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1 I n t r o d u c t i o n  

This paper  presents a method for using timing assumptions to prove, automatically,  that  an 
implementat ion meets a speed-independent  specification. Most verification methods for concur- 
rent systems assume that  the system must  meet a specification regardless of the speeds of its 
component  processes. However, it is often the case tha t  knowledge about the relative speeds 
of processes can be used to design a system more efficiently. Programmers and engineers chafe 
at  the constraints of speed-independence. Usually, something is known about  the delays in a 
system, and this knowledge can be used to develop a more efficient system. It is therefore 
impor tan t  to develop verification methods that  can take into account t iming knowledge. 

We describe a method for using delay information in state-graph verification of finite-state 
concurrent systems. The t iming assumptions are given as constant upper and lower bounds 
on delays between events. The approach is based on a continuous model of t ime - -  times 
are real numbers,  not integers. The method is an extension of speed-independent methods 
based on finite au toma ta  on infinite sequences [2, 17], so it can handle tiveness properties,  
indeterminate  computat ions,  and so on. A formal framework is constructed so tha t  the soundness 
and completeness of the method can be proved. 

The fundamental  idea behind the solution is to associate with each s tate  a convex linear 
region describing the states of individual  t imers in the system, which are fictitious components 
that  keep track of the possible times at which events can occur. This automaton can be used to 
winnow out computat ion sequences that  violate the t iming assumptions, so an implementation 
tha t  would violate a specification in a purely speed-independent model may satisfy it under 
par t icular  t iming assumptions.  The cost of the method is a single exponential  in the number of 
t imers and the size of the automaton for the specification. 

There have been many proposals for frameworks for verifying timing properties.  In our view, 
these can be grouped into three major  categories according to their  underlying models of time. 
The first group are based on discrete time models, in which time is isomorphic to the integers or 
natura l  numbers [7, 8, 10]. These models axe not much different from the t radi t ional  models of 
concurrency. For example,  in linear temporal  logic, specifications involving t ime can be writ ten 
using repeti t ion of the "next t ime" operator.  

A l imitat ion of discrete-t ime models for modeling systems tha t  are not inherently syn- 
chronous is that  they require an a priori commitment to a t ime quantum. Once the quantum 
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has been chosen, interactions that  require finer resolution will be overlooked (e.g. a bug that  
arises only when one process executes five or more actions between two actions of another pro- 
cess). This can be resolved in practice by setting the quantum "small enough", but  this would 
probably blow up the s ta te  space. 

Another  class of t iming models assumes tha t  systems work in continuous time, but  t iming 
assertions are made by comparing with a fictitious "global clock" tha t  ticks at some known, 
fixed rate  [1, 4, 12]. A l imitat ion of this model is that  the t iming information is not exact. It 
is impossible to express exactly "event b occurs no more than two seconds after event a." If  we 
say "there are no more than n clock ticks between a and b", either n = 1 in which case we have 
ruled out t ime(a)  = 1.9 and time(b) = 3.1, which are separated by only 1.2, or n = 2 in which 
case we allow t ime(a)  = 1.1 and time(b) = 3.9, separated by 2.8. 

The third model is ( integer-bounded) continuous time. This model has not been explored 
as much as the others. The only other work of which we are aware is a method by Lewis for 
analyzing asynchronous circuits [11]. Our method is similar to that  of Lewis, but simpler (the 
author  believes). Additionally,  we allow a more flexible coupling between system events and 
timing, as well as verification of general l inear-time temporal  properties,  such as unbounded 
liveness and fairness. 

2 Speed- independent  Verification 

This section presents a framework for verification in the speed-independent case, which is a 
major  component of the more general model presented later.  Sets of (linear) traces are used 
to represent the possible histories of the system. If the system is finite-state, the traces can be 
represented as the language of a finite automaton.  A property (or specification) of a system is 
also a trace set. A system satisfies a property if the set of traces of the system is a subset of 
the property.  

2.1 T r a c e  s e t s  

In more detail ,  every process has an associated finite set E of events (which depend on the 
process). In our model, it  is possible for several events to occur at once. Thus, a trace (history) 
of the execution of a process is a sequence of event sets. These sequences are infinite (a history 
in which nothing happensd will have a~ infinite sequence of empty  event sets). Formally, we 
define a trace structure to be a pair (E, X)  where £ is a finite event set and X is a subset of 
[2c] ~. We assume that  all the behavioral aspects of a process can be summarized by the set of 
its traces. 

We define a projection operat ion on traces: if x is a member of [2c] ~ and E I C_ E, then x r~, 
is defined to be the sequence x' in [2c'] ~ such that  x'(i) = x(i) n E' for all i E w. Projection 
can be extended to sets of traces by defining (E,X)[c,  when E' _C E to be (E' ,X ' )  where 
X '  = {xr¢, I x E x } .  Using projection, a conjunction operation is defined on trace structures. 
(E, X ) A  (E', X ' )  = (£ U E', {x E [2cuE']~ I x rce  x A x r¢,E Xl}). (E, X ) i s  an implementat ion of 
(£', X ' )  if £ = E I and X C X ' .  

The framework is similar to other trace models of concurrent systems if regarded as a model of 
concurrency (notably, that  of Hoare [9]). The pr imary difference is that  it models the occurrence 
of simultaneous events instead of the usual interleaved model of concurrency. 

It is also similar to linear temporal  logic (LTL). The pr imary difference is that  formulas in 
LTL do not have explicit alphabets.  Also, it  is conventional to regard LTL formulas as assertions 
about  states or conditions, not events. In part icular,  it has been noted that  conjunction of LTL 
formulas corresponds to parallel composition of processes, if the sets of variables writ ten by the 
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processes are disjoint (this is called the distributed variables assumption [13]). This is true in 
our framework, as well: if trace sets (E ,X)  and (E~,X') represent processes P axLd P '  which 
have disjoint sets of output variables, (g, X ) A  (g ' ,  X ' )  represents their parallel behavior. 

2 .2  F i n i t e - s t a t e  c o n c u r r e n c y  

The trace sets of a finite-state system can be represented by finite automata on infinite strings. 
Of several available alternatives, we shall use Biichi automata,  which are as expressive as 
Wolper's extended temporal logic. A Bfichi automaton is a nondeterministic finite automa- 
ton (~ ,Q,n ,  Qo, F), where ~ is the alphabet (here ~ = 2c), Q is the state set, n :Q  x ~ --* 2 Q is 
the transition function, Q0 is a set of start states, and F C Q is the set of accepting states. How- 
ever, unlike more conventional automata on finite strings, the automaton reads infinite input 
strings. 

If p: w --* ~ is an infinite string of alphabetic symbols (w is the set of natural numbers), a 
run of the automaton on p is an infinite sequence of states r : w  --* Q such that ;r(0) E Q0 and 
~(l + 1) e n(~(l),p(1)). 

It is an accepting run if an some member of F appears infinitely often on the run. In a 
deterministic Biichi automaton, Q0 is a singleton set, as is n(q, a) for every q E Q and a E ~. 
In a deterministic automaton, an alphabetic string determines a unique run. 

The language of an automaton is a pair (E ,X) ,  where ~ is the alphabet of the automaton 
and X is the set of strings over E that have accepting runs. There is a theory of w-regular sets 
that  parallels the theory of regular sets in many ways. The reader interested in an in-depth 
discussion should consult the references [5, 6]. 

Concurrent systems can be analyzed automatically by manipulating B/ichi automata. In 
particular, given Biichi automata f14 and J~d' accepting languages ( ~ , X )  and ( ~ ' , X  J, it is 
possible to find an automaton A//" accepting (E, X)  A (E' ,  X') .  This can be done by an obvious 
generalization of the product construction for finding the intersection of the languages of two 
automata  with identical alphabets [14]. 

If A4 and .~ff are Biichi automata accepting languages X and X ' ,  it is possible to test whether 
X C_ X ~, by checking whether the intersection of X and the complement of X ' is empty. If the 
alphabets of f14 and A4' are different, each alphabet can be extended to include the other by a 
simple transformation on the automata.  There are algorithms for complementing an automaton 
[15, 16]. It  is easy to check for emptiness by searching for cycles containing an accepting state 
that  are reachable from one of the start states. 

3 Timing Constraints 

The speed-independent model can be extended to include real-time constraints by adding a set 
of timers, which are fictitious "alarm clocks" that can be set to an arbitrary real value (within 
specified bounds). A timer expires when this time has elapsed. The model does not allow the 
system to control the value to which timers are set, except that  the value is guaranteed to be 
within certain bounds. 

To verify that  an implementation satisfies a speed-independent specification, the specification 
is represented as a Biichi automaton. A Biichi automaton representing all of the time-constrained 
behaviors of the implementation is also constructed, then it is checked whether language of the 
implementation automaton is a subset of the language of the specification automaton. 

To derive the automaton for the implementation, we first extract a Biichi automaton repre- 
senting the speed-independent behavior of the implementation. One event starts some process 
which culminates in a second event. The delay assumptions are that the second event occurs 
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within some constant interval of t ime after the first event. To model this using timers, the first 
event sets the t imer and the second event occurs when the t imer expires. The speed-indendent 
automaton is modified so tha t  the set and expire events happen simultaneously with the "first" 
and "second" events associated with each delay constraint.  This can be done by including t imer 
events in some of the event sets of the automaton representing the speed-independent behavior. 

This modified automaton is then conjoined with a Biichi automaton that  constrains the 
relative orders of set and expire events, based on user-supplied delay bounds. The conjunction 
repres.ents exactly those behaviors tha t  can occur in the implementation.  

One advantage of this approach is that  delays can be associated with other system events in 
very flexible ways. For example, it  is possible to model "the event a always causes b within two 
seconds or after ten seconds" by having two a transit ions in the speed-independent automaton 
and associating each with a different timer. I t  is even possible to express "the event a always 
causes b within two seconds or after ten seconds and eventually causes b within two seconds" 
by choosing the accepting states of the B(ichi automaton appropriately. 

3 .1  T i m e r s  

In order to deal uniformly with finite and infinite bounds and with strict and non-strict inequal- 
ities, we define the domain B of bounds, which are ordered pairs Z × {<,  < )  U { ( ~ ,  <),  ( - o c ,  <:)) 
(Z is the set of integers). The symbols < and _< are total ly ordered: < is taken to be strictly 
less than <_. A part ia l  order is defined by ( x , r ) _  (x ~ , r ' ) i f x  < x I o r i f x  = x ' a n d  r < r '  
(lexicographic order). 

For notat ional  convenience, we mix bounds and reals in comparisons and arithmetic.  When 
comparing a real and a bound, we use either the explicit comparison relation or the second 
component of the bound,  whichever is more strict. For example, when b = (x, <)  and b' = (x, <) 
a n d y i s a r e a l n u m b e r : b < y m e a n s  x < y , y ~  bmeans  y <  x , b  ~ < y m e a n s x  < y ,  a n d b  ~< y 
means x < y. We apply the ar i thmetic  operations to the real numbers and first component 
of the bound, and either re-at tach the second component of the bound to the result or not, 
depending on whether the context seems to demand a bound or a real number  as the result. For 
example, - b  means ( - x ,  <)  or - x ,  and b' + y means (x 4- y, _<) or x ÷ y, depending on context.  

A timer system is defined to be a quadruple (T, l, u, A0), where T is a finite set of timers, 
l: T --* B represents constant lower bounds on t imer values, u: T ~ B represents constant upper 
bounds (when u(i)  = (0o, <) ,  there is no finite upper bound),  and A0 is a set of t imers to be 
set a t  the beginning of system operation. We require that  (0, <)  < l(i) < u(i)  ~ (0o, <)  for all 
i E T. The t imer system is assumed to be fixed throughout  the rest of the paper.  

There are two events, se t ( i )  and exp l r e ( i ) ,  associated with every t imer i E T. Timer events 
appear  in traces, like other events. A timer is active if it  has been set and has not expired. 
When se t ( i )  and e x p i r e ( i )  are in the same event set, it  means that  the t imer first expires and is 
then instantaneously set again; when this occurs, the t imer is active. A trace containing t imer 
actions is well-formed if the first set of active t imers is A0, active timers are not set unless they 
expire in the same event set, t imers expire only when they are active, and every active t imer 
eventually expires. 

The times at  which the events in a trace occur can be recorded in a sequence of real numbers,  
called a time sequence. A time sequence r is a member of [w ~ It] tha t  begins at 0 and increases 
monotonically without  bound ( R  is the set of real numbers).  

A timed trace is a pair  (p, r ) ,  where p is a trace and r is a t ime sequence. A timed trace is said 
to be timing-consistent i f p  is well-formed and 1(i) < v(m) - r ( / )  < u(i)  whenever se t ( i )  e p(1), 
e x p l r e ( i )  e p(m), and m is the first point  after I containing e xp l r e ( i ) .  

A trace p is said to  be timing~consistent with a t imer system if there exists a time sequence 
r such that  (p, r )  is timing-consistent.  
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3.2  A u t o m a t a  

It is possible to define a deterministic Biichi automaton that  accepts exactly the timing-consistent 
traces. The automaton is the conjunction of several automata defining simpler conditions. The 
well-formedness conditions axe standard temporal conditions that can be expressed without diffi- 
culty as the conjunction of a collection of small deterministic Biichi automata, one for each timer. 
We call the conjunction the ivell-formedness automaton (it is deterministic because conjunction 
preserves determinism). 

The second and more interesting part of the construction is the t imer region automaton, 
which enforces ordering constraints between the expirations of different timers. Intuitively, 
whenever a timer event occurs, a "snapshot" is recorded of the possible values of the timers. 
This snapshot is a convex linear region; ever), point in the region is vector of timer settings 
(called a t imer valuation). These regions are the states of the automaton. 

Formally, a timer valuation v is a function that  assigns a real value to each of a set A _C T 
(v: A --* I t) .  A t imer region is a set of valuations with a common domain: V C_ [A --* R], 
for some A C T. The set of all timer regions that  have some subset of T as their domain 
is denoted by I teg lons(T) .  The alphabet of the timer region automaton is the power set of 
{ se t ( i ) , exp i re ( i )  l i E T} .  

For the moment,  let us say that Q = Reg ions (T)  is the set of states of the automaton (even 
though this set is infinite). The accepting states are the non-empty regions. The initial state of 
the automaton is the timer region {v: A0 ~ R I Vi E A0: 1(i) ___ v(i) <_ u(i)}. This represents 
the possible valuations of the timers in A0 when set simultaneously at time 0 to values between 
1 and u. 

Suppose that  v: A --* R is the timer valuation either initially or immediately after some event 
set, and the next event set is B. Let the set of expiring timers in B be E and the newly set timers 
be S. The resulting valuation (at the instant after the event set occurs) can be vf: A ~ --~ I t ,  
where A ~ = (A - E)  U S, when the expiring timers all have the same value in v (since they 
expire simultaneously), the expiring timers have smaller values than the non-expiring timers 
(because they expire first), the values of the remaining (non-expiring) timers axe reduced by the 
value of the expiring timers, and the newly set timers have arbitrary values within the bounds 
established by the timer system. Formally, 

n e x t t v ( v , B , v ' ) =  3t E I t :  Vi E E:v( i )  = t 
AVi E A - E: t  < v(i) 
AYi  E A -  E:v~(i) = v ( i ) -  t 

^ vi  e s:  l(i) _< v,(i) < u(i))  

To define the transition function n, first let V be any timer region and B be any set of 
timer events. Let E be the timers that expire and let S be timers that are set in B. Then the 
definition is n(V, B) = {v ~ E [(A - E)  U S -~ R] I 3v E V: nex t tv (v ,  B, v~)} 

This completes the definition of the timer region automaton, except that  we have defined 
the states to be the infinite set of regions. This problem is easily fixed, however, because the set 
of regions reachable from the initial region is finite. This result is proved later. 

The timing automaton of a timer system is the conjunction of the well-formedness automaton 
(which accepts all well-formed traces) and the timer region automaton (which accepts all traces 
whose se t  and exp i r e  events occur in an order allowed by the timing constraints). 
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3.3  L a n g u a g e  o f  t h e  t i m i n g  a u t o m a t o n  

The following theorem states that the behaviors allowed by a timer system are captured precisely 
by the timing automaton: 

T h e o r e m  1 The timing automaton accepts exactly the set of timing-consistent traces. 

For notational convenience henceforth, in the context of a particular timer event trace p, we 
use El to denote the set of expiring timers and S~ to denote the timers that  are set in p(i). Also, 
A~, the set of active timers, is defined recursively by A~+I = (Al - Et) U Sz (Ao is given as part 
of the timer system). 

For proving the theorem, it is helpful to convert a timed trace (p, r)  to an alternative repre- 
sentation which replaces the time sequence r by a timer valuation sequence ~, -= vo, V l , . . .  (p, v) is 
timing-consistent if the domain of vz is AI (defined as above), v0 satisfies Vi C A0: l(i) < v~ _< u(i), 
and vt+l satisfies nexttv(vz,  p(l), vi+l). The next lemma asserts that  these two representations 
of timed traces are interchangeable. 

L e m m a  1 There exists a mapping ¢ between the two representations of timed sequences such 
that (p, r )  is timing-consistent iff ¢(p, r)  is timing consistent. 

proof .  We supply ¢. The proof that it preserves timing consistency follows directly 
from the definitions. Let (p, r)  be any timing-consistent timed trace. Define ¢(p, r)  valuation 
sequence as follows: for each l E w and i E Al, set vl(i) = r(m)  - r(l) where m is the least 
number greater than I such that i E Era. m always exists because (p, r)  must be well-formed to 
be timing-consistent. [] 

L e m m a  2 Every timing-consistent trace is accepted by the timing automaton. 

proof .  It should be obvious that every well-formed trace is accepted by the well-formedness 
automaton. We prove that  it is accepted by the timer region automaton by constructing an ac- 
cepting run. 

Let ~r be the run of the timer region automaton on p (~r is unique because the timer region 
automaton is deterministic). To prove that 7r is an accepting run, we need only demonstrate 
that  7r(i) is non-empty for all i, which we do by exhibiting a point in each region of r .  

Since p is timing-consistent, there exists a time sequence r such that (p , r )  is timing- 
consistent. By the previous lemma, we can convert r to a timer valuation sequence v0, v l , . . .  It 
is easy to see (by inspecting the definitions) that  v0 E 7r(0) and that if vl C 7r(1) for any l E w, 
then vt+l E ~r(l + 1). Hence, by induction, there is at least one timer valuation in every region 
along r ,  so it is an accepting run. [] 

This completes the proof of half of the theorem. The second half, that  every trace accepted 
by the automaton is timing-consistent, is more difficult. Let p be any well-formed timer event 
sequence. Then there exists a run ~r of the timer region automaton on p. We would like to 
construct a timer valuation sequence (hence a time sequence) from 7r by choosing an appropriate 
timer valuation vt from each region lr(1). It is very easy to do this up to some finite m by working 
"backwards" from r (m) :  choose any valuation Vm in ~r(m). By the definition of n, there exists 
a valuation vm_~ in 7r(m - 1) that  is properly related to Vm. This process can be carried on 
inductively to  generate the finite timer valuation sequence vo , v l , . . . ,Vm .  Unfortunately, the 
idea of finding an infinite sequence by repeating this construction for progressively larger m 
does not work, because prefixes of the short sequences may not be valid as prefixes of the longer 
sequences. 
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The solution to this problem is to define for any g~ven m the subregion of ~r(I) (I < m) 
containing exactly the valuations that  can serve as the l ' th element of a finite timer valuation 
sequence ending at m. This region shrinks as m grows, but it eventually converges to some 
non-empty limit region. 

First, we need to generalize the definition of tlming-consistency to finite traces (we want 
these to be substrings of infinite timing-consistent traces, so they do not necessarily start at 
0 and certainly stop before w). If p is a finite timer event sequence, it is welt-formed if set  
and e x p i r e  events alternate. This allows for the possibility that  the first event for some timers 
will be an e x p i r e  and the last will be a set.  A finite timed trace is a pair (p , r ) ,  where r 
is a monotonic increasing sequence of real numbers that  is of the same length as p. It is not 
necessary that  r(0) = 0. A finite timed trace (p , , )  (whe re ,  is a finite timer valuation sequence) 
is timing-consistent if for every l > 0, vl+l satisfies next tv(v t ,  p(l), vt+l). 

We define leads to(p ,  l, m) recursivety so that leadsto(p,  l, l) = 7r(1) and leadsto(p,  l, m) = 
{vl I 3vt+l E l e a d s t o ( p , / +  1 ,m) :nex t t v (v l , p ( l ) , v z+l ) }  when 1 < m. Let p' be the finite se- 
quence p(l) ,p( l+ 1) , . . . ,  p(m).  We claim that leads to(p ,  l, m) consists of the region of valuations 
that  can be the first element of a timer valuation sequence v (of length m - l + 1) where (p', ~) 
is timing-consistent. 

If p is timing-consistent, every finite subsequence p' is, also, so leadsto(p,  I, m) is non-empty 
for all m > l. What  we would like to show is that  the intersection of all of these regions is 
non-empty, also. The following lemma gives the necessary convergence property. It is proved in 
the next section, where a more is known about timer regions. 

L e m m a  3 I f  p is a finite consistent timer event sequence, then .for every 1 there exists an Pl > l 
such that for  every 192 > Pl: leadsto(p, l ,p2)  = leadsto(p,  l ,pl)  ~ 9. 

Assuming this lemma, we can construct the desired timer valuation sequence ~, inductively. 
For every l, let leads to(p ,  l ,w) be the region to which leadsto(p,  I, m) converges as m increases, 
and let p, --- p(0),p(1), . . . ,p(1).  Choose any v0 e leadsto(p,  0,w). Now suppose we have chosen 
ul = v0 , . . . , v l  so that (pt, vz) is a timing-consistent finite sequence. Then, by the definition of 
l eads to  and non-emptiness of leadsto(p,  l,~v), there exists some Vl+l E leadsto(p,  t + 1,¢v)such 
that  next tv(v l ,p(1) ,v l+]) .  Define ul+l so that -l+l(P) = tJz(p) for p < l and pl+l(l + 1) = vz+l. 
Then (Pl+l, vl+l) is timing-consistent by the definition of leadsto .  Now define ~ so , ( I )  = ~l(l) 
for all I E w. Obviously, the infinite timed trace (p, ~,) is timing consistent, also. 

4 Representing Timer R e g i o n s  

This section gives a finite representation of timer regions using square matrices of bounds. Here 
is an example that illustrates the major points of this section. Consider a timer system with 
three timers: T = {1, 2, 3}. The lower bounds are 1(1) = (1, ~), 1(2) = (3, <), and 1(3) = (3, <:). 
The upper bounds are u(1) = (2, <),  u(2) = (4, <), and u(3) = (4, <).  Initially, all of the timers 
are set: A0 = {1,2,3}. 

The initial state of the timing automaton should be the region consisting of the set of all 
timer valuations v satisfying 

1 _< v(1) < 2 
3 _< v(2) < 4 
3 < v(3) <: 4. 

Note that this region can be described completely by upper and lower bounds on individual 
timer values. It is tempting to believe that all of the states of the automaton have this form. 
For example, consider the successor region for the event set {expire(i)}.  This event happens 
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between 1 and 2 time units after initialization, so every timer valuation v ~ in the next state 
should satisfy 

1 _< v'(2) < 3 
1 < v'(3) _< 3 

since v'(2) is at least one (since no more than 2 time units have elapsed) and at most 3 (since 
at least 1 time unit has elapsed). 

It is indeed true that these inequalities are satisfied. However, the bounds are not "tight"; 
it is also true that 

v(2) -  v(3) < 1 
v ( 3 ) -  v(2)  < 1. 

These additional constraints were true in the original region (by implication) and continue to 
hold. So, if precise results are desired, constraints on the differences between timers must be 
represented in the timer regions, in addition to bounds on individual timers. 

It may now be tempting to assume that in subsequent states relations between triples of 
timers (or larger multiples) wilt need to be represented. This temptation should also be resisted. 
Every region in the timing automaton can be represented precisely by bounds on individual timers 
and on the differences between pairs of timers. 

Systems of bounds on the difference between variables can be represented conveniently using 
square matrices D : A  2 -+ B, where the ( i , j ) th  entry gives the upper bound on v ( i ) -  v( j) .  Such 
matrices can be used to represent bounds on individual timers by adding a fictitious timer 0 
whose value is always 0, so, for example v(i) = v(i) - v(O) < d~o. The set of all valuations 
v: A -+ t t  satisfying the bounds of D is called the region of D. 

One problem with this representation is that  there axe, in general, many different matrices 
with the same region. This makes it difficult to compare representations for equality and to test 
for emptyness of regions. Multiple representations are possible because of implied constraints in 
a matrix. For example, suppose a system has the constraints: 

v ( 0 ) -  v(1) < 1 

v ( 1 ) -  v(2) < 1 

v ( 0 ) - v ( 2 )  < 100. 

Clearly, it is true that any v satisfying these constraints also satisfies v(0) - v(2) < 2. There 
are many different matrices for this region, which can be generated by substituting any integer 
greater than 2 for 100. 

It is possible to obtain a unique representation for each region by minimizing the bounds in 
the matrix. This is achieved by solving an all-pairs shortest path problem. 

4.1 D i f f e r e n c e  B o u n d s  M a t r i c e s .  

With the addition of a few simple operations, bounds form a regular algebra [3]. A regular 
algebra is a set with multiplication (usually., but + here to reduce confusion), addition (usually 
+ ,  but 71 here), Kleene star (*), and constants n and e. The algebra must satisfy a set of axioms 
that  hold for regular sets (if the algebra is a regular set, the operations are concatenation, union, 
and Kleene closure, and the constants are the empty set and the empty string, respectively). 

In more detail, constants and operations can be defined to make B into a regular algebra: 

n = (~,<) 
e = ( 0 , < )  
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( x , r ) + ( x ' , r ' )  = ( x + x ' , m i n ( r , r ' ) )  

S (x , r )  i f ( x , r ) _ < ( x ' , r ' )  
(x, r )  n (x', t t ) 

t (x ' ,r  I) otherwise 

(0,_<) if (z, r) _> (0, <)  
(x,r)* = ( - c ~ , < )  if (z, r) < (0, <) 

It is straightforward to show that  the operations above satisfy the axioms of regular algebra. 
The n × n matrices over a regular algebra form a regular algebra, also, in which rq is matrix 

addition and + is matrix multiplication (defined over the scalar operations rl and +). In this 
case, the zero element N of the regular algebra of matrices has (oo, <)  in all its entries. The 
unit matrix E has has e i i=  (0, <) and eij = (c% <), otherwise. Finally, M* is defined to be 
M 0 V1M 1 VI... Note that  the diagonal elements of M* are all less than or equal to (0, _<), since 
M ° = E .  

There is a partial order on matrices defined by D < D' iffdij < d~j for all i and j .  Note that 
D R D '  = D if and only if D _< D'.  

The region of a matrix D: A 2 --~ B (written 7-¢(D)) is the set of timer v'duations v: A --~ l:t 
such that Vi , j  E A: v ( i ) -  v(j)  < dij (note that _< is a comparison between (x, r) pairs, so, by 
our notational convention, if d~j = (x, <), this means v(i) - v( j )  < dij). We call these difference 
bounds matrices, or DB matrices. Clearly, D < D'  implies that ~ ( D )  C 7¢(D'). Moreover, if 
TC(D n D') = n ( D )  n Te(D'). 

Since all empty regions are identical, we must choose a particular matrix to be the canonical 
representative of all matrices with empty regions. Our choice is De, the matrix in [0 2 ~ B] 
which has d0o = ( - o o ,  <),  as the canonical matrix for an empty region. For non-empty regions, 
the canonical matrix should be D*, the result of solving the shortest-paths problem. In general, 
if D is any matrix, the canonical form of D, written ef(D), is defined so that 

D* if T0(D) # 0 
el(D) = D$ if Tg(D) = 0 

We call a sequence of timers kl, k s , . . . ,  kn in A a path. The cost of the path in D is dklk2 + 
dk:k3 + . . .  + dk,_lk, .  If D '  = cf(D), then d~j is the cost of the least-cost path in D from i to 
j .  Clearly, if there is a cycle of cost less than (0, <), the matrix is not satisfiable (its region is 
empty),  because then v(i) - v(i) < 0. In such a case, a path of arbitrarily small cost can be 
obtained by repeating the negative cost cycle, so, if D' = cf(D), d~i = ( - c o ,  <). There is a 
simple way to decide whether a given non-cartonical matrix has an empty region: it is empty 
iff a negative-cost cycle appears during the computation of the shortest-path matrix using the 
Floyd-Warshall algorithm. We call the following the direct constraint property: 

O b s e r v a t i o n  1 D = D* iffVi, j E A U {0}:dij < dik + dkj. 

On occasion, it will be useful to project a timer region onto fewer dimensions. If V C [A ~ It] 
and A' C__ A, the projection of V onto A',  written VIA,,  is defined to be {VIA, I v e V}.  One 
advantage of the canonical-form representation of a DB matrix is that it is easy to find the 
matrix representing a projection, simply by deleting the rows and columns that are projected 
away. We call the following result the projection property: 

L e m m a  4 l f  A t C_ A and D: A x A -+ B is a canonical D B matrix, then ?'¢( D IA,xA, ) = Td( D ) [ A" 

proof .  It is obvious that ~(D)[A,C_ TC(DIA, xA, ). 
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We prove inclusion in the other direction by induction on IAI - IAq. The basis is when 
A = A', in which case the lemma is obvious. Now suppose that  ]A[ - IA"t >_ t,  ]A" ! ~ 0 and let 
A'  = A" - {k}, where k is any member of A". Let D"  = DIA,,×A,, and let V" = T~(D)[A,,. 

By the induction hypothesis,  7~(D')  C V ' .  Now let v' be any member  of ~ ( D ' ) .  By 
definition, Vi, j • Aqv ' ( i )  - v ' ( j )  < d~j = d~. We need to extend v' to some v" :A"  --* R by 
finding a suitable value for v"(k),  v"(k)  must satisfy Vj • A': v"(k) - v ' ( j )  <_ dJk~j or, equivalently, 
Vj • A': v"(k) < dgj + v"(j) .  Similarly, it must  also satisfy Vi • A ' :  -v ' t ( k )  < d~ - v"(i). A real 

,, _L d" value for v"(k)  exists iff (0, <__) < d~k - v"(i) + v"( j )  for all i , j  • A' .  This inequali ty holds 
- ~ kj 

by the direct constraint  proper ty  (clearly, D "  is canonical), since v"(i)  - v"( j )  = v'(i) - v ' ( j )  _< 
I I  d l t  v t d~j = d~} < dik + kj" Hence, • VtqA ,. [] 

The remainder of this section is a proof of the following theorem: 

T h e o r e m  2 e f  maps every DB matrix to an equivalent and unique DB matrix. 

The proof of the theorem is given as a sequence of lemmas. The first asserts that  cf(D) is 
equivalent to D. 

L e m m a  5 For every DB matrix D, 7Z[ef(D)] = 7~(D). 

p roo f .  Let D be any DB matr ix and let D '  = ef(D).  If 7~(D) = 0, then, by definition, 
T~(D') = 0. So suppose ~ ( D )  ~ 0, in which case D '  = D*. It is immediate that  7~(D*) < n ( D ) ,  
since D* _< D. To see that  T~(D) C 7~(D*), let v be any member of 7~(D), so that  for every i and 
j in A U {0}, v(i) - v ( j )  <_ dlj. There is some non-empty path of timers i = k0, k l , . . . ,  kl = j such 
tha t  d~j = dko~:l-bdklk2+...+dk,_~k~. But then v ( i ) - v ( j )  = [v(ko)-v(k l )]+. . .+[v(kl -1)-v(k~)]  <_ 
d~j, so v • 7~(D'), also. [] 

The following lemma shows that  D* is the minimum matr ix  representing the same region as 
D (but only if 7~(D) # 0, in general). 

L e m m a  6 I fT~(D) = Ti(D') 7~ O and D = D* then D <_ Dq 

p r o o f .  The proof strategy is to assume the contrary, then find a valuation in 7~(D) that  
is not in T~(D~), contradicting the premise that  D and D ~ are equivalent. 

Suppose tha t  D /~ Dq Then for some i , j  E A, we have d~j < dij. Furthermore,  i and 
j must  be distinct,  because dil = (0, {_<}) < d~i, since both D and D ~ are satisfiable. Set 
x = [max(d~j , -d j l )  + dij]/2. 

There are no negative cycles in D, so (0, _<) < dlj + dji, so either - d j i  < dij or - d j i  = dij -- 
(0, _<). If - d j l  < dij, we have max(d~j, -d j i )  < x < dij; otherwise, - d j i  = d~j = (0, <)  and we 
have x = 0. In either case, x <_ dij and - x  < dsi, but x ~ d~j. 

x can be used to construct a valuation contained in 7~(D) but  not in 7~(D'). Let v:: { i , j }  
t t  be defined by v2(i) = x and v2(j) = O. v2 can be extended to a valuation v E 7~(D), by the 
projection property.  But v • 7~(D'), so n(D) ¢ ~(D'), which contradicts  a premise. Hence, 
D < D'. [] 

It is now simple to prove the "uniqueness" half of theorem 2. 

L e m m a  ? For every DB matrices D and D', A = A' and T~(D) = 7~(D ~) implies cf(D) = 
ef(D'). 

p r o o f .  Let D and D '  be any DB matrices. If T~(D) = Tt(D') = O, then of(D) = cf(D' )  by 
definition. Otherwise, by temma 5, 7~[cf(D)] = •[cf(D')]. of(D)* = ef(D), so by the previous 
lemma, e l (D)  _< c f (D ' ) .  By symmetry,  c f (D ' )  _ of(D),  also, so e l (D)  = c f (D ' ) .  [] 

The theorem is the conjunction of lemmas 5 and 7. 
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4.2  B o u n d s  o n  i n d i v i d u a l  t i m e r  v a l u e s  

In a timer region, there are bounds on individual timer values in addition to bounds on the 
differences between timer values. It is very easy to use difference bound matrices for this by 
adding an artificial timer, which we call 0, the value of which is always 0. The result is that  
di0 becomes the upper bound on v(i) (because v ( i ) -  v(O) = v(i)  < dio) and d0i becomes 
the negative of the lower bound (because - v ( i )  < dol). It is sometimes convenient to take 
1(0) = u(0) = (0, <). 

We define the t imer region of a matrix D: A U {0} --* B to be 

{v: A --* t t  I v(0) = 0 A Vi , j  • A: v(i)  - v ( j )  <_ dlj}  

• The timer region of D is written 7"(D). 
The following theorem shows that regions and timer regions of a matrix are isomorphic. 

T h e o r e m  3 TO(D)= Ti(D')  iff T ( P ) =  T ( D ' )  and TO(D)= O iff ~F(D) = O. 

proof .  Everything is obvious except perhaps that T(D)  = T (D  r) implies TO(D) = 7~(Dr). 
Suppose that  TO(D) ~ TC(D'). Then, without loss of generality, we may assume that there is a 
valuation v • n ( D )  - n ( D ' ) .  Then v' defined by Vi • A: v'(i) = v(i)  - v(O) is in T ( D )  - T ( D ' ) ,  
so T(D)  ~ T(D ' ) .  (::] 

4 .3  T h e  t r a n s i t i o n  f u n c t i o n  

The transition function n of the Biichi automaton constructed in the previous section was defined 
on regions (sets of vMuations). In this subsection it is defined on matrices. 

We define n(D,  B), where D is a timer matrix and B is a set of timer events. The definition 
consists of several steps. For notational convenience, let E = {i I expire( i )  e B} and S = {i I 
set( i)  6 B}. 

The first step is to characterize exactly the subregion of timer valuations in D that permit 
B to occur. The function r t e ( D , B )  ("restrict to event set") transforms D to a new matrix 
representing exactly this subregion. For B to occur, all of the expiring timers in B must have 
the same value (since they expire simultaneously) and the value of each expiring timer must be 
less than the value of each non-expiring timer. The newly set timers do not affect r te .  A matrix 
D '  reflecting these constraints can be defined: 

d~j = min(dlj,(0,_<)) when i , j  E E 
d~j = min(dij, (0, <)) when i e E and j E A - E 
d~j = d~j otherwise. 

D t may not be in canonical form, so r te  must then apply c f  to it. The resulting matrix may 
be unsatisfiable. This means that the set of events cannot appear at that  point in a timing- 
consistent trace. Note that if the results are to be satisfiable, d~j -- (0, <:) when i , j  E E - -  
otherwise, d~j + d~i < (0, <).  

If  the result of r t e  is a satisfiable matrix, the next step is to decrement the value of each 
non-expiring timer by the value of the expiring timers (all equal as a result of the previous step). 

The next step is to manifest the effects of decrementing each non-expiring timer by the value 
of the expiring timers. This function is e lapse(D,  B). If D r is the result, it is defined by: 

d~o = d~j A d~oi = dji w h e n i E A - E a n d j E E  
d~j = dlj otherwise 
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One way to look at this transformation is tha t  it  makes the vMue of the expiring t imers equal 
to 0, while preserving the differences between the timers. 

The next step is to delete the expiring t imers from A. This is a projection operation that  
can be accomplished by deleting the rows and columns corresponding to the expiring timers: 

D ~= D[[(A_E)u{O)]x[(A_E)u{O} ] . 
The final step is to deal with the newly set timers. If i • S, we set dio to u(i) ,  d0i to -1( i )  

and dij = djl = ( ~ ,  <)  for all j E A - E ,  then apply ef. I t  is not difficult to see that  ef  has the 
effect of sett ing dlj = dio -}- doj whenever i or j is in S. 

4 .4  C o n v e r g e n c e  l e m m a  

DB matrices are used in the proof of lemma 3 (the convergence lemma). First ,  we need the 
following result: 

L e m m a  8 Let  (p,v)  be any f ini te  t imed trace that satisfies T .  For each l > 1 and i • At  that 
is set  and expires in p, let mi  be the latest point  less than l at which i was most  recently set and 
let ni >_ l be the next  point  at which it expires. Then for  any e > O, there exists a t imed trace 
(p ,v ' )  that also satisfies T and for  all l e i ther v ' ( l )  < r ' ( l -  1)T e or there exists an i • At such 
that r ' ( n i )  - v ' ( m l )  < 1(i) + e. 

p r o o f .  Let k be the number of distinct values of l such that  (p, v) violates the lemma (i.e. 
r ( l  + 1) > v(1) + e and for every i 6 Al,  r (n i )  - T(mi )  ) 1(i) + e). 

We can construct a t ime sequence r '  that  has no more than k - 1 such points. Let l be the 
least point violating the lemma, and let ~ -: min leA;[V(1) -  r ( l -  1) ,v(nl)  - r ( m i )  - 1(i)] and 
define v' so tha t  v ' (p)  = r(p)  for p < l and v ' (p)  = v(p) - ~ for p > 1. 

We claim tha t  v '  has no more than k - 1 violations of the condition. The duration of the 
t imer will only change if it  is set before 1 and expires at 1 or later,  so we need only check those 
timers in At. The duration of the timer is reduced (6 is positive if (p, r )  is t iming-consistent),  
so we need only worry about violating the lower bound on some timer. But, by the definition 
of 6, Vi • Al: 6 _< r (n i )  - r ( m l )  - l(i), so 1(i) _< r ' ( n i )  - r ' (m i ) .  

Note that  v '  remains monotonic increasing because ~f _< v(l) - r ( l  - 1), also. [] 
Let A = max ieT( l ( i )  + e). Since every t imer in Al must be set at  1 - 1 or before and must 

expire at  l or after, it  is a simple corollary of this lemma that  whenever there is a finite timing- 
consistent (p, v), there is another (p, r ' )  such that  r ' ( l )  _ I.  A for every I less than the length of 
p. 

This enables us to prove the convergence lemma itself: 
p r o o f .  (of lemma 3) Firs t ,  if 1 _< m < n, l e ads to (p ,  l, m) C_ l e a d s t o ( p , l , n ) ,  so the 

sequence of regions formed by considering progressively greater values of m is a descending 
chain under the subset ordering. Moreover, it should be clear from the definition that  t h e  
region defined by l e a d s t o  can always be described exactly by a DB matr ix,  which can be made 
canonical. Canonical DB matrices have the proper ty  that  D _< D '  (under the pointwise ordering) 
iff T ( D )  <_ T ( D ' ) ,  so there is a descending chain of DB matrices describing the chain of nested 
regions. 

If this chain fails to converge, the entry in at least one position of the matr ix,  say the (i, j ) th ,  
must  decrease without bound. But this cannot occur. 

Let ni and nj  be the earliest e x p i r e  events for times i and j at or after I and let n = 
max(nl ,  nj) .  Consider the set of finite t imed traces corresponding to prefixes of p of length n 
or greater that  satisfy T. For each timed trace, there is a t imer valuation vl • l e a ds to (p ,  l , n )  
such that  vl(i)  = r (n i )  - v(1) and v l ( j )  = r ( n j )  - r ( l ) .  Then by the previous lemma, there exist 
t iming-consistent t imed traces in which v~(j) - vt(i)  < (n - l ) .  A .  Let D be any DB matr ix  
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such that vl • T(D) .  Then vl(j) - vl(i) < djl by definition, and since the region is non-empty, 
- ( n  - l ) .  A <_ -d j i  <_ dlj, which gives a finite lower bound to the values that dij can assume. 
[] 

5 T h e  n u m b e r  of  reg ions  

We need to show that  the number of states in the timer region automaton is finite. This would 
almost be trivial except for the possibility of infinite upper bounds. Since timer values decay 
monotonically from when they are set to when they expire, the value of a timer i is bounded 
above by u(i) and below by 0 in every region. The vertices of the polytope surrounding a timer 
region are always on integer points, of which there are a finite number if u(i) is always finite. 
Hence, the number of regions is bounded by 1-LeT u(i). 

Infinite upper bounds complicate the argument a bit, however. Let r e a c h a b l e  be the set of 
all matrices that  are reachable from the start state of the automaton. The following lemma is 
helpful: 

L e m m a  9 For every D • r e a c h a b l e  and every i , j  • A U {0), - l ( j )  _< dij <_ u(i). 

p roof i  We prove by induction on the minimum number of applications of n needed to 
derive D from the initial region. First, note that whenever D is in canonical form, we must have 
dlj ~ dio Jr doj and doj <_ doi + dij. If i or j is a newly-set timer, doj = - l ( j )  and di0 = u(i). 
Hence, dlj <_ u(i) (sinced0j _ (0, _<)) and - l ( j )  _< dij (since d01 ~ (0, <)). This proves the basis 
of the induction, since in the first region all of the timers are newly set. 

For the induction, suppose that D is satisfiable and satisfies the induction hypothesis. Let 
us consider each step of n(D, B). 

Let D '  be the result of the first step of r te (D,  B) and D"  = cf(D')  (so D" = r te (D,  B)). 
We claim that  Vi, j E A - E :  - l ( j )  _< dij < u(i). D '  satisfies this by the induction hypothesis, 

since the only entries that change become (0, <) or (0, <). D"  satisfies d~ < u(i) because cf  
never increases an entry. If D '~ is not satisfiable, the lemma is immediate, so what remains to 
be shown is Vi , j  E A - E : - l ( j )  < d~ when D" is satisfiable. 

Let i and j be any members of A - E. d~ is equal to the cost of the minimum-cost path 
from i to j in D ~. This is a simple path since there are no negative cycles in D ~. Let i = 
k l , k2 , . . . , kn - l , k ,~  = j be a minimum-cost path in D ~. If the cost of the path is the same as 
in D, then the result follows from the induction hypothesis and the direct constraint property. 
dk, k~+l changes only if kl E E,  so let us assume that there is at least one expiring timer kz on 
the path, and that  the value of dlklk~+l is different from dktk~+l. 

The path may then be divided into three consecutive segments: (i) a prefix starting with 
i = kl and ending with kl E E (ii) an edge k~, kl+l where kl • E and kl+l • (A - E) U {0) for 
which d~k,k,+~ = (0, <)  and (iii) a path k l+ l , . . . ,  k~ = j whose cost is the same as in D. We claim 
that  the combined cost of these paths is greater than - l ( j ) .  

Consider the prefix k l , . . ,  kl, first. By the definition of r te ,  d ~ < (0, <),  so the cost of , klkl - -  

k l , . . . , k l  in D t must be no less than (1, <) to avoid a negative cost cycle. So the sum of the 
first and second segments is no less than (1, <). The cost of the third segment is the same as in 
D, so its cost is not less than than - l ( j ) .  Hence, the sum of the costs of the segments is greater 
than - l ( j ) .  

The remaining steps are simple, e lapse[r te(D,  B), B] sets doj to dij and djo to dji when 
i E E and j  e A - E ;  since nothing else changes, we haveVi , j  • ( A - E ) U { 0 } : - l ( j )  < dij <_ u(i). 
Restricting the result to (A - E) U {0) obviously does not change this. 
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The final step is the setting of new timers, e f  only changes dlj to dio + doj in this case. For 
both the existing timers and newly set timers, l(0) = (0,_<) < di0 ___ u(i) and - l ( j )  < doj < 
u(0) = (0, <), so their sum must be between - l ( j )  and u(i), also. Hence, after cf, the lemma 
holds for all i , j  E (A - E)  U S U {0}. D 

L e m m a  10 For every reachable D: (A U {0}) 2 --+ 1~ and every i , j  E A U {0), if u(i) = (co, <)  
then dlj = (oo, <).  

proof .  We prove by induction on the minimum number of applications of n needed to 
derive D from the initial region. First, note that c f  preserves the property: every path of timers 
from i must have infinite cost, since dlk = (co, <)  for all k E A t5 {0}. Hence, d~j = (oc, <). 

Once this has been determined, the rest of the proof is simply a verification that the def- 
initions of the initial region and n do not directly introduce non-infinite values for dlj when 
u(i) = (~¢, <). [] 

T h e o r e m  4 r e a c h a b l e  is finite. 

proof .  We show that there can only be a finite number of distinct values in any entry 
of the matrix, depending on its position. It is convenient to imagine that  entries in the rows 
and columns of inactive timers have a special "undefined" value. First, if u(i) = (co, <), 
every entry in row i is either infinite or undefined (two values). Otherwise, the value is either 
undefined or falls in the finite range - l ( j )  . . .  u(i), (about twice the difference in the magnitudes 
of 1(i) and u(i) because of the two types of inequalities). Hence, there are no more than 
[2(maxi[l(i)] + maxi[u(i)]) + 1]IT? members of r eachab le .  [] 

6 C o n c l u s i o n s  

We have described a scheme that allows timing assumptions to be incorporated into automatic 
proofs of arbitrary finite-state temporal properties. The obvious extension is to be able to prove 
timing properties, not just assume them. This would provide a verification framework for finite- 
state hard real-time systems. We conjecture that the method presented can, in fact, be extended 
in this way. 

Another major question is practicality. We believe that, with some simple program opti- 
mizations, the proposed method can be useful for certain small but tricky systems, such as 
asynchronous control circuits. For larger systems, approximate and heuristic methods will be 
needed. 

A c k n o w l e d g e m e n t s  

I am grateful to Rajeev A h r  for reading several drafts of this and contributing many helpful 
suggestions and corrections. Jim Saxe contributed the trick of using the 0 timer for upper and 
lower bounds. 



211 

R e f e r e n c e s  

[1] S. Aggarwal and R.P. Kurshan. Modelling elapsed time in protocol specification. In 
g.  Rudin and C.H. West, editors, Protocol Specification, Testing and Verification, fII, pages 
51-62. Elsevier Science Publisers B.V., 1983. 

[2] S. Aggarwal, R.P. Kurshan, and K. Sabnani. A calculus for protocol specification and 
validation. In Protocol Specification, Testing, and Verification, III, pages 19-34. Elsevier 
Science Publishers B.V. (North-Holland), 1983. 

[3] R.C. Backhouse and B.A.Carre. Regular algebra applied to path-finding problems. Journal 
of the Institute of Mathematics and its Applications, 15:161-186, 1975. 

[4] J. R. Butch. Combining ctl, trace theory, and timing models. In Proceedings of the Workshop 
on Automatic Verification Methods for Finite State Systems (participants version), June 
1989. 

[5] Yaacov Choueka. Theories of automata on w-tapes: A simplified approach. Journal of 
Computer and System Sciences, 8(2):117-141, April 1974. 

[6] Samuel Eilenberg. Automata, Languages, and Machines, Vol. A. Academic Press, 1974. 

[7] E. Allen Emerson, A.K. Mok, A.P.Sistla, and Jai Srinivasan. Quantitative temporal rea- 
soning. In Proceedings of the Workshop on Automatic Verification Methods for Finite State 
Systems (participants version), June 1989. 

[8] N. Halbwachs, D. Pitaud, F. Ouabodessalam, and A-C. Glory. Specifying, programming 
and verifying real-time systems using a synchronous declarative language. In Proceedings 
of the Workshop on Automatic Verification Methods for Finite State Systems (participants 
version), June 1989. 

[9] C.A.R. Hoare. A model for conmmnicating sequential processes. Technical Report PRG-22, 
Programming Research Group, Oxford University Computing Laboratory, 1981. 

[10] Ron Koymans, Jan Vytopit, and Willem P. de Roever. Real-time programming and asyn- 
chronous message passing. In Proceedings of the 2nd A CM Symposium on Principles of 
Distributed Computing, pages 187-197, 1983. 

[11] Harry R. Lewis. Finite-state analysis of asynchronous circuits with bounded temporal un- 
certainty. Technical Report TR-15-89, Aiken Computation Laboratory, Harvard University, 
July 1989. 

[12] J.S. Ostroff. Automatic verification of timed transition models. In Proceedings of the Work- 
shop on Automatic Verification Methods for Finite State Systems (participants version), 
June 1989. 

[13] Amir Pnueli. In transition from global to modular temporal reasoning about programs. In 
Kzysztof Apt, editor, Logics and Models of Concurrent Systems, volume 13 of NATO ASI 
Series F: Computer and System Sciences, pages 123-144. Springer-Verlag, 1985. 



212 

[14] Michael O. Rabin. Weakly definable relations and special automata. In Yehoshua Bar-Hillel, 
editor, Mathematical Logic and Foundations of Set Theory, pages 1-23. North-Holland 
Publishing Company, 1970. 

[15] Shmuel Safra. On the complexity of w-automata. In ??, editor, Proceedings of the 29th 
IEEE Symposium on Foundations of Computer Science, pages 319-327. IEEE ??, October 
1988. 

[16] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for buchi automata 
with applications to temporal logic. In W. Brauer, editor, Automata, Languages, and 
Programming, volume 194 of Lecture Notes in Computer Science, pages 465-474. Springer- 
Verlag, 1985. 

[17] M.Y. Vardi and P. Wolper. Automata theoretic techniques for modal logics of programs. 
Technical report, IBM Research, October 1984. 


