type to 

each function' s result. 
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A l l  t h e  s e t s  a b o v e  a r e  e q u i p p e d  w i t h  r e f l e x i v e  p a r t i a l  o r d e r i n g s  a s  

f o l l o w s :  

Env: 
ArgDescr: 
ResDescr: 

8"s8" ~ Vx~VName 8'(x) s 8"(x) 
~'s~" ~ VfeF ~'(f) s a"(f) 
p'~p" ~ VfeF p'(f) ~ p"(f) 

We d e f i n e  two f u n c t i o n s  R a n d  A t o  do  t h e  a b s t r a c t  i n t e r p r e t a t i o n  

u s i n g  t h e s e  o r d e r e d  s e t s .  

The  f u n c t i o n  R, g i v e n  a n  e x p r e s s i o n  e x p  a n d  a n  e n v i r o n m e n t  e ,  c o m p u t e s  

t h e  t y p e  o f  a n  e x p r e s s i o n ' s  r e s u l t .  

R e Exp --9 Env - - * T y p e  

R[x] e = eCx) 
R[quote g] e = Abs'[~] 
R[If exp then exp" else exp"] e = any 
R [ e a l l  f ( e x P l  . . . . .  

a n y  
R [ c a r ( e x p ) ]  O = t "  

1 

a n y  
R [ c d r ( e x p ) ]  O = t ~ 

± 

expm)] 8 = any 

if R[exp] e = any, 
if R[exp] e = cons(t',t"), 
otherwise. 

if R[exp] e = any, 
if R[exp] 8 = cons(t',t"), 
otherwise. 

R[cons(exp',exp")] 8 = cons( R[exp'] e, R[exp"] O ) 
R[atom(exp)] e = any 
R[equal(exp',expn)] 8 = any 

The function A, given an expression exp, an environment 8, and an 

argument type description ~, computes a new approximation to the final 

description of each function's parameter types. 

A ~ Exp -->Env --,ArgDescr --*ArgDescr 

A[x] e ~ = 
A[quote g] e ~ = 
A[if exp then exp' else exp"] e 

= A[exp] 8 m U A[exp'] 8 m U A[exp H] 8 

A[eall f(expl,...,exPm)] 8 ~ = ~new[f~-> ~new(f) U 8new], 

= U {A[expj] 8 ~}j=l, ,m and where ~new ... 

8ne w = [xf,j~-) R[expj] e]j= I ..... m 

A[car(exp)] 8 ~ = A[exp] 8 
A[cdr(exp)] 8 ~ = A[exp] 8 
A[cons(exp',exp")] 8 ~ = A[exp'] 8 ~ U A[exp"] 8 
A[atom(exp)] 8 ~ = A[exp] 8 
A[equal(exp',exp")] 8 ~ = A[exp'] 8 a U A[exp"] 8 

We want a final argument type descrlpton ~ that is consistent and as 

low as possible. This must he the least fixed point for the following 
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system of simultaneous equations and relations: 

= U {A[bodyf] ~(f) ~}f~F' ~Z~O 

where ~0 is defined as follows 

~0 = [f1~[xfl,jb')any] j=l,...,a(fl) ] LJ 

[ f b->[xf, j b-> "]j=l ..... a(f) ]f~F 

The description ~0 assigns the type any to the parameters of the goal 

function f1' to prevent these parameters from being split. All other 

parameters, on the contrary, are assigned the type l, there being no 

a priori information about their structure. 

The least fixed point for the system above does exist because for any 

given progr82a the ordered sets involved have no chains of infinite height, 

and the functions A and R are monotonic. 

8.USEF~SS OF VARIABLE SPLITTING 

The fact that the p~u'ameters of a function f have been assigned the 

types t I .... , t m, for brevity's sake, will be written as f(tl ..... tm). 

Example. Consider the program 

f(x) = rev(x, 'a :: 'nil); 
rev(u,v) = if u = 'nil then v else rev(cdr(u), csr(u) :: v); 

The analysis of types tells us that f(any), rev(any, cons(any, any)). 

After rev(v --> vl :: v2), we get the program 

f(x) = rev(x, 'a, 'nil); 
rev(u, vl,v2) = if u = 'nil then vl :: v2 else 

r e v ( c d r ( u ) ,  car(u), vl  :: v2); 

We see that the program obtained is by no means superior to the 

original one, because no selector has been eliminated owing to variable 

splitting. 

Thus we see that the parameter splitting based exclusively on the 

information obtained by examining the structure of argument expressions, 

may well result in the "arity overraising", i.e. increasing the number of 

parameters without reducing the number of selectors in the program. The 

types as produced by the above analysis, describing as they do the 

feasibility of splitting parameters, however, provide no information on the 

usefulness of this splitting. The arity overraising, nevertheless, can be 

avoided by "adjusting" the above types in the following way. 
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Suppose, for example, the type t has been assigned to a parameter x. 

Then the splitting of the parameter can be restricted by replacing some 

parts of t having the form cons(tl,t 2) with any. This results in the type t 

being generalized, i.e. changed to some other type t' such that t s t', the 

depth of splitting being the less the greater the type t'. Thus, for 

instance, the splitting x -~ xl :: (x2 :: x3) corresponds to the type 

cons(any, cons(any, any)), the splitting x -->xl :: x2 to the type 

cons(any, any), and no splitting to the type any. 

Thus we are facing the type generalization problem: given a cons in a 

type, we have to decide whether this cons should be retained or 

generalized. This decision will be made on the basis of the following 

selector elimination principle: 

A cons should be retained only if this causes 

a selector in the program to disappear. 

Being formalized as it is, the selector elimination principle gives 

only an approximate description of the intuitive ideas the humans have 

about what does it means for a program to have a beautiful and natural 

structure. Nevertheless, experience has shown this principle to be likely 

to produce reasonable results, without any danger of the program being 

spoilt. 

9.  BACk'WARD ANALYSIS 

Let us consider the function definition f( .... x k .... ) = exp. 

The k-th parameter of the function may appear at different places in 

the function's body exp. Is it any use splitting Xk? To answer this 

question, we have to consider all occurrences of x k in exp and to take into 

account their contexts in exp. To take an example, if exp contains the 

subexpression cdr(Xk) , it makes sense to perform the splitting 

xk--)x" :: x", since this will cause cdr(x k) to be replaced with 

cdr(x" :: x"), the latter being reducible to x". 

Example. f(x) = g(x :: x); g(u) = u;. 

In this case the selector elimination principle tells us that it is no 

use performing the splitting g(u --) ul :: u2). 
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E x a m p l e .  f ( x )  = g ( x  : :  x ) ;  g ( u )  = c d r ( u ) ; .  

I n  t h i s  c a s e  t h e  s e l e c t o r  e l i m i n a t i o n  p r i n c i p l e  t e l l s  u s  t h a t  t h e  

s p l i t t i n g  g ( u  - - ~ u l  : :  u2)  i s  w o r t h  p e r f o r m i n g ,  s i n c e  i t  w i l l  c a u s e  t h e  

s e l e c t o r  c d r  t o  d i s a p p e a r .  And, i n  f a c t ,  a f t e r  t h e  s p l i t t i n g  we g e t  t h e  

p r o g r a m  f ( x )  = g ( x , x ) ;  g ( u l , u 2 )  = u 2 ; .  

Thus  we s e e  t h a t  t h e  n a t u r a l  way o f  g e t t i n g  i n f o r m a t i o n  a b o u t  t h e  

u s e f u l n e s s  o f  s p l i t t i n g  i s  t o  make u s e  o f  some k i n d  o f  b a c k w a r d  a n a l y s i s  

[Hu g hes  8 8 ] .  

10.ACCESS PATID~ AND CONTEXTS 

L e t  e x p  be  an  e x p r e s s i o n  a p p e a r i n g  i n  a l a r g e r  e x p r e s s i o n .  We want  t o  

c o n s i d e r  a l l  a t t e m p t s  by  t h e  s u r r o u n d i n g  e x p r e s s i o n  a t  a c c e s s i n g  t h e  

c o m p o n e n t s  o f  e x p .  F o r  e x a m p l e ,  i f  e x p  i s  a p a r t  o f  t h e  e x p r e s s i o n  

c a r ( c d r ( c d r ( e x p ) ) ) ,  t h e n  t h e r e  i s  an  a t t e m p t  a t  a c c e s s i n g  e x p  by  a p p l y i n g  

s e l e c t o r s  i n  t h e  f o l l o w i n g  o r d e r :  c d r ,  c d r ,  c a r .  The c o m p o n e n t  t o  be  

a c c e s s e d  c a n  be  u n a m b i g u o u s l y  i d e n t i f i e d  by  a s e q u e n c e  o f  s e l e c t o r s .  T h i s  

j u s t i f i e s  t h e  f o l l o w i n g  d e f i n i t i o n .  

D e f i n i t i o n .  An a c c e s s  p a t h  i s  a f i n i t e  l i s t  ( w h i c h  may be  e m p t y )  o f  

s e l e c t o r  names  c a r  and  c d r .  

We u s e  t h e  f o l l o w i n g  n o t a t i o n .  A f i n i t e  l i s t  o f  e l e m e n t s  a 1 . . . . .  a m 

i s  w r i t t e n  a s  [ a l  . . . . .  am],  an  e m p t y  l i s t  a s  [ ] .  The c o n c a t e n a t i o n  o f  two 

l i s t s  A = [ a  1 . . . . .  a m] and  B = [ b l  . . . . .  b n]  e q u a l  t o  [ a l  . . . .  , a m , 

b 1 . . . . .  b n]  i s  d e n o t e d  by  A^B. 

T ~  s e t  o f  a l l  a c c e s s  p a t h s  w i l l  be  d e n o t e d  by P a t h .  Thus  

P a t h  = ~[car, c d r }  . 

I n  some c a s e s  t h e  s u r r o u n d i n g  e x p r e s s i o n  t r i e s  t o  a c c e s s  s e v e r a l  

c o m p o n e n t s  o f  t h e  e x p r e s s i o n  u n d e r  c o n s i d e r a t i o n .  F o r  t h i s  r e a s o n  we h a v e  

t o  d e s c r i b e  t h e  c o n t e x t  by  a s e t  o f  p a t h s ,  r a t h e r  t h a n  by  a s i n g l e  p a t h .  

De____finition. A s e t  o f  a c c e s s  p a t h s  ~ 6 P ( P a t h )  i s  a n  a c c e s s  c o n t e x t ,  i f  

i t  s a t i s f i e s  t h e  f o l l o w i n g  r e q u i r e m e n t s .  

( i )  [ )~n 
C i i )  I f  ~ ^ [ c a r ]  e N o r  ~ ^ [ c d r ]  ~ H, t h e n  ~ e N. 

( i )  means  t h a t  an  a t t e m p t  a t  a c c e s s i n g  t h e  e x p r e s s i o n  a s  a w h o l e  must  

be  i n c l u d e d  i n t o  t h e  c o n t e x t .  T h i s  r e q u i r e m e n t  i s  u s e f u l  f o r  t e c h n i c a l  
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reasons. (ii) formalizes the obvious fact that a subcomponent can be 

accessed only by accessing the components in which the subcomponent is 

included. 

The set of all contexts is denoted by Context. 

Now consider the function definition f( .... x k .... ) = exp. Suppose that 

exp contains m occurrences of the parameter x k in the contexts HI, H 2 ..... 

H m. What should be the total context for all occurrences of xk? It is clear 

that finding all attempts at accessing the parameter x k amounts to findin E 

all attempts at accessing its occurrences, thus H I u H 2 u ... u 9 m should 

be considered to be the total context of the parameter x k. 

11.USING CONTEXTS FOR TYPE GENERALIZATION 

Let a parameter have the type t and the context H. Then the function 

GenType can be easily defined which generalizes t in accordance with H by 

replacing all cons(tl,t 2) unaccessed by H with any. 

GenType : Type -->Context --)Type 

GenType[t] H = R{GenType'[t]~ I n~H} 
GenType' : Type --~ Path --~Type 
GenType'[any]= = any 
GenType'[atom(M)]= = atom(M) 
GenType'[cons(t',t")]([]) = any 
GenType'[cons(t',t")]([car]^~) = cons[ GenType'[t']=, any ) 
GenType'[cons(t',t")]([cdr]^~) = cons[ any, GenType'[t"]~ ) 
GenType'[l]= = 1 

It should be noted that for all t~Type and ~H the relation 

t s GenType'[t]= holds, therefore the set {GenType'[t]= I =~H} is finite, 

in spite of the fact that H may well be infinite. Consequently, the 

greatest lower bound of this set does exist. 

12.  LATENT SELECTORS 

The above considerations might have produced the expression that the 

context of a parameter can be determined by examining only the definition 

of the function concerned, without the program being globally analyzed. 

This is not really the case, however. 

Example. f(x) = g(x :: 'a); g(u) = h(u); h(v) = cdr(v);. 

The type analysis tells us that f(any), g(cons(any, atom(a))), 

h(cons(any, atom(a))). The variable v has the context {[], [cdr]}. But what 

is the context of the variable u? At the first glance, it may appear to be 



355 

{[]}, because there seems to be no selectors in the program attempting at 

accessing the variable u. Thus we, erroneously, come to the conclusion that 

the types should be generalized as follows: f(any), g(any), h(cons(any, 

atom(a))). The only acceptable splitting is therefore h(v ---> vl :: v2). By 

performing it we get f(x) = g(x :: 'a); g(u) = h(car(u),cdr(u)); h(vl,v2) = 

v2;. 

This result is far from beinE satisfactory, because there have 

appeared two new selectors car and cdr, not present in the original 

program. This makes us draw the conclusion that the parameter access 

analysis has to take into account not only the selectors explicitly 

appearing in the program, but also the latent selectors to be introduced by 

the splitting of parameters. 

T~s, if e k is an argument expression in the function call 

call f( .... e k .... ), it would be incorrect to take its context to be {[]}, 

because there should be taken into account all attempts at accessing e k due 

to the splitting of e k. This can be done in the following way. 

Let the k-th formal parameter of the function f be assigned the type 

t, and the total context of all its occurrences be I. Let t' = GenType[t]~. 

Then the generalized type t' gives all information about the way in which 

e k is 'to be split. The function TypeToContext can be easily defined which 

converts t' into the context providing the information about all the 

attempts at accessing e k due to the splitting of e k in accordance with t' 

TypeToContext : Type --->Context 

TypeToContext[any] = {[]} 
TypeTo(~ntext[atom(~)] = {[]} 
TypeTo(bntext[cons(t',t")] = {[]} u 

car~(TypeToContext[t']) u cdr~(TypeToContext[t"]) 
TypeToContext[l] = {[]} 

where ~ use the notation car~, = {[car]^~ I ~e~}, cdr'~ = {[cdr]^= I ~6~}. 

Now we can determine the context of the expression ek, assuming the 

k-th parameter to be assigned the type t, and the total context of all its 

occurrences to be ~. This context is equal to TypeToContext[ GenType[t]~ ]. 

13. SYSteM OF EQUATIONS FOR FINDING CONTEXTS 

For each function f with the definition f(xf, l,...,xf, m) = bodyf let 

tf, I .... , tf, m stand for the types of its parameters, and cf, 1 ..... cf, m 

stand for the contexts of its parameters. 
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Let C x [exp] N be the total context of all occurrences of the 

variable x in the expression exp, the expression exp itself being in the 

context ~. 

We have the following set of equations 

cf,j = TypeToContext[ GenType[tf, j] ( C xj [bodyf] {[]} ) ] 

where C x [exp] ff is defined as follows: 

C e VName --) Exp --) Context --> Context 

C x [x] M = f f  

C x [y] ~ = {[]}, where x~y, 
C x [quote ~] ~ = {[]} 
C x [if exp then exp" else exp"] . = 

C x [exp] {[]} M C x [exp'] {[]} u C x [exp"] {[]} 

C x [call f(exPl ..... eXPm)] N = u{ C x [expj] cf,j }j=l ..... m 

C x [car(exp)] . = C x [exp] ({[]} u ear".) 
C x [cdr(exp)] . = C x [exp] ({[]} u cdr~.) 
C x [cons(exp',exp")] ~ = 

C x [exp'] ({[]} M ./car) u C x [exp"] ({[]} M ./cdr) 
C x [atom(exp)] ~ = C x [exp] {[]} 
C x [equal(exp',exp")] = C x [exp'] {[]} u C x [exp"] {[]} 

where we use the notation ~/car = {~ I [car]^= e n}, R/cdr = {~ I 

[cdr]^~ e ~}. 

We assume the set of contexts to be equipped with natural partial 

ordering, ~'sn" being equivalent to ~'gB a. The functions TypeToContext, 

GenType, and C are monotonic with respect to contexts, therefore the 

minimal fixed point for the above system of equations does exist. 

Moreover, since cf, j g TypeToContext[tf,j], there exist only a finite 

number of contexts that can be taken as value by cf,j, hence the minimal 

fixed point can be found by a finite number of iterations. 

The context analysis above resembles, in some respects, the 

"neighborhood analysis" as used in the Supercompiler [Turchin 88], 

[Turchin 88]. 

14. PRACTICAL IMPLEMENTATION OF THE CONTEXT ANALYSIS 

Some programming tricks have prove to be useful for implementing the 

above backward analysis. 

First, what we really use in splitting parameters are types 

generalized with respect to contexts, rather than contexts themselves. 

Thus, instead of computing cf, j, we can compute the type 
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t~,j = GenType[tf,j] cf, j. 
S l Second, since tf,j - < tf,#,~ we can replace tf, i_ and tf, j. with a single 

marked type mtf, j having the syntax 

mt • }4Type marked types 
mt ::= any I atom(M) I com~(t',t") I con~!(mt',mt") I 

where each marked cons! "belongs" both to t~,j and tf, j, whereas each 

unmarked cons "belongs" only to tf, j, the corresponding place in t~,j being 

any. 

T[~ context cf,j can be extracted from mtf, i _ directly, without finding 

t'f,j, by means of the function Retrieve!. 

Retrieve! ~ }4Type -->Context 

Retrieve![any] = {[]} 
Retrieve![atom(M)] = {[]} 
Retrieve![cons(t',t")] = {[]} 
Retrieve![cons!(mt',mt")] = {[]} u cat'Retrieve![mr "] u cdr'Retrleve![mt"] 

Next improvement concerns the representation of contexts. BelnE sets 

of paths, contexts are difficult to deal with directly, but we can replace 

contexts with their representations havin E the syntax 

crep • ContextRep 
crep ::= car(crep) I cdr(crep) I mtype(mt) 

Given a context's representation, we can reconstruct the context by 

the function Retrieve. 

Retrie~ • ContextRep 
Retrieve[car(crep)] = {[]} u car'Retrieve[crep] 
Retrieve[cdr(crep)] = {[]} u cdr'Retrieve[crep] 
Retrieve[mtype(mt)] = Retrieve![mr] 

All functions the access path analysis involves can be modified so 

that they will deal with the representation of contexts, rather than with 

the contexts themselves. 

IS. GENERALIZATIONS 

The first obvious generalization concerns splitting the results of 

functions. In the language Mixwell each function produces one and only one 

result, for which reason a defined function call call f(expl ..... expm) 

cannot be split and, therefore, has to be assigned the type any. The 

language, however, can be extended, so that a function can produce several 

results, and this device allows the results of a function to be split 
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without splitting the function's definition. A version of the arity raiser 

with this extension has been implemented by Ruten F. Gurin. 

Another possible extension is to make an arity raiser deal with data 

structures that are more complicated than Lisp S-expressions are. For 

example, in the case of the languages Refal [Turchin 79], [Turchin 86] and 

RL [Romanenko 88], the data are arbitrary trees, rather than binary trees, 

which was taken into account in the arity raiser described in 

[Romanenko 88]. 

CONCLUSIONS 

In orde r  f o r  the r e s u l t s  produced by v a r i a b l e  splitting to be 

reasonable, we need information obtained by two preliminary global analyses 

of the program. The first, forward, analysis tells us whether the splitting 

is feasible, whereas the second, backward, analysis tells us whether the 

splitting is useful. 

The information obtained is used to avoid introducing new selectors 

into the program as well as code duplication, and makes it possible to 

avoid useless variable splitting that does not cause some selectors in the 

program to be eliminated. 

The experiments made by the author have shown that introducing an 

arity raiser as a separate phase into a specializer enhances the structure 

of residual programs generated without affecting the other phases of the 

specializer. The structure of the specializer, thus, can be kept natural 

and understandable. 
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