
Higher Order Escape Analysis:
Optimizing Stack Allocation in Functional Program Implementations 1

Benjamin Goldberg and Young Gil Park

Department of Computer Science 2
Courant Institute of Mathematical Sciences

New York University

Abstract.

In this paper, we present a method for optimizing the allocation of closures in memory. This method is
based on escape analysis, an application of abstraction interpretation to higher order functional languages.
Escape analysis determines, at compile time, if any arguments to a function have a greater lifetime than the
function call itself. Such arguments, espocially if they are closures, must be allocatedin the heap rather than
in the stack. In most implementations, however, stack allocation of closures is preferable due to the lower
cost of allocation and reclamation. Therefore, we use escape analysis to determine when arguments can be
stack allocated safely.

In the past, first order escape analysis has been used in optimizing LISP compilers, and has been
described in various data-flow analysis frameworks for a language with complex types. The analysis
described here, being higher order, provides more accurate escape information, although for a very simple
higher order functional language.

1. Introduction
Higher order functions are an important part of functional languages. They have generally been seen,

however, as having a high implementation overhead. Two reasons for this view are that 1) they force an
implementation to use a heap to store closures, and 2) programs using higher order functions are particularly
difficult to analyze for optimization purposes.

The need for heap allocation arises when parameters and locally defined objects within a function outlive
a call to that function. For example, in the following program fragment

let f x y z = x + y + z
g a b = f b a

in g 1 2

a closure representing the partial application o f f during the execution of g will outlive the call to g. Thus,
the closure containing the parameters a and b will have to be heap allocated. In this case, the partial appli-
cation of f, along with g's parameters a and b, are said to escape from the call to g.

Notice that in the following program fragment

let f x y z = x + y + z
h x = x 3
g a b = h (f b a)

in g 1 2

the closure representing the partial application of f does not escape from g. In this case, the closure and pa-

1. This research was supported in part by a National Science Foundation Research Initiation Award, CCR-8909634.
2. Address: 251 Mercer St) New York, NY 10012. Email: goldbexg@cs.nyu.cdu) park@cs.nyu.edu.

153

c E Con constants
x ~ Id identifiers
e ~ Exp expressions, defined by

e::= clxlele21el--->e2, e 3 1 e l + e 2 l e l = e 2 1 L x , el

letxl = e l ; . . . ; xn = en in e

Figure 1. The syntax of nmi

rameters can be allocated in g 's activation record on the stack. Escape analysis is a compile time analysis
that determines whether an object, such as a closure or a parameter, needs to be heap allocated.

In this paper we assume that stack allocation is less expensive than heap allocation, although we recog-
nize that there are safety issues (such as stack overflow, etc.) that are important (see [Chase88]). There are
also persuasive arguments in favor of heap allocation. In the Standard ML compiler [AM87], all closures
are allocated in the heap. It appears that with a large amount of memory and a sophisticated garbage col-
lection smttegy, the overhead of garbage collection is quite small. However, on most current systems (and
especially in distributed systems where garbage collection is more expensive), stack allocation of closures
is preferable.

A simple escape analysis was used in the Orbit compiler for Scheme [Kranz88]. It is a first order escape
analysis in which the following program could not be analyzed accurately.

let f a i b = a + b
g h a b = h b a

in g f l 2

because h is an unknown function (i.e. a function bound to a formal parameter) in the body of g. Orbit's
escape analysis assumes that any argument to an unknown function will escape from that function. Thus, it
will assume that both a and b escape from the call to h inside of g, and therefore escape from g. In fact,
neither a nor b escape from g.

Another analysis, called lifetime analysis [RM88], was developed to compute, if possible, the relative
lifetimes o:f dynamically allocated objects in a first order language with structures and recursive types (such
as trees). Escape analysis is a particular instance of lifetime analysis in which the lifetime of a function's
activation record is compared to the objects defined inside the function. Other analyses for optimizing stor-
age allocation were proposed in [JM76], [MJ81], [Schwartz75], [Barth77], and [Chase87].

In the following sections, we present an analysis that, using abstract interpretation ([CC77],[My-
croft81]), gives escape information in the presence of higher order functions (although we do not deal with
structures and recursive types). Higher order abstract interpretation has been mainly used for strictness anal-
ysis ([BHA85],[HY86]), although other higher order analyses have been developed (such as sharing anal-
ysis [Goldberg87]). Our use of abstraction interpretation differs from that of Mycroft, and is similar to that
of Hudak and Young, because we form an abstraction of a nonstandard semantics, rather than the standard
semantics, of our programming language.

2. A Simple Higher Order Functional Language
For this discussion a very simple higher order monomorphically typed strict functional language, nml

(for not much of a language), will suffice. The syntax of the language is given in figure 1, although we omit
the type declarations. The standard semantic domains of nml are as follows:

D, the standard domain of values,
Env: ld --~ D, the domain of environments,

154

Ell c]

E[x]

E [e 1 + e2]]

E[e I = e 2]

EI el e2]

E[e 1 -~ e z, e3]

E[Zx.e]

Env = c, for each constant c ~ Con

Env = Env[[x], for each identifier x ~ Id

Env = (El el]l Env) + (Ell e2]l Env)

Env = (Ei e 1] Env = El[e 2] Env)

Env = (Ea el] Env) (E[ez]l Env)

Env = E[e l i Env ---> E[e2] Env, E~ e3~ Env

Env = ~.y.EI[e] Env[y/x]

El[let x 1 = e l ; . . . ; x n = e n in e] Env = E[e] Env'

where Env" = [(E~el] Env')/ x 1 (Ellen] Env')/ Xn]

Figure 2. The standard semantics of nml

E: Exp ---> Env ---> D, the semantic function lor expressions.

The standard semantic function E is defined in figure 2. For notational convenience, all syntactic objects

are printed in boldface type, including all nml identifiers. Variables referring to syntactic objects are printed
in boldface italic type. Semantic variables are printed in non-bold italic type.

3. An Exact Escape Semantics

In this section, we describe a nonstandard semantics for nml such that the result of a function call indi-

cates whether a particular parameter escapes. The escape semantic domains are defined as follows:

De int =De b°°t = . . . =2 x {err}, where 2 is the two element domain ordered by 0 < 1,

DeTI -->I"2 = 2 × (De TI --~ DeT2), for any types T 1 and T 2,

D e = ~ D e T

Env e = Id ---> D e, the domain of escape environments.

The semantic function is

Ee: Exp ---> Env e ---> D e

and is defined in figure 3.

Under these semantics, the value of an expression is a pair whose ftrst element is a boolean (0 or 1) that

eel C~
eel[X~

Eel[el + ez]

Eel el e2]

Eel[e I -~ e z, e3]

Env = <0, err>, for any constant c

Env = Env[[x~

Env = <0, err>, likewise for the other arithmetic operators

Env = (Eel el] Env)a) (Eel[e2] Env)
Env = Oracle l[e l] ---> E e II e2]l Env, E e l[e3] Env

Ee[~x.e l Env = < v, ky. Ee[e] Env[y/x] >

where v = ~, (Envl[z])(1), and F is the set of free variables in (Lr.e)
zEF

Eel[let x 1 = e l ; . . . ; x n = e n in ell Env = Eel[eli Env'

where Env" = [(Eel[eli] Env')/ x 1 (Ee[[en] Env')/ Xn]

Figure 3. The exact escape semantics of nml

155

indicates whether a particular parameter escapes, and whose second element is a function that captures the

higher order behavior of the expression, err denotes a non-function value.

Given an xeDe we use the notation x(1) and x(2) to refer to the first and second elements of x, respective-

ly. The domain D e is partially ordered in the standard way:

V x ,y~De, x < y i f f x(1) <y(1)andx(2)<Y(2)

For each type T = T 1 --~ T 2, there is a bottom element I T of D e defined as follows:

-Lr=<O, ~. -I-T~>
For each prJLmitive type T, I T = < O, err>.

In order to return the actual escape value of each expression, we must be able to determine which branch
of a conditional would be evaluated at run-time. The only way to do this would be to embed the standard

semantics within the escape semantics. For convenience, we instead resort to an oracle to choose the appro-
priate branch of the conditional.

Given an nml function f, its meaning under the escape semantics will be a pair <f(1)~e(2)>. We then use

f(2) to determine if a particular argument in a call to f escapes• Suppose, for example, we want to know, giv-

en the function application fix), ifx escapes. To do so, we let <x(1), x(2)> be the value ofx under that escape

semantics and let y =f(2) <1, x(2)>. If y(1) = 1 then x escapes in the standard semantics, otherwise x does

not. Section 6 gives a detailed description of how the escape semantics is used.

4. The A b s t r a c t Escape Seman t i c s

We now present an abstraction of the exact escape semantics that allows an 'approximation of the exact
escape behavior to be found at compile time. The semantic domains are essentially identical to those of the

exact escape semantics:

D a j nt = D ae b°°l 2 × {err},

DaeTl --->7"2 = 2 × (Dae Tl ~ DaeT2),

D ae = ~r D ae T ,

Env ae = Id ~ D ae.

The semantic function

Eae: Exp --h Envae ---> Dae

is defined in figure 4. The difference between the exact and the abstract semantics ties in the handling of
the conditional. Rather than referring to the standard semantics (as denoted by the oracle) the conditional is

handled by taking the least upper bound of the escape values of the two branches.

5. Termination

In our abstract escape semantics, a function may be expressed recursively and is thus defined as the least
fixpoint of the corresponding functional. That is, for the function

f = F(])
wherefis of type T and F is a functional (corresponding to the body off), the meaning of f is defined to be
the least function satisfying the above equation. Domain theory tells us that the least fixpointfcan be found
as follows:

f = ih__mFl (±r)

where F0(x) = x and F/(x) = F(Fi'l(x)).

156

Eae~ e]

e=e~x]
eae[el + ez]

Eae[el e 2]

Ea~[e 1 -~ e z, ez]

Env = <0, err>

Env = Env~ x]

Env = <0, err>, likewise for the other arithmetic operators

Env = (Eae[[e l i Env)(2) (Eae [e2] Env)

Env = (Eae [e2] Env) IJ (Eae I[e 3] Env)

Eael[~ . e] Env = < v, ~,y. Eae[e] Env[y/x] >

where v = V (Env[z]])(1), and F is the set of free variables in (Lx.e)
zEF

Eae[let Xl= e l ; . . . ; Xn = en in e] Env = Eae [e] Env'

where Env' = [(Eael[el] Env')/ x 1 (Ee[en] Env')/ Xn]

Figure 4. The abstract escape semantics of nml

To ensure that our analysis terminates, we must show that a fixpoint is reached in finite time. That is, tbr
all functions def'med according to the above equation, there must exist somej such that

Fk(.LT) = FJ(IT)
for all k >j.

A simple way of showing that there exists such a j is to show that every functional F must be monotonic

and that the fixpoim iteration is performed over a finite domain (using the technique described in [BHA85]).

Every functional is composed of the monotonic operation v (logical or) and the least upper bound op-

erator (as defined in figure 4) and is thus monotonic. Furthermore, each subdomain Dae T is finite since

Dae T° is finite for each primitive type T O (int, bool, etc.) and Dae Tr->T2 is finite whenever Dae T~ and Dae T2

are finite. When finding the least fixpoint of a function of type T we need only search over the subdomain
T Dae • Thus, the least fixpoint can be computed in a finite number of iterations. Figure 5 contains an example

of fixpoint finding.

6. Using the Abstract Functions
In this section, we describe how the abstract functions are used to detect the escape properties of the cor-

responding functions in an nml program.

6.1. Global Escape Analysis

Using a global escape analysis, we find escape information about each nmi functionfthat holds true for
every possible application o f t To do so, we apply the corresponding abstract function to arguments that

cause the greatest escapement possible. For each type T, we define the abstract function R T that corresponds
to an nml function from which every argument escapes.

R T= ~z 1. <Zl(1) , .~.z 2. <Zl(1) v z2(1) ~z m .< ~/ Zp(1), err> ... >>
p=l

where m is the number of arguments that a function of type T can take (before returning a primitive value).

Given an identifierf bound to a function of n arguments in some environment Env, Gi(f, Env) returns 1

if the ith parameter could escape and 0 otherwise. G i is defined as follows:

Gi(f , Env) = (Eae [(f x 1 ,,. Xn)]l Env[YllX 1 Yn/Xn])(1)

where for all j < n, j ~ i,

157

Consider the following nml function definition (of type int--~int--> int, for example):

f= ~,x. iLy. (x=O) ---> y, f (x-l) y
Using the definitions in figure 4, the corresponding function in Dae is described by:

f = <0, ~ . <x(1), Ly. Eae ~ (x=0) --> y, f (x-l) Y] [x/x,y/yf/f]>>

= <0, Lx. <x(1), ~y .y U (f(2) <O'err>)(2)Y)>>

Thereforefis the least fixpoint of the functional F defined by

F = ~f. <0, Lx. <x(1), k y . y II (f(2) <O'err>)(2)Y)>>

The least fixpoint is found by the following fixpoint iteration:

jD = F(l int_.>int._>int)=< O ' ~a~. <x (I), ~.y. y U (-Lint-.>int.~int(2) <O,err>) (2) y)>>

=<0, ~¢. <X(l), ~y. y U -Lint_.~int(2) y>>

= <0, x~. <x m, ;~y. r u l i ,~)>>

= <0, ~ . <xa), ~,y.y>>

3 d= Fif 0) = <0, ~,x. <x(1), 3.y. y U ((~ . <x(1), ~y.y>) <O,err>)(2) y))>>

= <o, Z.x. <x(1), ~y. y u (~,y.y) y))>>

= <0, Lx. <x(1), ~.y. y)>>

Sincefl =f l = F(]0), a fLxpoint has been found, thus f = <0, ~tx. <x(1), ~,y.y)>>

This means that when f is applied to two arguments, only the second argument may escape.

Figure 5. An example of fixpoint finding

yj = <0, RTJ>

where Tj is the type of xj and

Yi = <1, RTi>.

Since each Yj(2) is a function from which every argument escapes, and since the abstract function fo r f i s

monotonic, Gi(f, Env) provides the worst case behavior with respect to the escapement of f ' s ith argument.

6.2. Local Escape Analysis

Generally, we would like to know if an argument escapes from a particular call to a functionf This de-
pends on the values of the arguments of that call. We define the function L i such that L /~ e I e n, Env)

returns I if the ith argument of (f e I ... en) might escape, 0 otherwise. The environment Env must be an en-

vironment mapping the free identifiers within e I through e n to elements of Dae. The function L i is defined

as follows

Li(f, e 1 e n, Env) = (Eae [(f x 1 ... Xn)]l Env[y/xj])(1)

where, for all j < n, j ~ i,

yj-- <0, (Eae [[eft Env)(2)>
and

yi = <], (Eae ~e i]] Env)(2)>.

158

Env = [f/f, h/h, pip, q/q, gig], where
f = <0, Lx. <x(1), ~.y. Eae I[x+y] Env[x/x,y/y]>>

= <0, Lx. <x(1), ky. <0, err>>>

p = q = <0, Lb. <0, err>>
h = <0, ha. Eae [(a=0) ---> p, q] Env[a/a]>

=<O, h a . p U q >
= <0, ha. <0, Lb. <0, err>>>

g = <0, kin. <m(1), kn. Eae I[mn]! Env[m/m,n/n]>>

= <0, ~n. <re(l), ~ . m(2) n>>

Figure 6. Abslract Escape Functions

7. E x a m p l e s

Consider the following nrrd program:

let f = Lx. ~,y. x+y;

h = ~a. (a=O) --> p, q;

p =)~b. b+l ;
q = ~,b. b - l ;
g = ~,m. ~,n. m n;

in ... (g f 4) ... (g h 4) ...

Figure 6 shows the corresponding abstract escape functions. Our aim to is analyze the escape properties of
g, both globally and locally.

7.1. A Global Escape Analysis Example

To find the global (i.e. worst case) escape property of g, we apply the global analysis function G i de-

scribed in section 6.1 to the abstract function g and the environment Env shown in figure 6. We assume g

is of type (int--->int--->int)--->int-~int--rint.

Gl(g, Env) = (Eae [(g x 1 x2)] EnV[Yl/X 1, Y21X2])(1)

where y / = <1, 7~z 1. <Zl(1), ~,z 2. <z lo) v z2(1), err>>> andy 2 = <O, err>.

Thus

Gl(g, Env) = ((g(2) Yl)(2) Y2)(1)

= (((~n. <m(1), kn. m(2) n>) Yl)(2) Y2)(1)

= ((~Zl. <Zl(1), ~.z 2. <zi(1) v z2(1) , ell'>>) <0,err>)(~)
=0

indicating that g 's first parameter can never escape.

G2(g, Env) = (Eae [(g x 1 x2)] Env[YllXl, Y2/XZ])(1)

whereYl = <0, ~z 1. <Zl(1), ~,z 2. <Zl(1) v z2(1), err>>> andy 2 = <1,err>.

Thus

G2(g, Env) = ((g(2) Yl)¢2) Y2)(1)

= ((Q~,n. <m(1), 2~n. m(2) n>) Yl)(2) Y2)(1)

= ((Z.Zl. <zl(1), ~.z 2. <Zl(t) v z2(1), err>>) <1,err>)(1)

=1

indicating that the f~rst parameter to g might escape in some situations.

159

7.2. A Local Escape Analysis Example

To find what arguments escape from the each application of g in the program, we use the local analysis

function L i described in section 6.2. Since we know from the global analysis of g that its first parameter can

never escape, we only need to test if the second parameter escapes (using 1,2). For the expression (g f 4),

L2(g, f, 4, Env) = (Eae [(g x I x2)]l Env[<O,f(2)>/x 1, <1, err>/x2])(1)

= ((g(2) <0,f(2)>)(2) <1, err>)(1)

= ((Q~m. <m(1),).n.m(2) n>) <0, Lx. <x(1), ~y. <0, err>>>)(2) <1, err>) (1)

= ((Kx. <x(1), ~y. <0, err>>>)(2) <1, err>) (1)

=1.
This indicates that the second argument to g escapes. For the expression (g h 4),

L2(g, h, 4, Env) = (Eae [(g x 1 x2)] Env[<O, h(2)>/x 1, <1, err>/x2])(1)

= ((g(2) <0, h(2)>)(2) <i, err>)(1)
= ((()~m. <m(1), 3.n. m(2) n>) <0, 2~a. <0,)~b. <0, err>>>)(2) <1, err>) (1)

= (()~a. <0, ~b. <0, err>>)(2) <1, err>) (1)

=0,
This indicates that no argument to g escapes (even though the result is a partial application).

8. E s c a p e A n a l y s i s on L i s t s

We have not yet discussed escape analysis in the presence of the list operators cons, car, and cdr. We

extend the abstract semantic function Eae as follows:

Eael[eonsJ] Env = <O, ka. <a(1), ~b.<a(1) v b(1), err>>>

Eae[edr]l Env = <0,Lx. <x(1),err>>

Eael[car]] Env = <O, RT>

where Tis the type of the elements of the list to which ear is being applied and R T is defined in section 6.1.
In other words, once an object has been placed on a list, we are unable to determine when it is removed.
This means that if some head or tail of a list escapes from a function then all of the elements of the list are
seen as escaping. In addition, the function value of the car of a list is seen as the maximally escaping func-

tion of that type. Admittedly, this is an unsatisfactory analysis on lists. We are working on an escape anal-
ysis that could be applied to lists in a manner similar to the way that strictness analysis was extended to lists

[Wadler87].

9. C o n c l u s i o n s

We have taken an existing, useful optimization and used denotational semantics and abstract interpreta-
tion to apply it to higher order programming languages. We have yet to implement the analysis in a real
compiler and thus it remains to be seen if the benefit of the analysis outweighs its cost (mainly fixpoint find-
ing).

1 0 . A c k n o w l e d g m e n t s

We would like to thank the National Science Foundation for funding this work. We would also like to
thank our'wives, Wendy Goldberg and Jihwa Park, for their support and encouragement. We also thank our
children, Jonathan Goldberg and Grace Park, for providing pleasant distractions.

160

References

JAM87]
A~ Appel and D.B. MacQueen. A standard ML compiler. In Proceedings of the 1987 Conference on
Functional Programming and Computer Architecture. September, 1987.

[Barth77]
J.M. Barth. Shifting garbage collection overhead to compile time. Communications of the ACM, 20(7),
July 1977.

[BHA85]
G.L. Bum, C.L. Hankin, and S. Abramsky. The theory of strictness analysis for higher order functions.
In Programs as Data Objects, LNCS 217. Springer-Verlag. 1985

[CC77]
P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In Proceedings of the 4th Annual ACM Symposium on
Principles of Programming Languages. January 1977.

[Chase87]
D.R. Chase. Garbage Collection and Other Optimizations. Ph.D. Thesis, Rice University. 1987

[Chase88]
D.R. Chase. Safety considerations for storage allocation optimizations. In Proceedings of the
SIGPLAN'88 Conference on Programming Language Design and Implementation. June, 1988.

[Goldberg87]
B. Goldberg. Detecting sharing of partial applications in functional programs. In Proceedings of the
1987 Conference on Functional Programming and Computer Architecture. September, 1987.

[HY86]
P. Hudak and J. Young. Higher-order strictness analysis for the untyped lambda calculus. In
Proceedings of the 13 th Annual A CM Symposium on Principles of Programming Languages. January,
1986.

[JM76]
N. Jones and S. Muchnick. Binding time optimization in programming languages: An approach to the
design of an ideal language. In Proceedings of the 3rd Annual ACM Symposium on Principles of
Programming Languages. January 1976.

[Kranz88]
D. Kranz. ORBIT: An Optimizing Compiler for Scheme. Ph.D. Thesis, Yale University, Department of
Computer Science. May 1988.

[MJ81]
S. Muchnick and N. Jones, editors. Flow Analysis and Optimization of LISP-like Structures. Prentice-
Hall, 1981.

[Mycroft81]
A. Mycroft. Abstract Interpretation and Optimizing Transformations for Applicative Programs. Ph.D.
Thesis, University of Edinburgh. 1981.

[RM88]
C. Ruggieri and T.P. Murtagh. Lifetime analysis of dynamically allocated objects. Proceedings of the
15th Annual ACM Symposium on Principles of Programming Languages. January, 1988.

[Schwartz75]
J.T. Schwartz. Optimization of very high level languages - I. Value transmission and its corollaries.
Journal of Computer Languages, 1:161-194, 1975.

[Wadler87]
P. Wadler, Strictness analysis on non-flat domains. In Abstract Interpretation of Declarative
Languages. C. L. Hankin and S. Abramsky, editors. Ellis Horwood, 1987.

