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A b s t r a c t  

The Concurrency Workbench is an automated tool that caters for the analysis of networks of 
finite-state processes expressed in Milner's Calculus of Communicating Systems. Its key feature 
is its scope: a variety of different verification methods, including equivalence checking, preorder 
checking, and model checking, are supported for several different process semantics. One experi- 
ence from our work is that a large number of interesting verification methods can be formulated 
as combinations of a small number of primitive algorithms. The Workbench has been applied to 
examples involving the verification of communications protocols and mutual exclusion algorithms 
and has proven a valuable aid in teaching and research. 

1 I n t r o d u c t i o n  

This paper describes the Concurrency Workbench [8], a tool for the automatic analysis of finite-state 
processes. Such tools are practically motivated; the formal detail arising from the rigorous verifica~ 
tion of complex distributed systems rapidly becomes unmanageable without some form of computer 
assistance. This fact, together with the lack of consensus regarding the formal semantics of processes, 
has ted to the implementation of a number of automated tools, each embodying a particular semantic 
model of computation and each capable of particular forms of correctness analysis. Notable examples 
include EMC [5], XESAR [28], Ald~baran [12], AUTO [3], and Winston [23]; for a survey of systems 
for the analysis of communication protocols see [2]. A major goal of the Workbench is to provide 
a uniform framework that supports several different semantics for processes and several methods for 
reasoning about systems. 

The Workbench includes three main methods for establishing that processes meet specifications. 
In the first, specifications are themselves processes that describe precisely the high-level behavior 
required of an implementation. To verify that a system meets such a specification, one shows them 
to be equivalent in the sense of having the same behavior. Here different notions of "same behavior" 
yield different equivalences and hence imply different semantic models of processes. The Workbench 
is capable of computing a variety of different behavioral equivalences. 

The second method also uses processes as specifications, but  these specifications are treated as 
minimal requirements to be met by implementations. In this approach specifications can be annotated 
with "holes" (or "don' t  care" points); an implementation satisfies one of these "loose" specifications 
if it supplies at least the behavior demanded by the specification while "filllng in" some holes. This 
approach relies on an ordering relation, or preorder, between processes: a process A is more defined 
than a process B if A has the same behavior as B except for the holes in B. The Workbench can 
automatically determine if a process is more defined than its specification in this sense. As with the 
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equivalences above, different notions of "behavior" yield different ordering relations. The Workbench 
supports a number of such orderings. 

The third approach to verification involves the use of an expressive modal logic, the propositional 
(modal) mu-ealculus. Propositions formulated in this logic are viewed as specifications; it is possible 
to determine automatically whether a process satisfies such a specification using the model checking 
facility of the Workbench. The Workbench supports different ways of checking that such propositions 
are true of an agent, depending on the semantic model used. 

The system provides a variety of other means for analyzing the behavior of processes, including 
deadlock detection and simulation. There is also a feature that supports a restricted form of hierarchical 
development of complex systems and one that generates the minimum-state process that is equivalent 
to a given process. 

The Workbench has been successfully applied to the analysis of communication protocols [27] and 
mutual exclusion algorithms [33]; it has also been used to debug the Edinburgh Computer Science 
Department's electronic mailing system. Moreover, it is being investigated as a tool for analyzing 
communications protocols by Swedish Telecom and by Hewlett-Packard. Our primary goal, however, 
is to demonstrate viable principles for automatic verification. For example, one main result is that a 
wide spectrum of different verification methods can be obtained by combining a small number of more 
primitive algorithms; this makes the Workbench a versatile and easily extensible tool. 

The remainder of the paper is organized as follows. Section 2 describes the conceptual structure 
of the Workbench and Section 3 the model of processes used in the Workbench. Sections 4, 5 and 
6 present the equivalence testing, preorder testing and model checking facilities in the Workbench, 
respectively, while Section 8 contains our conclusions and directions for future work. 

2 The Architecture of the Workbench 

One goal in the design of the Workbench is to make available many different approaches for verification 
while maintaining a conceptually economical core. Accordingly, the main components of the system 
are organized into three layers. 

* The interface layer oversees the interaction between the user and the Workbench; it includes 
routines which read processes and propositions from input and it prints the results of commands 
issued by the user. 

* The semantics layer consists of procedures for transforming transition graphs, which the system 
generates from the operational account of processes in the first layer. These graph transfor- 
mations enable a change in the underlying (denotational) model of agents. Examples include 
transformations for abstracting away from internal computation and for recording information 
about divergence and nondeterminism. 

o The analysis layer consists principally of three algorithms: one for equivalence checking, one for 
preorder checking and one for checking whether a transition graph satisfies a modal proposition. 
These algorithms are polymorphic; they may be applied to any transition graph generated by the 
second layer. 

The distinction between these three layers is one of the main achievements of the Workbench. In 
particular, the combination of various graph transformations with the analysis algorithms yields a 
number of automatic verification methods, and yet the underlying code is small and structured. As 
the layers are implemented independently of one another, the system is easy to maintain and extend. 

3 Representing of Processes 

This section describes the syntax of the Calculus of Communicating Systems (CCS), which is used to 
define processes, or agents, used in the Workbench, and it shows how such agents are interpreted as 
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transition graphs. Transformations of transition graphs are also introduced; these enable a change of 
the semantics under consideration. We assume the reader to have some familiarity with CCS. 

3.1 Actions and Agents 

CCS agents are built from a set of actions containing a distinguished unobservable (or silent) action 
T. The observable actions, also called communication events, are divided into input events and output 
events. In the following a, b , . . .  will range over input events, and ~, b , . . .  will range over output events. 
Input event a and output event ~ are said to be complementary, reflecting the fact that they represent 
input and output on the "port" a. We consider only communication events without value parameters. 
Agents are defined using the following operators from [24]. 

Nil Termination 
_k Divergence (or bottom) 
a. Prefixing by action a; unary prefix operator 

-b Choice; binary infix operator 

[ Parallel composition; binary infix operator 

\ L Restriction o11 (finite) set of actions L; unary postfix operator 

If] Relabeling by f ,  which maps actions to actions; unary postfix op- 
erator 

Relabeling functions f are required to satisfy two conditions: f ( z )  = r, and f(-~) = f(a). They are 
frequently written as a sequence of substitutions; for example p[al/bl, a~/b2] is the process p with with 
bl, b2, bl and b 2 replaced by al,  a2, ~ and a'~, respectively. 

We also assume a set of agent identifiers. An identifier A may be bound to an agent expression p 
that may itself contain A. This enables recursively defined processes. 

Agents are given an operational semantics defined in terms of transition relations, ---~, where a 
is an action. Intuitively, p - - ~ #  holds when p can evolve into p' by performing action a; in this case, 
p~ is said to be an a-derivative of p. The transition relation is defined inductively on the basis of the 

a a i -  . a ! constructors used to define an agent. Thus, a.p---+p holds for any p, and p-k q----*p if either p---*p or 
a ! q---~p. The agent p[q behaves like the "interleaving" of p and q with the possibility of complementary 

actions synchronizing, yielding a r action, p \ L behaves like p with the exception that  no actions in L 
are allowed, while Pill behaves like p with actions renamed by f .  A formal account of the semantics 
may be found in [24]. Examples of agents defined in CCS appear in Figure 1. 

3 .2  T r a n s i t i o n  G r a p h s  

The Workbench uses transition graphs to model processes. These graphs statically represent the 
operational behavior of agents; given an agent, the system generates the corresponding transition 
graph on the basis of the transitions available to the agent. A transition graph contains a set of nodes 
(corresponding to processes) with one distinguished node, the root node, and a set of edges which are 
labeled by actions (corresonding to transitions between processes). An edge labeled by a has source n 
and target n r iff p._2_~p, holds of the corresponding processes. Figure 2 contains examples of transition 
graphs. 

Each node additionally carries a polymorphic information field, the contents of which vary accord- 
ing to the computations being performed on the graph. For example, the algorithm for computing 
testing equivalence and the algorithm for computing preorders store acceptance sets and divergence 
information, respectively, in this field. 

3 .3  G r a p h  T r a n s f o r m a t i o n s  

As we indicated previously, several transformations on transition graphs are used in conjunction with 
general algorithms to yield a variety of verification methods. We briefly describe some of these trans- 
formations here. 
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. BUF n defines a buffer of capacity n. 

BUF n = BUF o n 

BUF° = in.BUF 

Buv~ = in.BUF~+I +5-~.BUr'i-'. 
BUF ~ = ~U-~.BUF ~--1 

for i = 1 , . . . , n -  1 

. CBUF~ defines a compositional buffer of capacity n. 

CBUF n = ( BUF, [XllOUt]l... I BUF, [xi/in, ~,+dout]l... I BU~, [~.Ii,,] ) \ {~,,., ~,,} 
/ = l , , . , , n - - 2  

* The partial buffer of capacity n, P B U F  n ' specifies agents tha t  behave like buffers of capacity n, 
so long as no more than  n elements are stored at once. 

PBUF n = PBUF O 

PBUF° n = in.PBUF1 
n 

PBUF~ = in .PBUF~ '  +b--ffLPBUF~ -1 f o r / = l  . . . .  , n - - 1  

PBUF~ = in .L  + out.PBUF ~-I 

Figure 1: Examples of Buffers Defined in CCS. 

in in in in 

out out out out 

The transit ion graph for B U F  n ' the buffer of capacity n. 

out 

\ go . f  , ,o \ -- ) 
out 

The  transi t ion graph for CBUF 2 , the compositional buffer of capacity 2. 

Figure 2: Examples of Transition Graphs. 
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Figure 3: The Observation Graph for CBUF~. 

3.3.1 O b s e r v a t i o n  G r a p h s  

The transition graphs as described in Section 3.2 are synchronous in the sense that they faithfully 
represent r events, and hence the "timing behavior", of agents. Many verification methods require 
this information; however, others do not, and to cater for these the Workbench includes a procedure 
for computing observation graphs. 

Observation graphs are based on the notion of observations. These are defined as follows. 

~ r  * I n ~ n  I iff n---* n 

n ~ n '  iff n ~ - Z ~ n  ' 

So =:~ is defined as the transitive and reflexive closure of - -~,  and = ~  is defined in terms of relational 
products of = ~  and -2-+. These relations allow r events to be absorbed into visible events, so that 
information as to the precise amount of internal computation performed is obscured. 

The observation graph transformation takes a graph and modifies the edges to reflect the =~- and 
==% relations instead of the ~ and __L. relations. It uses well-known methods for computing the 
product of two relations and the transitive and reflexive closure of a relation. Figure 3 indicates the 
nature of the transformation (for clarity, we have omitted the e-edges resulting from the reflexive 
closure of _Z_,). 

A variation of the observation transformation computes congruence graphs, which are used to check 
for observational congruence [24] and weak precongruence [32]. Intuitively, these graphs are observation 
graphs that record the possibility of initial r-actions. To construct them, a copy of the root node is 
created; this new node becomes the root node of the congruence graph, and by construction it has no 
incoming edges. Subsequently, the observation transformation is applied as before, except that for the 
new root node the transitive closure of _Z~ is applied, rather than the transitive and reflexive closure. 

3.3.2 Deterministic Graphs 

The strong and observational equivalences and preorders distinguish agents on the basis of the exact 
points during their executions where nondeterministic choices are made. Accordingly, the graphs men- 
tioned in Sections 3.2 and 3.3.1 faithfully record each time a process makes such a choice. However, 
other equivalences and preorders, like the testing preorders and equivalences [13] and failures equiva- 
lence [15], do not require such detailed accounts of the choice structure of agents. In order to cater for 
these equivalences the Workbench includes procedures for transforming graphs into various kinds of 
deterrainistic graphs, which are graphs having no r-derivatives and at most one a-derivative for any 
action a. 

The deterministic graphs constructed are all variants of acceptance graphs (also called Tgvaphs in 
[7]). Acceptance graphs record the three pieces of information which are necessary in order to compute 
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out 

out 

where 

A.acc  = {{ in}}  

B.a~c = { { i , , ~ - ~ } }  

C.acc  = {{~-~}}  

and A.div = B.div  =.C.div = false. 

Figure 4: The Tgraph for CBUF2. 

the testing equivalenced and preorders. The first is the language of the process, which consists of the 
set of all sequences of visible actions available from the start state. The second is the divergence 
potential, or the possibility of an infinite sequence of r-actions, as the process attempts to "execute" a 
sequence of visible actions. The final piece of information necessary is the degree of non.determinism, 
which is recorded in the form of acceptance sets. An acceptance set is a set of sets of actions, one set 
of actions for each state a process can "settle down in" (i.e. not exit via an invisible r-action) after 
executing a given sequence of visible actions. The fact that an acceptance set may contain more then 
one set of actions indicates that a process may be capable of settling down in more than one state as 
the result of nondeterministic choices during the execution of a sequence. Formal definitions for these 
concepts may be found in [7]. 

To record divergence and acceptance set information, each state in an acceptance graph includes 
two fields: div, a boolean representing divergence information, and acc, which is a set of set of actions. 
In what follows, we shall refer to these as t.acc and t.div for nodes t of a given acceptance graph. (In 
fact, the div field is not necessary, strictly speaking, since the information it contains can be encoded 
in the acc field. That is, div is true exactly when acc is empty. For clarity, however, we shall continue 
to use it.) 

The Workbench includes a procedure that, given a graph, generates a Tgraph whose root has the 
same language as the root of the original graph and whose nodes are labeled by acc and div fields. A 
node t in the Tgraph reachable by the sequence s has the labeling t.div = false and t.acc = A(no, s), 
where no is the root of the original graph, if it is impossible to reach a divergent node from no during 
the exection of s. Otherwise, t.acc = 0 and t.div = true. The procedure for generating these Tgraphs 
is described in [7]; Figure 4 shows the Tgraph resulting from the transformation of CBUF 2 . 

Two closely related kinds of deterministic graphs are also constructed by the workbench. May 
graphs (referred to as Dgraphs in [7]) are like Tgraphs except that the div and acc fields are not 
computed. Must graphs (referred to as STgraphs in [7]) are like Tgraphs, except that no node n with 
n.div = true has any transitions emanating from it; these are constructed from Tgraphs by "clipping" 
the Tgraph at nodes whose div fields are true. 

In general, these graph construction procedures have exponential complexity, owing to the fact 
that it is theoretically possible to have a node in these graphs for each subset of old nodes. Practice, 
however, indicates that the number of nodes is usually smaller than the number of nodes in the original 
graph. 
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4 Equivalence Checking 
The first basic analysis within the Workbench involves checking for equivalence between two agents. 
As indicated in Section 2, our approach is to convert the agents to transition graphs of the appropriate 
type and then apply a general equivalence algorithm. 

4 .1  D e f i n i t i o n  o f  t h e  E q u i v a l e n c e  

Let G1 and G2 be transition graphs with node sets N 1 and N~, respectively, let N = Nl O N2, and let 
C C N × N be an equivalence relation reflecting some notion of "compatibility between information 
fields." 

Def ini t ion 4.1 A C-bisimulation on G1 and G2 is a relation 7¢ C N x N such that (re, n) E 7"£ implies 
that: 

1. if m----~m then 3n' : n---~n and (m' ,n ')  6 7~, and 

a ? 2. if n-2-~n ' then 3m' : m-----~m and (m', n') 6 7¢, and 

3. (m, n) E C. 

Two graphs are said to be C-equivalent if there exists a C-bisimulation relating the root nodes of the 
graphs, 

4 .2  D e r i v e d  E q u i v a l e n c e s  

Many interesting equivalences turn out to be instances of C-equivalence on appropriately transformed 
graphs. Let U denote the universal relation, i.e. U = N × N. Then a U-bisimutation is a bisimulation 
in the sense of Mitner [24], and U-equivalenc e is strong equivalence in CCS. Also, observation equiv- 
alence corresponds to U-equivalence on observation graphs, observation congruence to U-equivalence 
on congruence graphs, and trace (or may) equivalence to U-equivalence on deterministic graphs. For 
must and testing (failures) equivalence define (m, n) E A to hold exactly when each element of re.ace 
is a superset of an element of n.acc, and vice versa. Then two graphs are must equivalent if their 
associated must graphs are A-equivalent, and they are testing (failures) equivalent if their associated 
acceptance graphs are A-equivalent [7]. 

As an example, recall the definitions for BUF and CBUF n (see Section 3). For any n, these two 
agents can be shown to be equivalent according to each of these equivalences, except for the strong 
equivalence. 

4 .3  T h e  A l g o r i t h m  

Our algorithm is adapted from one presented in [t9]. It works by attempting to find a C-bisimulation 
relating the root nodes of the graphs. To do so, it maintains a partitionin9 of the nodes in G1 and G2, 
the graphs under consideration. A partitioning is a set of blocks, where each block is a set of nodes 
such that each node is contained in exactly one block. Such a partitioning induces an equivalence 
relation on the nodes of the graphs: two nodes are related precisely when they are in the same block. 

The algorithm starts with the partition containing only one block and successively refines this 
partition. It terminates when the roots of the two graphs end up in different blocks (in which case the 
graphs are not equivalent) or the induced equivalence relation on the nodes becomes a C-bisimulation 
(in which case the graphs are C-equivalent). 

The time and space complexities of this algorithm are O ( k ,  g) and O(k + g) respectively, where k is 
the number of states, and g is the number of transitions, in the two graphs. A marginally more efficient 
algorithm appears in [25]; however, there is not yet enough evidence to suggest that this "algorithm 
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is appreciably faster in practice. In any event, this complexity is not a limiting factor; tests with 
the Workbench have shown that the time consumed by this algorithm is only a small fraction of the 
total time spent when computing observation equivalence. Most of the time is taken up in the graph 
transformations. 

One final interesting point is that the algorithm can he trivially modified to determine the coarsest 
C-bisimulation on the nodes of a single graph. This can be used to transform a graph into a C- 
equivalent one which has a minimum number of states: first compute the coarsest C-bisimulation and 
then collapse each block in the final partition into a single node. 

5 Preorder Checking 

The second basic analysis within the Workbench involves checking a preorder between two agents. 
This is done in a way similar to equivalence checking; after converting the agents to transition graphs 
we then apply a general preorder algorithm. The algorithm is based upon the following generalization 
of the notion of equivalence introduced in Section 4.1. 

5 .1  D e f i n i t i o n  o f  t h e  P r e o r d e r  

Let G1 and G2 be transition graphs with (disjoint) node sets N 1 and N2, let N = N1 U N2, and let 
C C N × N be a preorder reflecting a notion of "ordering on information fields" (in general a preorder 
is a transitive and reflexive relation). Also let 79~ C_C_ N and Qa c_ N be predicates over N, where a 
ranges over the set of actions. Intuitively, 79~ and Q, determine the states from which a-transitions 
must be matched. 

Def in i t ion  5.1 A C-prebisimuIation between G1 and G2 is a relation 7~ C_ N x N such that (m, n) E T~ 
impli~ that: 

1. if n E P~ then [if ~ , ~ r m---*m then 3n p : n---*n and (mt, n ') E ~ ] ,  and 

• a ! 

2. i f m  e Q~ then [l fn---~n then ~m' :  m--%r.n' and (m',n'} e 7~], and 

3. (re,n) e C. 

The C-preorder is defined by: G1 _Ec G2 if there exists a C-prebisimulation relating the roots of the 
two graphs. Note that when P~ = Q~ = N and C is an equivalence relation, then a C-prebisimulation 
is just a g-bisimulation. 

5 .2  D e r i v e d  P r e o r d e r s  

Many interesting preorders turn out to be instances of C-preorder on appropriately transformed graphs. 
Let U denote the universal relation on N and t~a the local convergence predicate on a; nl~a holds if 
n is not divergent and cannot be triggered by means of an a-action to reach a divergent state. (For 
details of this predicate see [30, 32].) Then we have: 

• The bisimulation divergence preorder [30, 32] results by setting: 

79~ = N , Q ,  = {nln~a } and g = {(m,n)t for all a:ml~a ~ nl~a}. 

This defines the strong version of the divergence preorder. The weak version, ~, where r-actions 
are not observable, can be obtained from the corresponding observation graphs. 

• The may, must and testing preorders require the transformation of graphs into deterministic, 
must, and acceptance graphs, respectively. Then these relations are the following instances of 
the general preorder [7]. 
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- The may preorder: 79, = N, Q~ = 0, and C = U. 

- The must preorder: P ,  = 0, Q, = {mlm.div  = false}, and ( m , n )  E C holds exactly when 
either m.acc = 0, or both m.acc and n.acc are nonempty and each element in n.acc is a 
superset of some element in m.acc. 

- The testing preorder: Pa = N, Q~ = {mlm.div  = false}, and C is defined as for the must 
preorder. 

As an example, we can establish the following. 

P B U F  n ~ B U F  m , for all m > n 

Here PBUF is used as a partial specification that  is satisfied by all BU~" for m > n. Partial 
n 

specifications like this can be used to express that  two agents, although not equivalent, may be used 
interchangeably in certain contexts (cf. [9]). 

5.3 The Algorithm 

The algorithm for computing the C-preorder works by attempting to find a C-prebisimulation relating 
the roots of the graphs. In contrast to Section 4.3, however, preorders cannot be represented by 
partitions. We obtain an appropriate representation by annotating every node n with a set of nodes 
considered to be "greater" than n. 

In principle, the preorder algorithm proceeds in the same way as the equivalence algorithm. It 
starts by considering all states to be indistinguishable, i.e. every node is annotated with the set of all 
nodes N. Then it successively refines the annotation of each node until the root node of G1 no longer 
is in the annotation of the root node of G 2 (in which case G1 ~ c  G2) or the annotations determine a 
C-prebisimulation (in which case G1 E_c G2). 

The time and space complexities of this algorithm are O(k 4 • 2) and O(k  2 + 2), respectively, where 
k is the number of states, and ~ is the number of transitions, in the two graphs. The loss of efficiency 
compared with the equivalence algorithm is due to the fact that we cannot use the same compact 
representation of relations as in Section 4.3. 

6 M o d e l  C h e c k i n g  

The Workbench also supports a verification method based on model checking [4, 5, 6, 11, 31], in which 
specifications are written in an expressive modal logic based on the propositional (modal) mu-calculus. 
The system can automatically check whether an agent meets such a specification. 

The Workbench actually uses two logics, the interface logic and the system logic. The former 
is a "syntactically sugared" version of the latter that also provides for user-defined propositional 
constructors, called macros. The model checker establishes that a node in a graph enjoys a property in 
the interface logic by first translating the property into a formula in the system logic, which is simpler 
to analyze. We shall only describe the interface logic here. 

6.1 The Logic 

The interface logic includes traditional propositional constants and connectives together with modal 
operators and mechanisms for defining recursive propositions. The formulas are described by the 
following grammar. 

::= u I f f i  x 
I - ~ l ~ v ¢  I ' ~ ^ ' ~ 1 ~ ' ~  
I (a)'~ I [a]~ I (.)¢ I [.]~' 
] B arg-list 

I ~x.¢ i ~ x . ¢  
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In the above, X ranges over variables, a over actions, B over user-defined macro identifiers, and avg-list 
over lists of actions and/or formulas that B requires in order to produce a proposition. There is a 
restriction placed on q~ in u X . ¢  and #X.¢  that requires any free occurrences of X to appear inside 
the scope of an even number of negations. 

These formulas are interpreted with respect to nodes in transition graphs, t t  and ff  hold of every 
node and no node, respectively. X is interpreted with respect to an environment binding variables 
to propositions; n satisfies X if it satisfies the formula to which X is bound in the environment. - ~  
holds of a node n if • does not hold of n, ¢1 V ¢2 holds of n if either of ¢1 or ~2 does, ¢1 A ¢2 holds 
of n if both Ca and ¢2 do, and ~1 ~ ~2 holds of n if, whenever ~1 holds of n, then ~2 does as well. 

The modal constructors (a), Is], (.) and [.] make statements about the edges leaving a node. A 
node n satisfies (a)¢  if it has an a-derivative n' with n' satisfying ¢~, while n satisfies [a]q~ if all its 
a-derivatives satisfy 4. In the case that n has no such derivatives, n trivially satisfies [a]q~. In (.)~ 
and [.]4, the %" should be thought of as a "wild-card" action; n satisfies (.)~ if it satisfies (a)¢  for 
some a, while it satisfies [.]4 if it satisfies [a]¢ for all a. 

A macro can be thought of as a "function" that accepts some number of arguments, which may be 
either actions or formulas, and returns a proposition. A formula Barg-list is then interpreted as the 
proposition returned by B in response to arg-list. 

Formulas of the type v X . ~  and #X.~ are recursive formulas; they correspond to certain kinds 
of infinite conjunctions and disjunctions in the following sense. Let Oo be the proposition tt, and 
define Oi+l to be the proposition 42[¢)i/X], namely, the proposition obtained by substituting Oi for 
free occurrences of X in 4. Then uX.¢ corresponds to the infinite conjunction Ai°°__ 00i.  Now let ~0 be 

the proposition if, and let ~+1 be defined as ¢P[~I/X]. Then #X.O may be interpreted as the infinite 
O o  ^ disjunction V~=0 Oi. 

The recursive proposition constructors add a tremendous amount of expressive power to the logic 
(cf. [11, 29]). For example, they allow the description of invariance (or safety) and eventuality (or 
liveness) properties. However, the formulas are in general unintuitive and difficult to understand. We 
have found that  the most effective way to use the model checker is to choose a collection of intuitively 
well-understood operators that one wishes to use to express properties and then "code up" these 
operators as macros. For example, it is possible to define the operators of the temporal logic CTL [5] 
as macros. Examples include the following. 

A G O  = 

A F  q' = 

Untitl ¢~ • = 

Until2 O ~ = 

~,x.(~ ^ [.ix) 
v,x.(¢, v ((.)tt ^ [.ix)) 
~,x.(~ v (,~ ^ [.]x)) 
#X.(O V (~2 A (.)tt A [.]X)) 

A G  q' holds of n if ¢I' holds of every node reachable (via some sequence of transitions) from n, while 
A F  • holds if • is guaranteed to hold at some point along every path of nodes starting at n. Untill ~ ty 
holds of n if, along every maximal path of nodes starting at n, ty is true until a state is reached where 

is true. Until2 • q~ is the same as Untill ~ ~,  except that here • additionally is required to 
hold eventually. Until1 corresponds to the CTL "weak" until, while Until2 corresponds to the CTL 
"strong" until operator (over all paths). It is also possible to write formulas expressing properties 
that  are useful in describing fairness constraints; many of these involve the use of mutually recursive 
greatest and least fixed point formulas [11]. 

6 .2  T h e  A l g o r i t h m  

The algorithm for determining whether a node satisfies a system logic formula works on sequefits of 
the form H k n E 4, where n is a node, ¢ is a formula, and H is a set of hypotheses, or assumptions 
of the form n' : vX.¢  t. The (informal) interpretation of this sequent is that under the assumptions H, 
n satisfies 4. The procedure is tableau-based, meaning that it attempts to build a top-down "proof" of 
H F n E 4. The method used comes from [6]; we shall not described it here. Another tableau-based 
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approach appears in [31], while a semantics-based algorithm is given in [11]; an automated proof system 
for a subset of the logic is described in [20]. 

Applying the algorithm to graphs generated by the different graph transformations yields different 
notions of satisfaction. For instance, checking propositions against observation graphs causes the 
modal operators to be insensitive to T-actions; it is also interesting to note that  the observation graph 
transformation causes information about the eventuality properties of a process to be lost. 

As an example, it is possible to show that CBUF~, for particular n, is deadlock-free as follows. 
Define the macro Deadlock by 

Deadlock = -~(.)tt 

This proposition is true of states that cannot perform any actions. Using the model checker, one can 
establish that CBUF~ satisfies the formula 

AG(-~Deadlock ) 

where AG is the macro defined above; this formula states that it is always the case that CBUF n is not 
deadlocked. It is also possible to show that CBUF~ is live, i.e. always capable of eventually engaging 
in either an in or an o-~. The formula expressing this property is the following. 

AG((AF( in} t t )  V (AF('o-~)tt)) 

For particular n, one can establish that CBUF~ satisfies this formula. 
The algorithm in general has complexity that is exponential in the size of the formula being checked, 

although for Special classes of formulas it is well-behaved. The precise complexity is still under inves- 
tigation. 

7 Other  Features  of  the  W o r k b e n c h  

The Workbench includes other facilities for examining the behavior of agents. In addition, as a result 
of its modular structure it is relatively easy to extend. This section describes some of these facilities 
and extensions. 

7.1 S t a t e  S p a c e  A n a l y s i s  

The Workbench includes a variety of ways of analyzing the state space of an agent. In addition to 
commands for computing transitions and derivatives, there are features for determining which states 
are deadlocked and for computing sequences of experiments that lead to deadlocked states. These 
types of analyses are traditionally found in automatic verification tools and will not be discussed in 
this paper. 

7.2 Equation Solving 

The equation solving feature of the Workbench [26] is used to solve equations of type ( A I X ) \ L  = B 
where A, B and L are given. The method is useful within a top-down or stepwise refinement strat- 
egy: if a specification (B) and parts of an implementation (A) are known, solving such an equation 
amounts to constructing a specification of the missing submodules. The method involves the succes- 
sive transformation of equations into simpler equations in parallel with the generation of a solution. 
These transformations can be performed automatically by the system according to certain heuristics, 
or the user can apply them interactively. The tool has been used for the generation of a receiver in a 
communication protocol, where the overall service, medium, and sender are known. 
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7.3 E x p e r i m e n t a l  E x t e n s i o n s  

Two additional extensions to the system have been implemented and are being investigated. In the 
first, the model of computation has been extended to include a restricted form of value passing. In its 
"pure" form, CCS does not provide for the association of values to communication actions, although 
it is possible to encode the passing of values by associating a unique action name to an action/value 
pair. In the case of infinite value domains, however, this leads to syntactically infinite agents. In 
[18], an alternative encoding is proposed, in which the infinitely many data values are represented 
schematically. Using the resulting transitional semantics, bisimulation equivalences can be defined in 
such a way as to correspond exactly to the bisimulation equivalences in full CCS. This result entails 
a decision procedure for data-independent agents, i.e. agents which communicate data values but do 
not perform any computations or tests on the values. The decision procedure has been implemented 
in the Workbench [22]. 

An interface has also been built between the Workbench and the Extended Model Checker [5] 
(EMC), which is a tool for checking the satisfiability of temporal logic (CTL) formulas. EMC views 
processes somewhat differently than the other analysis procedures in the Workbench do; there are 
no communication events, and states are labeled by atomic propositions. EMC has successfully been 
applied to verification of nontrivial pieces of hardware. The integration with the Workbench was 
achieved by defining a translation from labeled transition graphs to the type of structures analyzed by 
EMC [17]. 

8 Conclusion 

In this paper we have presented an overview of the Concurrency Workbench. We have shown that it 
is possible to supply a variety of tools for deducing the correctness of processes based on a variety of 
different process semantics while maintaining a conceptually simple core. This has been achieved by 
maintaining a strict separation between the semantic models of processes and the procedures used to 
analyze them. This modularization makes the system relatively easy to extend. 

There are a variety of directions for future work on the Workbench. Other equivalences and 
preorders, including GSOS equivalence [1] and the ~-bisimulation preorder [21], also turn out to be 
instances of the general relations that we examine, and adding these relations to the workbench is 
one avenue we plan to pursue. Another involves the computation of distinguishing formulas [14]. At 
present, when agents are found not to be equivalent, no indication is given as to why. One way to 
convey such information is to give a formula in the mu-calcutus satisfied by one agent but not by the 
other; a technique for doing so is under investigation. Work is also underway on a graphical interface. 

Another possible area of investigation involves compositional reasoning [4]. The parallel composition 
of two agents usually entails a combinatorial explosion in the size of the state space of the resulting 
agent as a function of the state spaces of its components. One means of coping with this is to verify the 
parallel components separately, but in a way that implies the correctness of the composite process. The 
preorder has been investigated in this respect [32]; a possible extension to the Workbench would involve 
formalizing this in a way similar to the equation-solving tool. It is also conceivable that the model 
checker could be extended to check formulas compositionally using methods developed by Stirling [30]. 

Acknowledgements 

We would like to thank Matthew Hennes~y, Robin Milner and Colin Stirling for initiating and overseeing 
the Workbench project. We are also grateful to Lennart Beckman, Jo Blishen, Michael Mendler, Kevin 
Mitchell, Fredrik Orava, BjSrn Pehrsson, Scott Smolka and David Walker for many helpful suggestions 
concerning the implementation of the Workbench and the development of this report. 



36 

References 

[1] Bloom, B., S. Istrall and A. Meyer. "Bisimulation Can't Be Traced." Proceedings of the ACM 
Symposium on Principles of Programming Languages, 1988. 

[2] Bochmann, G., "Usage of Protocol Development Tools: The Results of a Survey." In Proceeding 
of the Seventh IFIP Symposium on Protocol Specifcation, Testing, and Verification, 1987, 
North-Holland. 

[3] Boudot, G., de Simone, R. and Vergamini, D. ~'Experiment with Auto and Autograph an a 
Simple Case Sliding Window Protocol." Inria Report 870, July 1988 

[4] Clarke, E.M. "Compositional Model Checking." This volume. 

[5] Clarke, E.M., Emerson, E. and Sistla, A.P. "Automatic Verification of Finite State Concurrent 
Systems Using Temporal Logic Specifications." ACM Transactions on Programming Languages 
and Systems, v. 8, n. 2, 1986, pp. 244-263. 

[6] Cleaveland, R. "Tableau-Based Model Checking in the Propositional Mu-Calculus." University 
of Sussex Technical Report 2/89, March 1989. 

[7] Cleaveland, R. and Hennessy, M.C.B "Testing Equivalence as a Bisimulation Equivalence." 
This volume. 

[8] Cleaveland, R., Parrow, J and Steffen, B. The Concurrency Workbench: Operating Instruc- 
tions, University of Edinburgh, Laboratory for Foundations of Computer Science, Technical 
Note 10, September 1988. 

[9] Cleaveland, R., Parrow, J and Steffen, B. The Concurrency Workbench: A Semantics-Based 
Verification Tool for Finite-State Systems, University of Edinburgh, Laboratory for Founda- 
tions of Computer Science, Technical Report ECS-LFCS-89-83, June 1989. 

[10] DeNicola, R. and Hennessy, M.C.B. "Testing Equivalences for Processes." Theoretical Com- 
puter Science, v. 34, 1983, pp. 83-133. 

[11] Emerson, E.A. and Lei, C.-L. "Efficient Model Checking in Fragments of the Propositional 
Mu-Calculus." In Proceedings of the First Annual Symposium on Logic in Computer Science, 
1986, pp. 267-278. 

[12] Fernandez, J.-C. Alddbaran: Une Syst~me de Vdrification par Rdduction de Processus Com- 
municants. Ph.D. Thesis, Universit6 de Grenoble, 1988. 

[13] Hennessy, M.C.B. Algebraic Theory of Processes. MIT Press, Boston, 1988. 

[14] HilterstrSm, M. Verification of CCS-processes. M.Sc. Thesis, Computer Science Department, 
Aalborg University, 1987. 

[15] Hoare, C.A.R. Communicating Sequential Processes. Prentice-Hall, London, 1985. 

[16] Hopcroft, J. and Ullman, J. Introduction to Automata Theory, Languages and Computation. 
Addison-Wesley, Reading, 1979. 

[17] Jonsson, B., Kahn, A., and Parrow, J. "Implementing a Model Checking Algorithm by Adapt- 
ing Existing Automated Tools." This volume. 

[18] Jonsson, B. and Parrow, J. "Deciding Bisimulation Equivalences for a Class of Non-Finite-State 
Programs." In Proceedings of the Sixth Annual Symposium on Theoretical Aspects of Computer 
Science, 1989. Lecture Notes in Computer Science 349, pp. 421-433. Springer-Verlag, Berlin, 
1989. 



37 

[19] Kanellakis, P. and Smolka, S.A. "CCS Expressions, Finite State Processes, and Three Problems 
of Equivalence." In Proceedings of the Second A CM Symposium on the Principles of Distributed 
Computing, 1983. 

[20] Larsen, K.G. "Proof Systems for Hennessy-Milner Logic with Recursion." In Proceedings of 
CAAP, 1988. 

[21] Larsen, K. and A. Skou. "Bisimutation through Probabilistic Testing." Proceedings of the 
ACM Symposium on Principles of Programming Languages, 1989. 

[22] Lee, C.-H. "Implementering av CCS reed v£rdeSverfSring." SICS Technical Report 1989 (in 
Swedish). 

[23] Malhotra, J., Smolka, S.A., Giacalone, A. and Shapiro, R. "Winston: A Tool for Hierarchical 
Design and Simulation of Concurrent Systems." In Proceedings of the Workshop on Specifica- 
tion and Verification of Concurrent Systems, University of Stifling, Scotland, 1988. 

[24] Milner, R. Communication and Concurrency. Prentice Hall 1989. 

[25] Paige, R. and Tarjan, R.E. "Three Partition Refinement Algorithms." SIAM Journal of Com- 
puting, v. 16, n. 6, December 1987, pp. 973-989. 

[26] Parrow, J. "Submodute Construction as Equation Solving in CCS." In Proceedings of the Foun- 
dations of Software Technology and Theoretical Computer Science, Lecture Notes in Computer 
Science 287, pp. 103-123. Springer-Verlag, Berlin, 1987. 

[27] Parrow, J. "Verifying a CSMA/CD-Protocol with CCS." In Proceeding of the Seventh IFIP 
Symposium on Protocol Specification, Testing, and Verification, 1987, North-Holland. 

[28] Richier, J., Rodriguez, C., Sifakis, J. and Voiron, J.. "Verification in XESAR of the Sliding 
Window Protocol." In Proceedings of the Seventh IFIP Symposium on Protocol Specification, 
Testing, and Verification, 1987, North-Holland. 

[29] Steffen, B. "Characteristic Formulae." In Proceedings ICALP, 1989. 

[30] Stirling, C. "Modal Logics for Communicating Systems." Theoretical Computer Science, v. 49, 
1987, pp. 311-347. 

[31] Stirling, C. and Walker, D.J. " Local Model Checking in the Modal Mu-Calculus', In Pro- 
ceedings TAPSOFT, 1989. 

[32] Walker, D.J. "Bisimulation Equivalence and Divergence in CCS." In Proceedings of the Third 
Annual Symposium on Logic in Computer Science, 1988, pp. 186-192. 

[33] Walker, D.J. "Analysing Mutual Exclusion Algorithms Using CCS." University of Edinburgh 
Technical Report ECS-LFCS-88-45, 1988. 


