
ARITY RAISER AND ITS USE IN PROGRAM SPECIALIZATION

Sergei A. Romanenko

Keldysh Institute of Applied Mathematics
Academy of Sciences of the USSR
Miusskaya Sq. 4, SU-125047, Moscow, USSR

Experiments on generating compilers by specializing specializers with
respect to interpreters have shown that the compilers thus obtained have a
natural structure only if the specializer does variable splitting. Variable
splitting can result in a residual program using several variables to
represent the values of a single variable of the original program. In the
case of functional programming variable splitting is done by raising the
arities of functions. The paper describes the structure and principles of
operation of an arity raiser dealing with programs in a subset of pure
Lisp~

Keywords: arity raiser, compiler generator, partial evaluation, retyping,
specializer, variable splitting.

I NTRODUCTI ON

Program specialization [Dixon 71] seems to be a promising and powerful

techniq~ that can lead to new program development methodology.

By program specialization we understand constructing, when given a

"general-purpose" program and some restriction on its usage, a more

efficient "specialized" residual pFogram. Being optimized and simplified

version of the original program, the residual program, however, must be

equivalent to the original one when used according to the restriction. By

specializer we understand a system that, given a program and a restriction,

will produce a specialized version of the original program.

Program specialization can be achieved by making use of different

techniques, such as driving [Turchin 72], fold-unfold method [Burstall 77],

partial evaluation [Futamura 71], [Beckman 7B], mixed computation

[Ershov 78], [Bulyonkov 84], the analysis of computational configurations

[Turchin 79], [Turchin 88], variable splitting [Sestoft 88], and arity

raising [Romanenko 88].

The above techniques deal, for the most part, with two problems:

control restructuring and data retyping (i.e. changing representation of

data).

342

As far as the control restructuring is concerned, various

specialization techniques differ in the extent to which the program is

reorganized.

In the case of monovariant specialization any control point in the

original program Elves rise to zero or one control point in the residual

program.

In the case of polyvariant specialization a control polnt can give

rlse to more than one control point in the residual program.

In the case of monogenetlc specialization ~ny control point in the

residual program is produced from a single control point of the original

program.

In the case of polygenetic specialization a control point in the

residual program may be produced from several control points of the

original program.

As far as the data representation is concerned, varlous speclallzatlon

techniques differ in the use they make of retyplng.

Driving [Turchin 72] and the analysis of conflguratlons [Turchln 79],

[Turchin 86], which deal wlth functional programs, can be classlfled as

polyvariant polygenetic methods with retyping.

Monovariant monogenetic techniques for imperative programs are studied

in [Ershov 78]. Papers [Bulyonkov 84], [Barzdin 88] concern polyvarlant

monogenetic specialization techniques for imperative programs.

The transformational approach [Ershov 81], [Ostrovski 88] is believed

to include, at least potentially, all conceivable techniques of program

specialization, not excluding the polygenetic ones.

Of course, the more powerful techniques tend to be rather expensive~

and it is difficult to make them completely automatic. Thus the choice of

appropriate specialization techniques depends on the class of problems to

be solved.

An interesting application of speciallzers is compiler generation. It

was found by Y. Futamura [Futamura 71] that interpreters can be converted to

compilers by specializing a specializer wit~ respect to the interpreters.

Several years later it was realized [Beckman 76] that a transformer of

interpreters into compilers can be produced by speclalizlng a speclallzer

with respect to a specializer.

To put this approach into practice, we have to overcome the following

difficulty. On the one hand, the specializer has to be sophisticated enough

343

t o a c h i e v e n o n - t r i v i a l s p e c i a l i z a t i o n . On t h e o t h e r hand, t o be

s p e c i a l i z a b l e , t h e s p e c i a l i z e r c a n ' t a f f o r d t o be t o o c o m p l i c a t e d .

The g r o u p u n d e r N.D. J o n e s a t Copenhagen u n i v e r s i t y was t h e f i r s t t o

overcome t h e a b o v e d i f f i c u l t y [J o n e s 85] , [S e s t o f t 8 6] , [S e s t o f t 8 8] . S i n c e

e x p e r i m e n t s had shown t h e m o n o v a r i a n t s p e c i a l i z a t i o n t o be u n s a t i s f a c t o r y

f o r t h i s a p p l i c a t i o n , t h e s p e c i a l i z e r had t o do t h e p o l y v a r i a n t

specialization. Again, the monogenetic specialization proved to be adequate

for the purpose (despite there being a lot of problems that have to be

dealt with by polygenetic specialization [Turchin 82], [Wadler 88]).

The usefulness of retyping proved to be more problematic. It was found

that retyping can be dispensed with at the cost of the residual programs

having rather unnatural structure. Suppose, for example, that an

interpreter is to be specialized with respect to a program. Since the

interpreter is supposed to accept an arbitrary input program, the number of

variables in this program cannot be known in advance. Thus the variable's

values are likely to be represented in the interpreter as a single value

assigned to one of the interpreter's variables. If the specializer is

unable to split this variable, the residual program will use a single

variable to represent all the values. A reasonable residual program,

however, would keep each value in a separate variable [Sestoft 88].

To rectify the drawback, the author suggested that the Copenhagen

specializer should be supplemented with an additional phase, whose purpose

would be to do variable splitting [Romanenko 88]. In the case of a

functional language, variable splitting reduces to increasing the number of

functions' parameters, for which reason this additional phase was given the

name arity raiser. As pointed out by T. Mogensen arity raising is just a

special case of retyping, thus any arity raiser is a retyper.

The arity raiser was found to improve the structure of residual

programs without making the specializer excessively slow and intricate.

The alternative to the arity raiser is to split variables on-line,

i.e. at the time the residual program is being generated [Turchin 86],

[Mogensen 88]. This approach, however, can result in a mammoth, sluggish

specializer.

A s]hort description of the ideas behind the arity raiser can be found

in [Rom~menko 88]. The present paper gives a detailed account of the

structure and principles of operation of an arity raiser dealing with

programs in a subset of pure Lisp.

344

1.THE LANGUAGE MIXWELL

In the following we consider programs written in the language Mlxwell,

which is a small subset of pure Lisp and was used as the subject language

in the Copenhagen speciallzer MIX [Sestoft 86]. Here is Mixwell's abstract

syntax.

pgm ~ Program
fd ~ Fnl~f
exp, e E Exp
f ~ FName
x E VName

~ Atom
E SExp

pgm ::= fdl; ... fdn;

programs
function definitions
expressions
function names
variable names
Lisp atoms
Lisp S-expressions

fd ::= f(xl x m) = exp

exp ::= x I quote S I if exPo then expl else exP2 1 call f(exPl exp m)

I car(exp) i cdr(exp) [cons(exPl,exp2) [atom(exp) I equal(exPl,exP2)

: : = ~ I (~1 " g2)

A Mixwell program is a list of function definitions, the first

function being the goal function. The goal function is to be called first,

and inputs to the program are through the parameters of this function.

The body of a function is an expression, which is constructed from

variables appearing in the function's formal parameter list, from constants

quote and operators car, cdr, cons, atom and equal (as in Lisp),

condltlonals if and defined function calls call.

The only data type is well-founded (i.e. non-circular) S-expresslons

as known from Lisp.

All primitive and defined functions, except the conditional if, are

strict in all positions. All parameters are called by value.

We use some "sintactlc sugar". The keyword call is omitted in cases

where the name of the function being called Is different from the names of

the primitive functions, quote ~ can be written as '~, cons(exPl,exp2) as

exPl :: exp2 , equal(exPl,exp2) as exPl = exp2. Constants (~I " ($2

.... (Sn " nil) ...)) can be written as ($I $2 "'" Sn)"

2. SPLITTING A FORMAL PARAMETER

Suppose the definition of function f in a program has the form

345

f(.... x k) = exp. Then the following transformation will be referred to

as the splitting of the function's k-th parameter.

Let x' and x" be two variables different from all formal parameters of

the function f. Then the splitting of x into x' and x" can be done in two

steps.

At the first step, the original definition of f is replaced with

f(.... x',x",...) = exp[xk--gcons(x',x")]

where exp[xk--->cons(x',x")] denotes the expression obtained from exp by

replacing all occurrences of x k with cons(x',x").

At the second step, all calls of the function f in all function

definitions are transformed, each call of the form call f(.... e k) being

replaced with call f(.... car(ek) , cdr(ek)).

Thus, the original variable x k is replaced by two new variables x' a/Id

x" containing enough information for the value of Xk, if needed, to be

reconstructed. To put it more exactly, the value of x k can be obtained by

evaluating the expression cons(x',x").

The fact that the formal parameter x of the function f is to be split

into two variables x' and x" will, for the brevity's sake, be written as

f(x ----)x" :: x").

Example. Consider the program f(x) = g(x :: x); g(u) = cdr(u);. By

g(u ---) u]L :: u2) we get the program f(x) = g(x :: x); g(ul,u2) = cdr(ul ::

u2);. Then, by splitting the argument in the calls of g we get f(x) =

g[car(x :: x),cdr(x :: x)); g(ul,u2) = cdr(ul :: 112);.

This program can be locally optimized, which results in f(x) = g(x,x);

g(ul,u2) = u2;. Now we see that variable splitting is capable of producing

parameters whose values are certain not to be needed. Such parameters can

be recognized by a kind of backward analysis [Hughes 88] and eliminated. In

the above program we can remove the parameter ul of the function g, which

gives the program f(x) = g(x); g(u2) = u2;.

Thus, the principal use of variable splitting consists in paving the

way for other transformations such as local optimization and elimination of

unneeded parameters, the latter being, in a sence, s kind of "garbage

collection at compile time".

3 . CONDITIONS OF THE VARIABLE SPLITTING CORRECTNESS

The program transformation described above can be incorrect. For

346

example, after g(u ---~ul :: u2) for the program f(x) = g('a); g(u) = u; we

get f(x) = g(car('a),cdr('a)); g(ul,u2) = ul :: u2;.

It is evident that the transformed program is not equivalent to the

original one, because the original program terminates, with the result

being the atom 'a, whereas the transformed program fails to apply car or

cdr to the atom 'a and terminates abnormally. Thus we come to the

conclusion:

Before splitting a parameter, we must make sure that,

when the program is run, it is impossible for the para-

meter's value to be an atom!

Hence, to split a variable, we need to have a description of the

structure of its values. Such descriptions will be referred to as types of

variables.

4.ANALYSIS OF RUN TIME TYPES

To describe the structure of values to be taken by a variable, we use

the following set of types.

t e Type types
e Atom Lisp atoms

t ::= any J atom(A) I cons(tl,t 2) i

We assume the set of types to be equipped with reflexive partial

orderin E s recursively defined by the followin E rules:

(i) z s t -~ any for all types t.

(ii) cons(t~,t~) -~ cons(t~,t~) if t~ -~ t~ and t~ -~ t~.

If t'-~t" and t'~t", the type t" is said to be more general than the

type t'.

The set of types is a lattice, as for all types t',t"eType there exist

their least upper bound t' Ut" and their greatest lower bound t" Rt". Each

set of types Te~(Type) has its least upper bound UT. Thus the set of types

is a pointed continuous partial ordering (CPO) with the bottom ±

[Schmidt 86]. It can be easily seen that the set of types has no chains of

infinite height. In addition, each finite T~P(Type) has its greatest lower

bound FIT.

347

A t y p e r e p r e s e n t s a s e t o f S - e x p r e s s i o n s . More s p e c i f i c a l l y , l e t us

d e f i n e an " a b s t r a c t i o n " f u n c t i o n Abs mapping s e t s o f S - e x p r e s s i o n s i n t o

t y p e s . Abs i s d e f i n e d i n t e rms of an a u x i l i a r y f u n c t i o n Abs ' mapping

S - e x p r e s s i o n s i n t o t y p e s .

Abs ~ P(SExp) --->Type
Abs' ~ SExp --)Type

Abs[E] = U{Abs'[$] 1 $~E}
Abs'[M] = atom(M)
Abs'[($' . $")] = cons[Abs'[$'], Abs'[$"])

Let us define a "concretization" function Co reconstructing the set of

S-expresslons from a type:

Co ~ Type --)~(SExp)

Co[any] = SExp
Co[atom(M)] = {M}

Co[consCt',ta)] = {($' $") 1 $'~Co[t'] and $"~Co[tn]}
Co[±] = {}

The following relations hold: Abs[Co[t]] = t and E g Co[Abs[E]].

Now let x be a variable in a program. The problem is to find a type t

such that $~Co[t] for all $ that can be taken as value by x when the

program is run. It can be done by abstract interpretation [Jones 86] of the

program, which amounts to performing the pro~am's computations using

abstract values in place of the actual ones.

[Omi t t ed : t h e t y p e a n a l y s i s a l g o r i t h m .]

The t ype a n a l y s i s above can , i n a s e n s e , be r e g a r d e d as a m o n o v a r i a n t ,

m o n o g e n e t l c v e r s i o n of t he " c o n f i g u r a t i o n a n a l y s i s " as u s e d i n t h e

S u p e r c o m p i l e r [T u r c h i n 89] , [T u r c h i n 86] .

S.USING TYPE INFORMATION FOR VARIABLE SPLITTING

The v a r i a b l e s p l i t t i n g t r a n s f o r m a t i o n a s d e s c r i b e d above s p l i t s o n l y

one o f a f u n c t i o n ' s p a r a m e t e r s . However, t he i n f o r m a t i o n p r o v i d e d by an

a rgument t y p e d e s c r i p t i o n i s s u f f i c i e n t f o r a l l f u n c t i o n ' s p a r a m e t e r s t o be

s p l i t a t once .

Suppose t h e t ype t a s s i g n e d to a v a r i a b l e x c o n t a i n s some o c c u r r e n c e s

of t h e t y p e a n y , which w i l l be r e f e r r e d to as "gaps" .

I t i s o b v i o u s t h a t a l l v a l u e s o f t he v a r i a b l e x c a n be d i f f e r e n t o n l y

a t p l a c e s c o r r e s p o n d i n g to t he gaps , and must be c o n g r u e n t a t a l l o t h e r

348

places. Therefore, if the type t contains m gaps, any S-expression @~Co[t]

is completely determined by its parts corresponding to the gaps in the type

t. This enables the variable x to be retyped by replacing it with m new

variables, which are to be assigned the parts of the variable's values

corresponding to the gaps.

For example, if a function's parameter x has the type cons(cons(any,

atom(a)), any), then x can be represented by two new parameters ul and u2,

in which case all occurrences of x in the function's body must be replaced

with the expression (ul :: 'a) :: u2.

[Omitted: the algorithm for splitting parameters according their types.]

8.CODE DUPLICATION RISK

Example. Consider the program f(z) = swap(unzip(z,'nil,'nil)); swap(v)

= cdr(v) :: car(v); unzip(u,x,y) = if u='nil then x :: y else unzip(cdr(u),

car(car(u)) :: x, cdr(car(u)) :: y);.

Any result produced by the function unzip is of the type

cons(any, any), hence this type can be assigned to the parameter v of the

function swap. Thus we can perform swap(v --~vl :: v2). But this gives rise

to two copies of the expression unzip(z,'nil,'nil), which is bad for two

reasons. First, duplicating expressions can result in huge programs being

produced. Second, code duplication can lead to repeated evaluation of

expressions. Both of the problems arise in the above example.

The risk of code duplication and repeated evaluation can be avoided by

following the principle of selector non-introduction:

I A l l selectors produced by variable splitting must

be eliminable by means of local optimization.

What is the drawback of the type analysis described above? The point

is that this analysis tells us whether a selector in the program is certain

to be applicable at run time, whereas we need to know whether the selector

can he applied symbolically at the time the program is being optimized.

The feasibility of the simbolic application of a selector to the

expression exp, obviously, depends upon the structure of the expression

itself, rather than on the structure of the result to be produced by exp at

run time.

349

If exp has the form quote (~' ~"), the symbolic application is

feasible, car(exp) being reducible to quote ~', and cdr(exp) being

reducible to q u o t e E".

If exp has the form exp' :: exp", the symbolic application is

feasible, car(exp) being reducible to exp', and cdr(exp) being reducible to

exp".

On the other hand, if exp has the form if exPo then exp' else exp" or

call f(exPl exPm), it is impossible to make the symbolic application

without code duplication.

If exp is a variable x, the symbolic application may seem to be

unfeasible. Nevertheless, splitting the parameters throughout the program

may result in the variable x being split into a new expression, which may

enable the symbolic applicaton.

Example. Consider the program f(x) = g(x :: x); g(u) = h(u); h(v) =

cdr(v);. After g(u --> ul :: u2), we get f(x) = g(x,x); g(ul,u2) = h(ul ::

u2); h(v) = cdr(v);. Now, after h(v --) vl :: v2), we get f(x) = g(x,x);

g(ul,u2) = h(ul,u2); h(vl,v2) = v2;.

7.ANALYSIS OF OPTIMIZATION TIME TYPES

As (:an be seen from the above, we need to know the structure of

symbolic values assigned to variables at the time the program is being

optimized, rather than the structure of ordinary values assigned to

variables at the time the program is run. Thus, what we are really

interested in are the optimization time types, rather than the run time

types.

To find them, we can use the same set of types as has been used for

analyzing the run time types.

Suppose we have a program defining functions fl fh" Let

F = {fl fh }, and, for each f~F, xf,j be its j-th parameter, a(f) be

its arity, and bodyf be its body, so that the definition of f has the form:

f(xf, I xf, a(f)) = bodyf

Let 8 e Env = VName --, Type be an environment assigning a type to each

parameter of a function. Let ~ • ArgDescr = F --~ Env be an argument type

description assigning types to each function's parameters. Let

p ~ ResDescr = F --> Type be a result type description assigning a type to

each function' s result.

350

A l l t h e s e t s a b o v e a r e e q u i p p e d w i t h r e f l e x i v e p a r t i a l o r d e r i n g s a s

f o l l o w s :

Env:
ArgDescr:
ResDescr:

8"s8" ~ Vx~VName 8'(x) s 8"(x)
~'s~" ~ VfeF ~'(f) s a"(f)
p'~p" ~ VfeF p'(f) ~ p"(f)

We d e f i n e two f u n c t i o n s R a n d A t o do t h e a b s t r a c t i n t e r p r e t a t i o n

u s i n g t h e s e o r d e r e d s e t s .

The f u n c t i o n R, g i v e n a n e x p r e s s i o n e x p a n d a n e n v i r o n m e n t e , c o m p u t e s

t h e t y p e o f a n e x p r e s s i o n ' s r e s u l t .

R e Exp --9 Env - - * T y p e

R[x] e = eCx)
R[quote g] e = Abs'[~]
R[If exp then exp" else exp"] e = any
R [e a l l f (e x P l

a n y
R [c a r (e x p)] O = t "

1

a n y
R [c d r (e x p)] O = t ~

±

expm)] 8 = any

if R[exp] e = any,
if R[exp] e = cons(t',t"),
otherwise.

if R[exp] e = any,
if R[exp] 8 = cons(t',t"),
otherwise.

R[cons(exp',exp")] 8 = cons(R[exp'] e, R[exp"] O)
R[atom(exp)] e = any
R[equal(exp',expn)] 8 = any

The function A, given an expression exp, an environment 8, and an

argument type description ~, computes a new approximation to the final

description of each function's parameter types.

A ~ Exp -->Env --,ArgDescr --*ArgDescr

A[x] e ~ =
A[quote g] e ~ =
A[if exp then exp' else exp"] e

= A[exp] 8 m U A[exp'] 8 m U A[exp H] 8

A[eall f(expl,...,exPm)] 8 ~ = ~new[f~-> ~new(f) U 8new],

= U {A[expj] 8 ~}j=l, ,m and where ~new ...

8ne w = [xf,j~-) R[expj] e]j= I m

A[car(exp)] 8 ~ = A[exp] 8
A[cdr(exp)] 8 ~ = A[exp] 8
A[cons(exp',exp")] 8 ~ = A[exp'] 8 ~ U A[exp"] 8
A[atom(exp)] 8 ~ = A[exp] 8
A[equal(exp',exp")] 8 ~ = A[exp'] 8 a U A[exp"] 8

We want a final argument type descrlpton ~ that is consistent and as

low as possible. This must he the least fixed point for the following

351

system of simultaneous equations and relations:

= U {A[bodyf] ~(f) ~}f~F' ~Z~O

where ~0 is defined as follows

~0 = [f1~[xfl,jb')any] j=l,...,a(fl)] LJ

[f b->[xf, j b-> "]j=l a(f)]f~F

The description ~0 assigns the type any to the parameters of the goal

function f1' to prevent these parameters from being split. All other

parameters, on the contrary, are assigned the type l, there being no

a priori information about their structure.

The least fixed point for the system above does exist because for any

given progr82a the ordered sets involved have no chains of infinite height,

and the functions A and R are monotonic.

8.USEF~SS OF VARIABLE SPLITTING

The fact that the p~u'ameters of a function f have been assigned the

types t I , t m, for brevity's sake, will be written as f(tl tm).

Example. Consider the program

f(x) = rev(x, 'a :: 'nil);
rev(u,v) = if u = 'nil then v else rev(cdr(u), csr(u) :: v);

The analysis of types tells us that f(any), rev(any, cons(any, any)).

After rev(v --> vl :: v2), we get the program

f(x) = rev(x, 'a, 'nil);
rev(u, vl,v2) = if u = 'nil then vl :: v2 else

r e v (c d r (u) , car(u), vl :: v2);

We see that the program obtained is by no means superior to the

original one, because no selector has been eliminated owing to variable

splitting.

Thus we see that the parameter splitting based exclusively on the

information obtained by examining the structure of argument expressions,

may well result in the "arity overraising", i.e. increasing the number of

parameters without reducing the number of selectors in the program. The

types as produced by the above analysis, describing as they do the

feasibility of splitting parameters, however, provide no information on the

usefulness of this splitting. The arity overraising, nevertheless, can be

avoided by "adjusting" the above types in the following way.

352

Suppose, for example, the type t has been assigned to a parameter x.

Then the splitting of the parameter can be restricted by replacing some

parts of t having the form cons(tl,t 2) with any. This results in the type t

being generalized, i.e. changed to some other type t' such that t s t', the

depth of splitting being the less the greater the type t'. Thus, for

instance, the splitting x -~ xl :: (x2 :: x3) corresponds to the type

cons(any, cons(any, any)), the splitting x -->xl :: x2 to the type

cons(any, any), and no splitting to the type any.

Thus we are facing the type generalization problem: given a cons in a

type, we have to decide whether this cons should be retained or

generalized. This decision will be made on the basis of the following

selector elimination principle:

A cons should be retained only if this causes

a selector in the program to disappear.

Being formalized as it is, the selector elimination principle gives

only an approximate description of the intuitive ideas the humans have

about what does it means for a program to have a beautiful and natural

structure. Nevertheless, experience has shown this principle to be likely

to produce reasonable results, without any danger of the program being

spoilt.

9. BACk'WARD ANALYSIS

Let us consider the function definition f(.... x k) = exp.

The k-th parameter of the function may appear at different places in

the function's body exp. Is it any use splitting Xk? To answer this

question, we have to consider all occurrences of x k in exp and to take into

account their contexts in exp. To take an example, if exp contains the

subexpression cdr(Xk) , it makes sense to perform the splitting

xk--)x" :: x", since this will cause cdr(x k) to be replaced with

cdr(x" :: x"), the latter being reducible to x".

Example. f(x) = g(x :: x); g(u) = u;.

In this case the selector elimination principle tells us that it is no

use performing the splitting g(u --) ul :: u2).

353

E x a m p l e . f (x) = g (x : : x) ; g (u) = c d r (u) ; .

I n t h i s c a s e t h e s e l e c t o r e l i m i n a t i o n p r i n c i p l e t e l l s u s t h a t t h e

s p l i t t i n g g (u - - ~ u l : : u2) i s w o r t h p e r f o r m i n g , s i n c e i t w i l l c a u s e t h e

s e l e c t o r c d r t o d i s a p p e a r . And, i n f a c t , a f t e r t h e s p l i t t i n g we g e t t h e

p r o g r a m f (x) = g (x , x) ; g (u l , u 2) = u 2 ; .

Thus we s e e t h a t t h e n a t u r a l way o f g e t t i n g i n f o r m a t i o n a b o u t t h e

u s e f u l n e s s o f s p l i t t i n g i s t o make u s e o f some k i n d o f b a c k w a r d a n a l y s i s

[Hu g hes 8 8] .

10.ACCESS PATID~ AND CONTEXTS

L e t e x p be an e x p r e s s i o n a p p e a r i n g i n a l a r g e r e x p r e s s i o n . We want t o

c o n s i d e r a l l a t t e m p t s by t h e s u r r o u n d i n g e x p r e s s i o n a t a c c e s s i n g t h e

c o m p o n e n t s o f e x p . F o r e x a m p l e , i f e x p i s a p a r t o f t h e e x p r e s s i o n

c a r (c d r (c d r (e x p))) , t h e n t h e r e i s an a t t e m p t a t a c c e s s i n g e x p by a p p l y i n g

s e l e c t o r s i n t h e f o l l o w i n g o r d e r : c d r , c d r , c a r . The c o m p o n e n t t o be

a c c e s s e d c a n be u n a m b i g u o u s l y i d e n t i f i e d by a s e q u e n c e o f s e l e c t o r s . T h i s

j u s t i f i e s t h e f o l l o w i n g d e f i n i t i o n .

D e f i n i t i o n . An a c c e s s p a t h i s a f i n i t e l i s t (w h i c h may be e m p t y) o f

s e l e c t o r names c a r and c d r .

We u s e t h e f o l l o w i n g n o t a t i o n . A f i n i t e l i s t o f e l e m e n t s a 1 a m

i s w r i t t e n a s [a l am], an e m p t y l i s t a s [] . The c o n c a t e n a t i o n o f two

l i s t s A = [a 1 a m] and B = [b l b n] e q u a l t o [a l , a m ,

b 1 b n] i s d e n o t e d by A^B.

T ~ s e t o f a l l a c c e s s p a t h s w i l l be d e n o t e d by P a t h . Thus

P a t h = ~[car, c d r } .

I n some c a s e s t h e s u r r o u n d i n g e x p r e s s i o n t r i e s t o a c c e s s s e v e r a l

c o m p o n e n t s o f t h e e x p r e s s i o n u n d e r c o n s i d e r a t i o n . F o r t h i s r e a s o n we h a v e

t o d e s c r i b e t h e c o n t e x t by a s e t o f p a t h s , r a t h e r t h a n by a s i n g l e p a t h .

De____finition. A s e t o f a c c e s s p a t h s ~ 6 P (P a t h) i s a n a c c e s s c o n t e x t , i f

i t s a t i s f i e s t h e f o l l o w i n g r e q u i r e m e n t s .

(i) [)~n
C i i) I f ~ ^ [c a r] e N o r ~ ^ [c d r] ~ H, t h e n ~ e N.

(i) means t h a t an a t t e m p t a t a c c e s s i n g t h e e x p r e s s i o n a s a w h o l e must

be i n c l u d e d i n t o t h e c o n t e x t . T h i s r e q u i r e m e n t i s u s e f u l f o r t e c h n i c a l

354

reasons. (ii) formalizes the obvious fact that a subcomponent can be

accessed only by accessing the components in which the subcomponent is

included.

The set of all contexts is denoted by Context.

Now consider the function definition f(.... x k) = exp. Suppose that

exp contains m occurrences of the parameter x k in the contexts HI, H 2

H m. What should be the total context for all occurrences of xk? It is clear

that finding all attempts at accessing the parameter x k amounts to findin E

all attempts at accessing its occurrences, thus H I u H 2 u ... u 9 m should

be considered to be the total context of the parameter x k.

11.USING CONTEXTS FOR TYPE GENERALIZATION

Let a parameter have the type t and the context H. Then the function

GenType can be easily defined which generalizes t in accordance with H by

replacing all cons(tl,t 2) unaccessed by H with any.

GenType : Type -->Context --)Type

GenType[t] H = R{GenType'[t]~ I n~H}
GenType' : Type --~ Path --~Type
GenType'[any]= = any
GenType'[atom(M)]= = atom(M)
GenType'[cons(t',t")]([]) = any
GenType'[cons(t',t")]([car]^~) = cons[GenType'[t']=, any)
GenType'[cons(t',t")]([cdr]^~) = cons[any, GenType'[t"]~)
GenType'[l]= = 1

It should be noted that for all t~Type and ~H the relation

t s GenType'[t]= holds, therefore the set {GenType'[t]= I =~H} is finite,

in spite of the fact that H may well be infinite. Consequently, the

greatest lower bound of this set does exist.

12. LATENT SELECTORS

The above considerations might have produced the expression that the

context of a parameter can be determined by examining only the definition

of the function concerned, without the program being globally analyzed.

This is not really the case, however.

Example. f(x) = g(x :: 'a); g(u) = h(u); h(v) = cdr(v);.

The type analysis tells us that f(any), g(cons(any, atom(a))),

h(cons(any, atom(a))). The variable v has the context {[], [cdr]}. But what

is the context of the variable u? At the first glance, it may appear to be

355

{[]}, because there seems to be no selectors in the program attempting at

accessing the variable u. Thus we, erroneously, come to the conclusion that

the types should be generalized as follows: f(any), g(any), h(cons(any,

atom(a))). The only acceptable splitting is therefore h(v ---> vl :: v2). By

performing it we get f(x) = g(x :: 'a); g(u) = h(car(u),cdr(u)); h(vl,v2) =

v2;.

This result is far from beinE satisfactory, because there have

appeared two new selectors car and cdr, not present in the original

program. This makes us draw the conclusion that the parameter access

analysis has to take into account not only the selectors explicitly

appearing in the program, but also the latent selectors to be introduced by

the splitting of parameters.

T~s, if e k is an argument expression in the function call

call f(.... e k), it would be incorrect to take its context to be {[]},

because there should be taken into account all attempts at accessing e k due

to the splitting of e k. This can be done in the following way.

Let the k-th formal parameter of the function f be assigned the type

t, and the total context of all its occurrences be I. Let t' = GenType[t]~.

Then the generalized type t' gives all information about the way in which

e k is 'to be split. The function TypeToContext can be easily defined which

converts t' into the context providing the information about all the

attempts at accessing e k due to the splitting of e k in accordance with t'

TypeToContext : Type --->Context

TypeToContext[any] = {[]}
TypeTo(~ntext[atom(~)] = {[]}
TypeTo(bntext[cons(t',t")] = {[]} u

car~(TypeToContext[t']) u cdr~(TypeToContext[t"])
TypeToContext[l] = {[]}

where ~ use the notation car~, = {[car]^~ I ~e~}, cdr'~ = {[cdr]^= I ~6~}.

Now we can determine the context of the expression ek, assuming the

k-th parameter to be assigned the type t, and the total context of all its

occurrences to be ~. This context is equal to TypeToContext[GenType[t]~].

13. SYSteM OF EQUATIONS FOR FINDING CONTEXTS

For each function f with the definition f(xf, l,...,xf, m) = bodyf let

tf, I , tf, m stand for the types of its parameters, and cf, 1 cf, m

stand for the contexts of its parameters.

356

Let C x [exp] N be the total context of all occurrences of the

variable x in the expression exp, the expression exp itself being in the

context ~.

We have the following set of equations

cf,j = TypeToContext[GenType[tf, j] (C xj [bodyf] {[]})]

where C x [exp] ff is defined as follows:

C e VName --) Exp --) Context --> Context

C x [x] M = f f

C x [y] ~ = {[]}, where x~y,
C x [quote ~] ~ = {[]}
C x [if exp then exp" else exp"] . =

C x [exp] {[]} M C x [exp'] {[]} u C x [exp"] {[]}

C x [call f(exPl eXPm)] N = u{ C x [expj] cf,j }j=l m

C x [car(exp)] . = C x [exp] ({[]} u ear".)
C x [cdr(exp)] . = C x [exp] ({[]} u cdr~.)
C x [cons(exp',exp")] ~ =

C x [exp'] ({[]} M ./car) u C x [exp"] ({[]} M ./cdr)
C x [atom(exp)] ~ = C x [exp] {[]}
C x [equal(exp',exp")] = C x [exp'] {[]} u C x [exp"] {[]}

where we use the notation ~/car = {~ I [car]^= e n}, R/cdr = {~ I

[cdr]^~ e ~}.

We assume the set of contexts to be equipped with natural partial

ordering, ~'sn" being equivalent to ~'gB a. The functions TypeToContext,

GenType, and C are monotonic with respect to contexts, therefore the

minimal fixed point for the above system of equations does exist.

Moreover, since cf, j g TypeToContext[tf,j], there exist only a finite

number of contexts that can be taken as value by cf,j, hence the minimal

fixed point can be found by a finite number of iterations.

The context analysis above resembles, in some respects, the

"neighborhood analysis" as used in the Supercompiler [Turchin 88],

[Turchin 88].

14. PRACTICAL IMPLEMENTATION OF THE CONTEXT ANALYSIS

Some programming tricks have prove to be useful for implementing the

above backward analysis.

First, what we really use in splitting parameters are types

generalized with respect to contexts, rather than contexts themselves.

Thus, instead of computing cf, j, we can compute the type

357

t~,j = GenType[tf,j] cf, j.
S l Second, since tf,j - < tf,#,~ we can replace tf, i_ and tf, j. with a single

marked type mtf, j having the syntax

mt • }4Type marked types
mt ::= any I atom(M) I com~(t',t") I con~!(mt',mt") I

where each marked cons! "belongs" both to t~,j and tf, j, whereas each

unmarked cons "belongs" only to tf, j, the corresponding place in t~,j being

any.

T[~ context cf,j can be extracted from mtf, i _ directly, without finding

t'f,j, by means of the function Retrieve!.

Retrieve! ~ }4Type -->Context

Retrieve![any] = {[]}
Retrieve![atom(M)] = {[]}
Retrieve![cons(t',t")] = {[]}
Retrieve![cons!(mt',mt")] = {[]} u cat'Retrieve![mr "] u cdr'Retrleve![mt"]

Next improvement concerns the representation of contexts. BelnE sets

of paths, contexts are difficult to deal with directly, but we can replace

contexts with their representations havin E the syntax

crep • ContextRep
crep ::= car(crep) I cdr(crep) I mtype(mt)

Given a context's representation, we can reconstruct the context by

the function Retrieve.

Retrie~ • ContextRep
Retrieve[car(crep)] = {[]} u car'Retrieve[crep]
Retrieve[cdr(crep)] = {[]} u cdr'Retrieve[crep]
Retrieve[mtype(mt)] = Retrieve![mr]

All functions the access path analysis involves can be modified so

that they will deal with the representation of contexts, rather than with

the contexts themselves.

IS. GENERALIZATIONS

The first obvious generalization concerns splitting the results of

functions. In the language Mixwell each function produces one and only one

result, for which reason a defined function call call f(expl expm)

cannot be split and, therefore, has to be assigned the type any. The

language, however, can be extended, so that a function can produce several

results, and this device allows the results of a function to be split

358

without splitting the function's definition. A version of the arity raiser

with this extension has been implemented by Ruten F. Gurin.

Another possible extension is to make an arity raiser deal with data

structures that are more complicated than Lisp S-expressions are. For

example, in the case of the languages Refal [Turchin 79], [Turchin 86] and

RL [Romanenko 88], the data are arbitrary trees, rather than binary trees,

which was taken into account in the arity raiser described in

[Romanenko 88].

CONCLUSIONS

In orde r f o r the r e s u l t s produced by v a r i a b l e splitting to be

reasonable, we need information obtained by two preliminary global analyses

of the program. The first, forward, analysis tells us whether the splitting

is feasible, whereas the second, backward, analysis tells us whether the

splitting is useful.

The information obtained is used to avoid introducing new selectors

into the program as well as code duplication, and makes it possible to

avoid useless variable splitting that does not cause some selectors in the

program to be eliminated.

The experiments made by the author have shown that introducing an

arity raiser as a separate phase into a specializer enhances the structure

of residual programs generated without affecting the other phases of the

specializer. The structure of the specializer, thus, can be kept natural

and understandable.

REFERENCES

[Barzdin 88] G. Barzdin. Mixed Computation and Compiler Basis. In D. BJorner,

A.P. Ershov and N.D.Jones, editors, Partial Evaluation and Mixed

Computation, pages 15-28, North-Holland, 1988.

[Beckman76] L. Beckman, A. Haraldson, O. Oskarsson, E. Sandewall. A Partial

Evaluator, and Its Use as a Programming Tool. Artificial In~elliEence,

7(4):319-357, 1978.

[Bulyonkov 84] M.A. Bulyonkov. Polyvariant Mixed Computation for Analyzer

Programs. Acta Informatica, 21:473-484, 1984.

[Burstall 77] R.M. Burstall and J. Darlington. A Transformation System for

359

Developing Recurs ive l~ograms. Journal o f the ACM, 24(1) :44-67 , 1977.

[Dixon 71] J. Dixon. The S p e c i a l i z e r , a Method of Au toma t i ca l ly Wri t ing

Computer Programs. D i v i s i o n of Computer Research and Technology,

Nat ional I n s t i t u t e o f Health, Bethenda, Maryland, 1971.

[Ershov 78] On the Essence of Compilat ion. In E.J. Neuhold, e d i t o r , Formal

Des c r ip t i on o f Programming Concepts, pages 391-420, North-Hol land, 1978.

[Ershov 81] A.P. Ershov. The Transformat iona l Machine: Theme and Va r i a t i ons .

In J. Grushka and M. Chytil, editors, Mathematical Foundations of Computer

Science, ~trbsk~ Pleso, Czechoslovakia, pages 16-32, Lecture Notes in

Computer Science, Vol.llS, Springer-Verlag, 1981.

[Futamura 71] Partial Evaluation of Computation Process - An Approach to a

Compiler-Compiler. Systems, Computers, Controls, 2(5):45-50, 1971.

[Hughes 88] J. Hughes. Backward Analysis of Functional Programs. In

D. Bjorner, A.P. Ershov and N.D.dones, editors, Partial Evaluation and

Mixed Computation, pages 187-208, North-Holland, 1988.

[Jones 85] N.D. Jones, P. Sestoft and H. Sondergasrd. An Experiment in Partial

Evaluation: The Generation of a Compiler Generator. In J.-P. Jouannaud,

editor, Rewriting Techniques and Applications, Dijon, France, pages

124-140, Lecture Notes in Computer Science, Voi.202, Springer-Verlag,

1985.

[Jones 86] N.D. Jones and A. Mycroft. Data Flow Analysis of Applicative

Programs Using Minimal Function Graphs. In Thirteens ACM Symposium on

Principles of Programming Languages, St. Petersburg, Florida, pages

296-306, ACM, 1986.

[Jones 88] Automatic Program Specialization: A Re-Examination from Basic

Principles. In D. Bjorner, A.P. Ershov and N.D. Jones, editors, Partial

Evaluation and Mixed Computation, pages 225-282, North-Holland, 1988.

[Mogensen 88] T. Mogensen. Partially Static Structures in a Self-Applicable

Partial Evaluator. In D.B~orner, A.P. EPshov and M.D. Jones, editors,

Partial Evaluation and Mixed Computation, pages 326-347, North-Holland,

1988.

[Ostrovski 88] B.N. Ostrowski. Implementation of Controlled Mixed

Computation in System for Automatic Development of Language-Oriented

Parsers. In D. Bjorner, A.P. Ershov and N.D. Jones, editors, Partial

360

Evaluation and Mixed Computation, pages 386-403, North-Holland, 1988.

[Romanenko 88] S.A. Romanenko. A Compiler Generator Produced by a

Self-Applicable Specializer Can Have a Surprisingly Natural and

Understandable Structure. In D. Bjorner, A.P.F_rshov and N.D. Jones,

editors, Partial Evaluation and Mixed Computation, pages 445-463,

North-Holland, 1988.

[Sestoft 86] The Structure of a Self-Appllcable Partial Evaluator. In

H. Ganzlnger and N.D. Jones, editors, Programs as Data Objects,

Copenhagen, Denmark, 1985, pages 236-256, Lecture Notes in Computer

Science, %Iol. 217, Springer-Verlag, 1986.

[Schmidt 86] D.A. Schmidt. Denotational Semantics. Allyn and Bacon, Boston,

1986.

[Sestoft 88] P. Sestoft. Automatic Call Unfolding in a Partial Evaluator. In

D. Bjorner, A.P. Ershov and N.D. Jones, editors, Partial Evaluation and

Mixed Computation, pages 485-S06, North-Holland, 1988.

[Turchln 72] V.F. Turchin. Equivalent Transformation of Recurslve Functions

Defined in Refal. In Teoriya Yazykov i MeLody Programmirovaniya. Trudy

Simposiuma, pages 31-42, Alushta-Kiev, 1972 (in Russian).

[Turchin 79] V.F. Turchin. A Supercompiler System Based on the Language

Refal. SIGPLAN Notices, 14(2):46-54, February 1979.

[Turchin 82] V.F. Turchin, R.M. Nirenberg and D.V. Turchin. Experiments with a

Supercompiler. In 1982 ACM Symposium on Lisp and Functional Programming,

Pittsburgh, Pennsylvania, pages 47-SS, ACM, 1982.

[Turchin 86] V.F. Turchin. The Concept of a Supercompiler. ACM Transactions

on Programming Languages and Systems, 8(3):292-325, July 1986.

[Turchin 88] V.F. Turchin. The Algorithm of Generalization in the

Supercompiler. In D. Bjorner, A.P. Ershov and N.D. Jones, editors, Partial

Evaluation and Mixed Computation, pages 531-649, North-Holland, 1988.

[Wadler 88] P. Wadler. Deforestation: Transforming Programs to Eliminate

Trees. In European Symposium on Programming, Lecture Notes in Computer

Science, Springer-Verlag, 1988.

