
A Syntactic Theory of Transparent 
Parameterization 

Stanley Jefferson * 
Shinn-Der Lee t 

Daniel P. Friedman t 

Computer Science Department 
Indiana University 

Bloomington, Indiana 47405 

Abs trac t  
We present a calculus for Lamping's programming system of transparent and 

orthogonal parameterization. The calculus is shown to be consistent, to have a 
standardization procedure, and to correspond with an operational semantics ob- 
tained from the denotational semantics by viewing the semantic equations as state 
transition rules. Lamping's system is remarkable because it is small, having only 
four constructions, yet it can easily express a wide variety of parameterization 
mechanisms including lexical variables, dynamic variables, procedure calls, first- 
class environments, modules, and method lookup and inheritance mechanisms of 
object-oriented systems. Due to its orthogonal and transparent parameterization 
mechanisms, every object, including data and code, in Lamping's programming sys- 
tem can be parameterized, and a parameterized object can be manipulated as if it 
were a ground object. This blurs the distinction between data and code, allowing 
one to think of data as code and vice versa. 

1 I n t r o d u c t i o n  

Parameterization mechanisms in programming languages provide for the expression of 
potential dependencies of a program unit on the values of some parameters. Most lan- 
guages incorporate different parameterization mechanisms for different circumstances. 
For instance, in a language such as Modula-2, the result of an expression depends on 
the values of its free variables, the result of a function application depends on the val- 
ues of the arguments, and the behavior of a module depends on the behaviors of the 
modules it imports. Lamping [4,5] introduces a programming system, having only four 
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constructions, that can easily express a wide variety of parameterization mechanisms 
including lexical variables, dynamic variables, procedure calls, first-class environments, 
modules, and objects, classes, method lookup and inheritance in object-oriented sys- 
tems. Moreover, Lamping's programming system is capable of expressing recursion and 
parallel let. It is small and simple, having only one more construction than that of the 
A-calculus, and it is computationally equivalent to the A-calculus. The versatility of his 
system is a consequence of its ability to express sets of bindings and to parameterize 
over them, which in turn is a consequence of the transparency and orthogonality of its 
parameterization mechanisms. Orthogonality allows any component of a construction 
to be replaced by a parameter. Transparency allows the value of a parameter to pass 
through a construction, making it accessible to the components of the construction. 
Due to its orthogonal and transparent parameterization mechanisms, every object, in- 
cluding data and code, in Lamping's programming system can be parameterized, and a 
parameterized object can be manipulated as if it were a ground object. This blurs the 
distinction between data and code, allowing one to think of data as code and vice versa. 

This paper presents a calculus for Lamping's system. The calculus is shown to be 
consistent, to have a standardization procedure, and to correspond with an operational 
semantics obtained from the denotational semantics by viewing the semantic equations 
as state transition rules. Consistency and correspondence imply that the calculus and 
the operational semantics produce the same unique result for every program that termi- 
nates with a ground constant; standardization provides a particular order of reduction 
for determining that result. With Lamping's denotational definition, reasoning occurs 
on the metalevel of domains and continuous functions. With our calculus, reasoning is 
performed[ algebraically on a syntactic level. The calculus, thus, can serve as a symbolic 
reasoning system. 

The remainder of this paper is organized as follows. Section 2 is an informal overview 
of Lamping's programming system, culminating with an object-oriented programming 
example. Section 3 develops a calculus for the system. Section 4 gives an example of 
reasoning with the calculus. Section 5 proves that the calculus is consistent and that it 
has a standardization procedure. Section 6 reproduces Lamping's denotational seman- 
tics and gives the correspondence between the calculus and an operational semantics 
obtained from the denotational semantics. Section 7 is the conclusion. 

2 O v e r v i e w  

We now present the syntax of Lamping's system, followed by an informal description 
of the semantics and several examples illustrating the capabilities of the system. The 
reader familiar with denotational semantics may also want to refer to Lamping's deno- 
tational definition, reproduced in Figure 6. 

The pure system has a core syntax consisting of four categories of expressions: vari- 
ables, let expressions, supply expressions, and data expressions. Ground constants (e.g., 
true, false, 0 ,1, . . . )  and primitive operators (e.g., A, V, -~, +, - , . , / , . . . ,  if then else,...) 
may be added to the pure system. We consider a language Fl whose syntax is displayed 
in Figure 1. It is essentially the same as that given by Lamping except that we have 
added a special constant e which denotes an error value. The results of this paper could 
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S y n t a c t i c  ca tegor ie s  : 

c e c =  { E , 0 , 1 , 2 , . . . }  
z E } 2  

M , N  E H 

A b s t r a c t  s y n t a x  : 

M : : =  x 

I l e t z = M i n N  
I supply x = M to N 
I data z : M 

Ic 
IM+N 

(constants) 
(variables) 
(expressions) 

Figure 1: S y n t a x  of  t h e  l a n g u a g e  H 

be extended to a language with additional ground constants and primitive operators, 
but doing so would increase the length of the proofs and obscure the main ideas. 

We adopt the following conventions: a, b, c are metavariables for C; w, z, y are meta- 
variables for l~; uppercase A , . . . ,  Z denote H-expressions; = denotes syntactic equiva- 
lence; and parentheses are used to resolve ambiguity. 

From here on, we shall distinguish between the use of the terms variable and param- 
eter: variable refers to syntax, while parameter refers to semantics. The system has two 
classes of parameters: lexically scoped lezical parameters and dynamically scoped data 
parameters. Lexical parameters are the same as those found in conventional lexically 
scoped languages. Data  parameters are similar to conventional function parameters in 
that  they provide an abstraction mechanism for expressions. Unlike function parame- 
terization, da ta  parameterization is a transparent abstraction mechanism. Depending 
on the context, an occurrence of a variable can denote either a lexical parameter or a 
da ta  parameter.  

The expression let z -- M in N specifies value M for lexical parameter z in expres- 
sion N. The following expression, which evaluates (x + y) at x = 3 and y = 2, yielding 
5, demonstrates lexical parameterization: 

let  x =- 1 in 

l e t y  - -  2 , x i n  

let  x -"  3 in 

(x + y) 

Data parameterization is notated by data x : M. It indicates a potential dependency 
of the expression M on the parameter x; any free occurrence of x in M is a place holder 
for a value to be supplied. Moreover, it declares x to be a da ta  parameter. For example, 
data x : (2 * x) is an expression which when supplied a value n for the da ta  parameter 
x results in the value 2n. The notation for supplying value M for da ta  parameter x to 
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expression N is supply x - M to N. A supply expression is the only way to associate a 
value with a data parameter. In the next example, the expression on the left associates 
the data parameter x with 3 and evaluates to 6. It is equivalent to the expression on 
the right. 

supply x = 3 to let f = data x : (2 * x) in 
data x : (2 • x) supply x = 3 to f 

The following two expressions show the different handling of overriding by the two 
mechanisms: 

l e t x  = l i n  supp l yx  = l t o  
l e t y  = 2 , x i n  le ty  = d a t a x :  ( 2 * x )  in 

let x = 3 in supply x = 3 to 

Y Y 

Although the third let overrides the first one in the expression on the left, the lexical 
parameter x in expression 2 * x is bound to 1. Therefore, the result is 2. The expression 
on the rig]ht has a result of 6, because the second supply overrides the first one and the 
value supplied for data parameter x is determined at the time when expression data x : 
(2 * x)  is used. 

The expression data x : (2 • x) in the previous example evaluates to a parameter- 
ized object. Transparency necessitates the explicit naming of data parameters when a 
parameterized object is "called." 

Transparency has some interesting properties. First, data parameters can be sup- 
plied in any order. The following two expressions are equivalent: 

supply x = 3 to 
supply y = 4 to 

data y : data x : (3 * x + 4 • y)  

supply y - -  4 to 
supply x = 3 to 

d a t a y :  d a t a x :  ( 3 , x + 4 , y )  

Second, one supply matches multiple data: 

l e t f  = d a t a x :  ( 2 , x )  in 
l e t g  - -  d a t a x :  ( x , x )  in 

supply x = 3 to 
(f + g) 

In this example, (f + g) is equivalent to (data x : (2 • x)) + (data x: (x • x)). The 
supply supplies 3 for the x's in (f Jr g). Consequently, the result is 15. 

Since parameterization is transparent to all constructions, the supply distributes over 
the primitive operator + in the above example. That is, the following two expressions 
are equivalent: 

supply x == 3 to 
((data x :  (2 , x))  Jr (data x :  ( x *  x) ) )  

(supply x ---- 3 to data x : (2 • x ) )  
+ (supply x = 3 to data x : (x • x ) )  

It is, therefore, possible to write (f + g). In the A-calculus, (f + g) would have to be 
expressed as (Ax. ( ]  x ) +  (g x)), since parameterization is not transparent to the addition 
operator +. 
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data Ogl,. . .  ,3~r= : M = data x l  : . . .  : data xr= : M 

supply OC 1 = M I , . .  • , xr= • Mr= t o  N 

= supply X 1 ~--- M 1 t o  . . .  supply xr= = Mr= to N 

Figure 2: Mul t ip l e  data and  supply 

Consider the expression 

B = data body : 
supply x = 3 to 

supply y = 4 to 
supply dist - -  ~ / (data  x : x) 2 -t- (data y : y)2 to 

supply closer = (data dist : dist) < 
(data point : supply body - (data dist : dist) to point) to 

body 

which supplies values for the data parameters x, y, dist, and closer to the value denoted 
by body. This is essentially a parameterized set of bindings which can be made to affect 
the value supplied for body. For instance, 

supply body -- data dist : dist to B 

retrieves the value ~/(data x : x) 2 + (data y : y)2 bound to dist in the set of bindings B. 

To completely evaluate ¢(data x :x) 2 + (data y : y)2, the values bound to x and y are 

retrieved from the set of bindings B. The result is, therefore, y r~  -t- 4 2 = 5. 
We define some syntactic extensions, given by Lamping, for programming with sets 

of bindings. Figure 2 defines two syntactic extensions for versions of multiple data and 
supply. Figure 3 defines syntactic extensions for manipulating sets of bindings. The 
transmit operation makes the set of bindings M affect the expression N by supplying 
N as a value for the data parameter body to M. The o operation combines two sets of 
bindings M and N by making M affect the result of making N affect body. The key 
properties are 

transmit { X  1 --" M1, . . . ,  xr= - -  Mr=} to  N 
= supply Xz = M I , . . .  ,xr= -- Mr= to N 

and 
{Xl -- M1, . . . ,  xr= ---- Mr=} o {Yl -- N1 , . . . ,  Ym -- N,,} 

= { x l - - M 1 , . . . , x r = - - M r = , y l - - N 1 , . . . , y , , - - N , = }  

provided that the data parameter body is reserved only for the definitions of sets of 
bindings. 

To illustrate the use of the definitions, we rewrite the expression B from above: 

B={x=3, 
y---4, 
dist - -  ~ / (data  x : x) 2 -t- (data y : y ) 2  
closer = (data dist : dist) < (data point : t ransmit  point to (data dist : dist) )  } 
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(z l  = M I , . . .  , z .  = m . }  
--  data body : supply ~1 = MI, . . .  , z .  = M .  to body 

t ransmit  M to N - supply body = N to M 

M o N -- data body : t ransmit  M to t ransmit  N to body 

Figure 3: Binding definitions 

class(z1,... , z , )  is M _= data z l , . . .  , z ,  : M 

subclass(zi, . . .  , z , )  of M is N ~ M o class(z1,... , z , )  is N 

with Zz - M 1 , . . .  , z ,  - - M ,  instantiate N 
-= supply Zl = M1,. . .  z , ,  -- ./I//, to N 

M . z  = transmit M to data z : z when M ~ self 

self.z - data z : z 

Figure 4: O b j e c t - o r i e n t e d  p r o g r a m m i n g  defini t ions 

The set of bindings B can be considered as an instance of a cartesian point class: x 
and y are coordinates of the point, dist is the distance of the point from the origin, and 
closer compares the distances of this point and another given point point. 

In the remainder of this section we give an example illustrating object-oriented 
programming in 1-1. Figure 4 gives definitions that will be used in the object-oriented 
programming example. An instance is represented as a set of bindings. A class is a 
parameterized set of bindings. A subclass of a class is formed by combining the set 
of new bindings representing the subclass with the set of bindings representing the 
class. Supplying values for the parameters of a class yields an instance of that class. 
The expression M . x  denotes the value bound to x in instance M, and corresponds to 
sending the message z to M. In an instance, the keyword self refers to the instance 
itself. 

Using the definitions of Figure 4, a class cpclass of cartesian points can be defined 
a s :  

cpclass = class(a, b) is 
{ X - - "  aj 

y - - - - b ,  
dist = ~/(self.x) 2 + (self.y) 2, 
closer = self.dist < (data point : point.dist) } 
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An instance, cp, of a cartesian point at coordinates (3, 4) can be defined by 

cp - -  with a = 3, b = 4 instantiate cpclass 

Consider a subclass m pclass of cpclass that inherits all bindings of cpclass except 
that the distance is redefined as the Manhattan distance from the origin: 

dist = self.x + self.y 

As a result, the self.dist in the definition of closer should use the newly defined dist. The 
subclass mpclass can be defined as 

mpclass _--__ subclass 0 of cpclass is {dist = self.x + self.y} 

Since the new dist overrides the old one and closer uses the latest binding of dist, we get 
the desired behavior. 

In summary, the expression 

let cpclass -- class(a, b) is 
{ x ~  a, 

y = b ,  
dist = ~/(self.x) 2 + (self.y) 2, 
closer - -  self.dist < (data point : point.dist) } in 

let mpclass = subclass 0 of cpclass is {dist - -  self.x + self.y} in 
let cp = with a = 3, b - 4 instantiate cpclass in 

let mp - with a = 3, b = 4 instantiate mpclass in 
supply point = mpto  

cp.closer 

has a value of true since the distance of a cartesian point at coordinates (3, 4) is 5 and 
the distance of a Manhattan point at coordinates (3, 4) is 7. In section 4 we prove, 
using the calculus defined in section 3, that a Manhattan point at coordinates (3, 4) 
evaluates to 7 when sent the message dist. 

3 A Calculus  

In this section we give a calculus for the language II. First, we define the notions of 
free lexicM variables, free data variables, lexically closed expressions, programs, and 
substitution. 

The notion of the set of free lexical variables of an expression M is an extension of 
the same notion in the ~-calculns. The set of free le~'ical variables of an expression M, 
denoted by F L V ( M ) ,  is defined inductively: 

FLV(x )  = {x}, 

FLV(let  x = P in Q) = (FLV(Q) - {x}) U FLV(P) ,  

f LV(supply x = P to Q) = F L V ( P )  U FLV(Q) ,  

FLV(data z : P) = F L V ( P )  - {x}, 

FLV(c)  = 0, 

F L V ( P  + Q) = F L V ( P )  U FLV(Q).  
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Similarly, the set of free data variables of an expression M,  denoted by FDV(M),  
is defined inductively: 

FDV(x)  = 0, 
FDV(let x = P in Q) = FDV(P)  U FDV(Q), 

FDV(supply x = P to Q) = (FDV(P) U FDV(Q)) - {x}, 

f DV(data x :  P) = FDV(P)  U {x}, 

FnY(c )  = O, 

F D V ( P  + Q) = FDV(P)  U FDV(Q). 

A proqram is an expression tha t  does not have free lexical variables or free da ta  
variables. A lexically closed expression is an expression tha t  does not have free lexical 
variables. 

The substitution of lexically closed expression M for variable x in expression N,  
denoted by N[x := M], is defined inductively according to the structure of N: 

x[x := M] = M, 

y[x := M] - y i f x ~ y ,  

(let x -- P in Q)[x := M] = let x --- (P[x := M]) in Q, 

(let y = P in Q)[x := 34] - let y -- (Fix := 31/]) in Q[x := M] if x ~ y, 

(supply w = P to  Q)[x : =  M ]  - supply w = (P [x  : =  31/]) to  Q[x : =  M ] ,  

(data x : P)[x := M] _ data x : P ,  

( d a t a y : P ) [ x : = M ] - d a t a y : ( P [ x : = M ] )  i f x ~ y ,  

c[x := M] --e, 

(P + Q)[x := M] -- (P[x := M]) + (Q[x := M]). 

Note that  any free occurrence of the variable x in the body P of the expression data x : P 
is a free da ta  variable, and not a free lexical variable. Consequently, (data x : P)[x := M] 
- -  (data x : P ) .  

The following definition gives the basic notion of reduction for our calculus: 

D e f i n i t i o n  3.1 (Bas ic  ~r-Reduct ion)  The basic ~r-reduction is 

"K ~ "/rl U "/r2 U 7r3 U ,/r4 U ,/r5 U ,/1" 6 

where, with FLV(M)  = 0, (read A --* B as a relation between redex A and its contrac- 
tum B) 

~rl : let x = M in P - ,  P [x  : =  M ]  

Ir2 : supply x = M to  data x : P --* supply x = M to  P[x  : =  M ]  

~3 : :supply y ---- M to data x : P -~ data x : supply y ---- M to P i f  x ~ y 
~r4 : supply x = M to  c --* c 

7r5: s u p p l y x = M t o ( P - F Q ) - ~ ( s u p p l y x - M t o P ) J r ( s u p p l y x - - M t o Q )  

~r6 : a + b --* c if [a l + [b] = [c]. 
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Consider the expression supply x ---- M to data x : P in tr2. The data parameter x in 
P is supplied the lexically closed expression M. This can be done by substituting free 
x's in P by M. Since data parameters are dynamically scoped, the data parameter x 
might be needed in P[x := M], so we must retain the supply in the contractum. 

Consider the expression supply y ---- M to  data x : P in ~r3. The expression data x : P 
is expecting a value for x. The supply, on the other hand, supplies a value for y. Thus, 
lr2 is not applicable. But transparent data parameterization requires that expression 
supply y ---- M to data x : P be equivalent to expression data x : supply y ---- M to P. Since 
M has no free lexical variables, there is no danger of turning any free lexical variable x 
in M into a free data variable. This basic 1r-reduction serves the purpose of moving the 
data outward in order to find a match with the closest supply that supplies a value for 
the data parameter x. 

Reduction ~r4 says that a constant does not depend on data parameters. Trans- 
parency requires that data parameters distribute over the primitive operator +; this 
is formalized in reduction ~r 5. The denotation of a constant symbol c is given by [c]. 
Reduction 7r6 simulates the behavior of the primitive operator + extended to be strict 
with respect to error. 

Based on the basic x-reduction, we define one-step x-reduction, x-reduction, and 
7r-equality in the usual way [1]: 

(i) One-step It-reduction, denoted by --*~, is the compatible closure of Ir: 

M--* N =~ M--~ ~ N , 
M - - ~  N =~ let x = M in P -,~ let x m N in P, 
P --*~ Q=~ let x - -  M in P --*~ le tx- -  Min Q, 

M --,~ N =¢- supply x ----- M to P --% supply x -- N to  P ,  
P -,~ Q =~ supply x = M to P --% supply x -- M to Q, 

M -*~  N =~ data x : M - %  data x : N ,  
M--,~ N =~ M + P - , ~  N + P , 
P -*~  Q=~ M + P - * ,  M + Q. 

(ii) 1r-reduction, denoted by --~f, is the reflexive and transitive closure of --*~. 

M -*~ N =~ M - -~  N, 
M - -~  M, 
M - - ~  N , N - - ~  P =~ M--~¢ P. 

(iii) ~r-equality (~r-convertibility, ~r-calculus), denoted by =~,  is the least equivalence 
relation generated by - ~ .  

M---~ ~ N =~ M =~ N, 
M =,~ M, 
M =,~ N =~ N =,~ M, 
M =,~ N, N =,~ P ~ M =,~ P. 
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4 Reasoning with the  Calculus 

Using the calculus, we show that expression mp.dist, where mp is the Manhattan point 

{ x = 3 ,  
y = 4 ,  
dist = self.x + self.y, 
closer = self.dist < (data point : point.dist)} ,  

is equivalent to the constant expression 7: 

by definition 

By a series of ~r5 reductions, the above expression can be reduced to M + N where 
subexpression M corresponds to (data x : x) and subexpression N corresponds to (data 
y : y). Subexpression M can be reduced to the constant expression 3: 

M - supply body --  (data dist : dist) to 
supply x --" 3, y = 4 to 

supply dist -" (data x :  x)  + (data y :  y) to 
supply closer -" (data dist : dist) < (data point : point.dist) to 
(data x:  x) 

--~. supply body = (data dist : dist) to 
supply x --- 3, y = 4 to 

supply dist --- (data x : x)  + (data y : y)  to 
supply closer - -  (data dist : dist) < (data point : point.dist) to 

3 by repeated 7r 3 and then 7r2 

Then, by a series of five ~r4 reductions, the above expression reduces to the constant 
expression 3. 

Similar][y, subexpression N reduces to the constant expression 4. Therefore, M + N 
reduces to 3 + 4, which reduces to 7 by ~r 6. 

mp.dist _--_ t ransmit  mp to (data dist : dist) 
- supply body = (data dist : dist) to  

data body : 
supply x --  3, y = 4 to 

supply dist = (data x : x)  -t- (data y : y) to 
supply closer = (data dist : dist) < (data point : point.dist) to 
body by definition 

--+~ supply body = (data dist : dist) to 
supply x --- 3, y -- 4 to 

supply dist = (data x : x)  + (data y : y)  to 
supply closer --- (data dist : dist) < (data point : point.dist) to  

data dist : dist by ;r2 
- * .  supply body = (data dist : dist) to 

supp lyx  -- 3, y = 4 t o  
supply dist = (data x : x)  + (data y : y) to 

supply closer = (data dist : dist) < (data point : point.dist) to 
(data x : x) + (data y: y) by 7r 3 and then r2 



222 

(P1) 

(P2) 
(P3) 
(P4) 
(P5) 

M--~ M 

M ....r, M1,N -'~ N1,FLV(M) = 0 =~ letx = M in N ~ letx = M1 in N1 
1 1 

M ~ Mz, N -~ Nz, FLY(M) = 0 =~ supply x = M to N -~  supply x = MI to N~ 
l 

M "~ Mi =~ data x : M --~, data x : MI 
M ' ~  M~,N--~ N~ =~ M + N'-~ MI + N~ 

(P6) M -'~ M1, 
(P7) M -~ M1, 

=# 

N --~ N1, FLY(M) = 0 =~ let x --- M in N -~ N1 [x := M1] 
N ~ N~, FLY(M) = 0 
supply x = M to (data x : N) -~ supply x ---- M1 to Nl[x := M1] 

(P8) M ~, M1, N ~ N1, FLY(M) = 0, y ~ x 
=~ supply y ---- M t o  (data x : N) ~ data x : (supply y = M1 to N1) 

1 

(P9) N --~ c, FLY(M) = 0 =~ supply x ---- M to N ~ ,  c 
(P10) M --r, Mi, N ~ N1 + N2, FLY(M) = 0 

1 

=¢, supply x = M to N --~ (supply x = M i  to N1) + (supply x ---- M1 to N2) 
1 

( P l l )  M "~ a,N--~ b, la]+ ib] = Icy =~ M + N-"~, c 

Figure 5: Para l le l  reduc t ions  

5 Consistency and Standardization 

Given a calculus, two immediate concerns are its consistency and its standardization 
procedure. Consistency is implied by a Church-Rosser theorem which shows the con- 
fluence of two reduction paths that proceed in two different directions from the same 
expression. It says that if a program has a result then the result is unique no matter 
what order of reduction we choose. The derivation in the previous section is meaningful 
only if the calculus is Church-Rosser. Standardization is a particular order of reduction 
that provides a semi-effective procedure for finding the result of a program. It says that 
if a program has a result then the result can be obtained by that particular order of 
reduction. 

For the proof of the Church-Rosser theorem, we follow Tait-Martin-LSf's strategy 
for the corresponding work on the h-calculus [1]. We define a parallel reduction which 
is a superset of the one-step 7r-reduction and a subset of the ~r-reduction. Thus, its 
reflexive and transitive closure is the ~r-reduction. Then, we show that this parallel 
reduction satisfies the diamond property. From this, we infer that its reflexive and 
transitive closure also satisfies the diamond property. Since the reflexive and transitive 
closure of the parallel reduction is the ~r-reduction, we have the ~r-reduction satisfying 
the diamond property also. Hence, the calculus is Church-Rosser. 

The inductive definition of the parallel reduction from an expression A to an expres- 
sion B, denoted by A -7* B, is given in Figure 5. Parallel reductions can be classified 
into three categories. The first category parallel reduces an expression to itself. This is 
(P1). The second category parallel reduces an expression A to an expression B with B 
being derived from A by parallel reducing e~/ery top-level subexpression of A. Conse- 
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quently, the top-level structure of B is the same as tha t  of A. There are six classes of 
expressions in the language, but  constants and variables can only reduce to themselves, 
so we have four classes left. They are dealt with in (P2)-(P5). The third category 
parallel reduces an expression A to an expression C with C being derived from A by 
parallel reducing A to an intermediate expression B, as in the second category, then 
applying a basic r-reduction to B to get C. Since there are six basic z-reductions, this 
category has six cases: (P6) - (P l l ) .  

T h e o r e m  5.1 ( C h u r c h - R o s s e r )  It-reduction satisfies the diamond property. That is, 
i ]M --+% M1 and M ---~,~ M2 then there is an M3 such that M1 --% M3 and M2 ---% M3. 

O u t l i n e  o f  p r o o f  : By an induction on the length of proof of M ~ M1, we can 
i 

show tha t  --~ satisfies the diamond property. From that ,  by a simple diagram chase, 
we can show tha t  --~* also satisfies the diamond property. Then, --% C -~  implies 

! I 

- - ~  = -+*~ C --~*! . Similarly, --~, C - ~  implies --~'1 C --~* - - - ~ .  Therefore, 
---~* = - - ~ .  Hence - - ~  satisfies the diamond property. [] 

l 

For the proof of the standardization theorem, we follow the strategies in [2,3,6]. We 
begin by defining the notion of outermost reduction. Informally, an outermost reduction 
always reduces an outermost redex. 

D e f i n i t i o n  5.2 ( E v a l u a t i o n  C o n t e x t s )  (i) An evaluation context C[ ] is defined in- 
ductively: 

* [] is an evaluation context, 

* if F L V ( M )  = 0 and C[ ] is an evaluation context then supply x -- M to C[ ] is an 
evaJ[uation context, 

* if C[] is an evaluation context then e l ]  -t- M and M + e l ]  are evaluation contexts. 

(ii) If C[ 11 is an evaluation context and M is an expression then C[M] denotes the result 
of replacing the [] of C[]  by M. 

D e f i n i t i o n  5.3 ( O u t e r m o s t  R e d u c t i o n )  Outermost reduction, denoted by ~-%, is 
the least relation between H-expressions such t h a t  whenever M ~-+~ N,  there is an eval- 
uation context C[] and a basic ~r-reduction P -+ Q with M - C[P] and C[Q] =- N. 

Next, we allow a redex other than an outermost one to be reduced. But  once 
a redex within an outermost redex is reduced, we can never go back to reduce the 
outermost redex. A sequence of expressions derived using this strategy is called a 
s tandard reduction sequence. With  this, we can show that  if M --~T N then there is a 
s tandard reduction sequence P1, . . . ,  Pv such that  M = P1 and Pp - N. 

D e f i n i t i o n  5.4 ( S t a n d a r d  R e d u c t i o n  Sequences )  Standard reduction sequences 
(srs's) are defined inductively: if M 1 , . . . ,  Mm and N 1 , . . . ,  N ,  are srs's then 

(S1) z is a srs, 
($2) (let x = M1 in N1) , . . . ,  (let x = M1 in N , ) , . . . ,  (let x -- Mm in N , )  is a srs, 
($3) (supply x = M1 to N 1 ) , . . . ,  (supply x = M1 to N , ) , . . . ,  (supply x = Mm to N , )  is a 

srs, 
($4) (data x : M1) , . . . , ( da t a  x : Mm) is a srs, 
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($5) c is a srs, 
(S6) (M1 + N1) , . . . ,  (Mm + N1), . . . ,  (M,, + N,) is a srs, 
($7) if M0 ~ M1 then M0, . . . ,  Mm is a srs. 

T h e o r e m  5.5 (S tandard iza t ion )  M --,~ N iff there is a srs PI , . . .  ,Pp with M =- PI 
and Pp - N .  

Out l ine  of  p roof  : (¢=) Clearly if there is a srs P1 , . . . ,  Pp such that M - P1 and 
Pp = N then M - -~  N is provable in the calculus. 

(=~) If A0 -~ A1 and A1,.. .  ,A,  is a srs then, by a lexicographic induction on n, on 
the number of one-step v-reduction used in the proof of A0 -~ A1, and on the structure 
of A0, we can show that there is a srs B0 , . . . ,  B,, with A0 -= B0 and B~ - A,.  

M - -~  N implies there are expressions M1, . . . ,  Mm such that M - M1 --~ " "  --" Mm 
1 ! 

= N. From Mm-y ~-" Mm and M,, being a srs (any expression is a srs), we can find a 
srs P1, . . . ,  Pp such that Mm-1 -= P1 and Pp = M,,. From M~-2 "7" P1 and P1 , . . . ,  Pp 
being a srs, we can find a srs Q1, . . . ,  Qq such that M~-2 -= Q1 and Qq -= Pp ~ M,~. 
Repeat this procedure from Mm back up to M1 and we are done. O 

If M is a program and M ---, c then the srs is a sequence of outermost reductions: 

Corol la ry  5.6 Let M be a program. Then M ---~ c i ~  M H* c. 

6 Operational Semantics and Correspondence 

In order to relate the ~r-calculus to Lamping's denotational semantics, we prove that the 
calculus corresponds to an operational semantics that  was informally derived from the 
denotational semantics. The correspondence states that the calculus and the operational 
semantics produce the same result for every program that terminates with a ground 
constant. This notion of correspondence is the same as in [2,3,6]. 

Lamping's denotational semantics is reproduced in Figure 6. The operational se- 
mantics, defined in Figure 7, is a simple state transition system. It is informally derived 
from the denotational semantics by viewing the equations of the denotational definition 
as state transition rules. A state is either a basic state or a compound state. A com- 
pound state is a pair of states al and a2 written as (al % a2), and serves as a mechanism 
for evaluating addition expressions. A concrete environment represents an environment 
as an association list. The arid concrete environment, represented by ft, binds every 
variable to the concrete parameterized object < e, fl >. A concrete parameterized object 
corresponds to a lexically dosed expression. 

T h e o r e m  6.1 (Cor respondence)  Let M be a program. Then 

<<M, ft, fl>> F* <<c, ft, fl>> i]] M s-.; c. 

Out l ine  of  p roo f  : (=~)  We show that each transition rule can be simulated by 
a sequence of standard reductions. With this and the standardization theorem, it is 
straightforward to show that the operational semantics can be simulated by the calculus. 

(¢=) First, by induction on the number of transition steps, we can show that for any 
state a, if a }-* << c, fl, ft  >> and a F-* a', then a '  ~-* << c, fl, ft  >>. Next, let M0, . . . ,  Mm be 
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S e m a n t i c  d o m a i n s :  
c E C (constants) 
x E 12 (variables) 

p, 6 E H = 12 --* O (environments) 
CO = ZX ~ C (parameterized objects) 

V a l u a t i o n  f u n c t i o n :  A,t : ll --,/X ~ lg ~ 0 : 

M I x l p 6 =  
A/t [let x = M in N I P 6 =  

,£4 [supply x = M to N] p6 = 
M [data x : M ] p 6 =  

.,~ [elp6= 
Azl [M + N ] p  6 = 

D a t a  s t r u c t u r e s :  

p(x) 6 
M [ ~  (p[(M [M[ p)/x]) 6 
A4 IN] p (6[(M [M] p)/x]) 
A4 IM] (p[6(z) /z ] )  6 
Icl 
(A~ [M] p 6) + (A,t [NI p 6) 

Figure 6: D e n o t a t i o n a l  S e m a n t i c s  o f  H 

w E O = ] - [  X U  
p, 6 E U = {f~} -I- (Lt¢ x 12 x O) (concrete environments) 

fl E B = II x U x / 4  (basic states) 
a E S = B + ( S x { + }  x S )  (states) 

Environment extension: *[* *-- *] : H × 12 x 0 --* H : 

p[x ~- o~1 = (p, x, @. 

Environment lookup: lookup(*, *) : L / x  12 -~ O : 

Iookup(fl, x) = < e, f l > ,  

Iookup(p[x ~ w], x) = w, 

lookup(p[y ~ w],x) = Iookup(p,x) if x ~ y, 

T r a n s i t i o n  rules :  • t - ,  : S - *  S : 

<<x,p, 6>> t- 

<< let x -- M in N, p, 6 >> t- 

<<supply x = M to N,  p, 6>> F 

<<data x : M,p,6>> l-- 

<<c,p,6>> t- 

<<M + N,p,6>> I- 

(<<a, fl, fl>> + <<b, fl, fl>>) k 

al [- °2 :=,, 

° i  t- a2 =~ 

(concrete parameterized objects) 

C o n v e n t i o n :  

<<M, pl,6>> if 

<<N,p[x ~ < M , p > ] , 6 > >  

<<N,p, 6[x ~ < M , p > ] > >  

<<M, p[x ~- lookup(6, x)], 6>> 
<<c, fl, fl>> if p ~ fl 

(<<M,p,6>> + <<N,p,6>>) 

<<c, fl, fl>> if 

(ol + ~) ~ (~  + o) 
(o + ol) F (o + °2) 

lookup(p, x) = < M, p~ > 

or 6 # f l  

Ial + [bl = [el 

t-* denotes the reflexive and transitive closure of binary relation k .  

Figure 7: O p e r a t i o n a l  s e m a n t i c s  o f  II 



226 

a sequence of expressions with M = M0 ~ ... ~ Mm = c. For each i, we can show 
that there is a state a such that <<M~_z,fl, il>> F*a and <<M, fl, ft>> F-* a. Now, 
if <<M, ft, ft>> F* <<c, ll, fl>>, then a F* <<c, ft, fl>> also. Hence, <<Mi_l,fl, fl>> F-* 
a F* <<c,[l, ft>>. With <<M,~,fl, fl>> = <<c, fl, fl>> as the basis, by an induction on 
m back up to O, we have <<M, II, fl>> = <<M0,fl, ll>> F* <<c, ft,[l>>. [] 

7 Conc lus ion  

Lamping's system of transparent parameterization provides a unified view of parame- 
terization which can easily express a wide range of parameterization mechanisms. We 
have developed a calculus for this system. The calculus is consistent, has a standardiza- 
tion procedure, and corresponds to ma operational semantics directly obtained from the 
denotational semantics. It provides a simple symbolic reasoning system for the language 
H, which can be used to determine the result of a program and to prove the equiva- 
lence of programs. The calculus is small, having only three conversion rules for the core 
syntax. We believe the calculus provides additional insight into Lamping's system of 
parameterization. In particular, it clarifies the relationship between lexical substitution 
and data parameterization. 
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