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I ,  I n t r o d u c t i o n  

T h e  i d e a  o f  l o g i c  p r o g r a m m i n g  c o n c e r n e s  c o m p u t i n g  r e l a t i o n s  

s p e c i f i e d  b y  l o g i c  f o r m u l a s .  L o g i c  p r o g r a m m i n g  i s  o f t e n  c o n s i d e r e d  

a s  p r o g r a m m i n g  i n  PROLOG w h i c h  w o r k s  i n  a f i r s t  o r d e r  p r e d i c a t e  

c a l c u l u s .  I n  t h i s  p a p e r  we d e s c r i b e  i n  a way a n  a l t e r n a t l v e  l o g i c  

p r o g r a m m i n g  s y s t e m ,  c o n c e p t u a l l y  b a s e d  o n  t h e  i n t u i t i o n i s t i c  

p r o p o s i t i o n a l  c a l c u l u s .  T h i s  s y s t e m  i s  n a m e d  NUT a n d  i t  i s  

d e v e l o p e d  a t  t h e  I n s t i t u t e  o f  C y b e r n e t i c s  o f  t h e  E s t o n i a n  A c a d e m y  

o f  S c i e n c e s  [ T M P E 8 6 ] .  T h e  s y s t e m  r u n s  u n d e r  t h e  o p e r a t i n g  s y s t e m s  

CP/M a n d  U n i x .  

Actually, the NUT system is the most advanced representative 

of the family of the programming systems called PRIZ [TM88]. This 

family includes systems PRIZES, Solver, MicroPRIZ, ExpertPRIZ, 

NUT etc., which have been developed In last 15-20 years. All these 

systems support knowledge-based programming style and they are 

s u c c e s s f u l l y  u s e d  i n  t h e  s o l v i n g  e n g i n e e r i n g  p r o b l e m s  a n d  i n  

s c i e n t i f i c  i n v e s t i g a t i o n s  o f  a r t i f i c i a l  i n t e l l i g e n c e  a s  w e l l .  

First of all the PRlZ-systems are known as Al-systems. 

Knowledge-based programming can be briefly characterized by 

~he following four features [Tyugu87]: 

- programming in terms of a problem domain; 

- u s i n g  t h e  c o m p u t e r  i n  t h e  w h o l e  p r o b l e m - s o l v i n g  p r o c e s s  

beginning with the dlscription of a problem; 

- synthesizing programs automatically; 

- using a knowledge base for accumulating useful concepts. 

In the PRIZ systems these conditions are satisfied by combi- 
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ning conventional programming technique with automatic synthesis 

of programs from specifications. G. Mints and E. Tyugu have proved 

that the method for synthesis of programs used in the PRIZ systems 

is complete whereas every partial~y recursive function can be 

synthesized [MT82]. In this article the usage of computational 

models and structural synthesis of programs for compiler specifi- 

cation and implementation is discussed. 

2. Computational models and structural synthesis of programs 

The PRIZ systems are based on the idea that a program should 

explicitly state what properties the desired result is required to 

exhibit but does not state how the desired result is to be 

obtained. To describe requirements for results of a program, logic 

formulae as a programming language can be used. Unlike the PROLOG, 

structural synthesis of programs uses propositional calculus for 

this purpose. (A more detailed comparison of the PRIZ and PROLOG 

systems can be found in [MT88]). Here the so called computability 

statements are used like Horn clauses in PROLOG. In our case, only 

propositional formulae of the following two different forms are 

considered: 

1.Unconditional computability statement 

I- A & . . & A ---> B 
I n f 

or in a shorter way 

I- 7 ---> s; (I) 
f 

2.Conditional computability statement 

I- (A .... > S ) S . ~ <~" .... > B) --->(~ ...... > D), 
I gl I n gn F(g) 
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or in a shorter way 

I- (A ---> B) ---> (5 ...... > D). 
g F(g) 

(2) 

where f. and F are function symbols and g denotes a list of 

function symbols g . . . . .  g . 
1 m 

Relation (I) means that computability of some objects a 
I' a2' 

.... a implies computability of object b by function (program) f. 
k 

In other words, for any given values of objects a , a 2 ..... a 
I k 

the value of object b can be computed and b= f( al, a 2 ..... ak )' 

Statement (2) expresses functional dependencies of higher order 

(function F uses functions gl' g2 . . . . .  gm a s  arguments). The 

computability of object d depends on the computability of c p 

1 
c .... , c under the condition that there exist functions gl 
2 n 

(i=I ..... m), for computing object b from a ..... a 
i il il 

A computational model is a set of computability statements of 

form (I) or (2). 

If there a correspondance between the propositional variables 

and the actual objects is arranged and if the proper interpre- 

tation of function symbols is given, then the computation model 

describes some real object or phenomenon via its inner relations 

between its structural components. 

Usually a computational problem can be formulated as: 

"Knowing values of objects x ..... x , compute the value of y, so 
1 n 

that conditions S ..... S are satisfied." If these conditions are 
I r 

simulated by computational model S, then the problem can be solved 

by such a function f that the sequent 

s [- x ...... > v (z) 
~x.f 

is valid. All PRIZ systems derive sequent (3) automatically from 

the computability statements of model S and from the so called 

logic axioms of form AI-A by means of the inference rules called 

Structural Synthesis Rules (SSR) - see [MT82]. 
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Example 2 .  ! . 

L e t  t h e  c o m p u t a t i o n a l  m o d e l  S c o n t a i n  o n e  s t a t e m e n t  

I-(N--->F) ---> (N ...... >F~, where S{g) is a function with 
g G ( g )  

f o l l o w i n g  p r o p e r t y  

G ( g , n )  = i__[_f n = O  t h e n  n * g ( n - 1 )  f_!_i 

T h e  s y n t h e s i z e r  w i l l  p r o v e  t h e  s e q u e n t  S t -  N . . . . . .  > F ,  
% n . g  

t h e  r e c u r s i v e  p r o g r a m m  t o  c o m p u t e  n !  : 

g(n) = i._f_f n=O then n*g(n-l) f__!i 

the 

where g is 

3. Object-oriented system NUT. 

The "pure logic" formulas as a programming language is 

suitable for knowledge representation inside the computer and for 

automatic program construction. But this is not proper form for 

knowledge representation for humans. For this purpose in the PRIZ 

systems different high level input languages are used. Problem 

description presented in these languages is automatically 

translated into computational models and after that all manipu- 

lations with knowledge: analysis of the model, proof of 

correctness of a problem description, synthesis of programs etc. 

are made at the level of logic programming, i.e. at the level of 

computability statements, 

The translation from the input language of the system into 

computational models is concerned in paper [MT88]. 

The basic concepts of the NUT language are object and class. 

Values, programs, data types etc. are objects. The objects of the 

same kind are joined together into some abstract object called 

class, for example real numbers, arrays, geometric figures and so 

on. 

A problem specification in the NUT language begins with a 

description of classes of objects involved in this problem. A 

class is a carrier of the knowledge about commom properties of its 

objects, such as the structure of objects and relations applicable 

to them, initializations of components and so on. 

Every class declaration begins with the name of the class 
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f o l l o w e d  by t h e  c l a s s  d e s c r i p t i o n  in  p a r e n t h e s e s .  The s t r u c t u r e  o f  

a object, l.e. components of the object, their names and types are 

defined at the beginning (after the keyword var). The type of 

component can be the name of some class. There are also some 

predefined classes of objects in the NUT, these are n_~umeric, 

b0ol ~ text, rp_q_qgram, array and any. In a simple case of class 

specification only components are specified, for example 

point: (vat. x,y: numeric_); 

pair: (var_P,Q: point; 

distance: numeric); 

The component specification may be followed by some amendment 

which determine some parameters of the component, its relations 

with other components and so on. As example, let us describe the 

class 'scheme' of objects consisting of two pairs of points, where 

one point of te first pair is at the origin of coordinates and the 

second poit coincides with the first point of the other pair. 

scheme: ( v a r  

A: p a i r  P = [ O , O ] ;  

B: p a i r  P = A . Q ) ;  

In the more complicated cases the description of structure of 

objects is usually followed by relations (after the keyword 

relations). The relations may be represented by equations. For 

example: 

bar: (vat P,Q: point; 

1, a l p h a :  n u m e r i c ;  

r e l a t i o n s  

Q . x - P . x = l * c o s ( a l p h a ) ;  

q.y-P.Y=l*sin(alpha)); 

In  o t h e s  c a s e s  r e l a t i o n s  a r e  r e p r e s e n t e d  by t h e  i m p l i c a t i o n s  

( c o m p u t a b i l i t y  s t a t e m e n t s )  f o l l o w e d  by t h e  p r o g r a m  i n  b r a c e s .  The 
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language for presentating these programs is similar to the con- 

ventional high level programming languages extended by some spe- 

cific operators, such as creation of a new object by a given 

class, call of synthesizer etc. For instance, the class of fac- 

torial that corresponds to the computational model of example 2.1, 

is written in the NUT as follows. 

f a c t  (va.r. n , f :  numeric; 

relations 

In -> f], n -> f (i_Ln=O -> f:=1 If 

n>O -> subtask I (n-l, fl); 

f:=n*fl f~ 

); 

Another basic entity of the language is an object. New 

objects a r e  g e n e r a t e d  d u r i n g  c o m p u t a t i o n s  b y  t h e  p r e d e f i n e d  

function new. For example~ bar AB with length 7 and angle of 

elevation ~/S will be formed by the operator 

AB: = ne.. w b a r  1=7, a l p h a  = 3.14/3; 

Components a and b of the object X may be evaluated by the 

operator X.compute(a,b). By this operator the NUT system attempts 

to synthesize a program for computing mentioned components and if 

it succeeds, the synthesized program is used for evaluating 

objects X.a and X.b. Hence, to compute 17! it is enough to write 

f l T : = n e w  f a c t  n : = 1 7 ;  

f 1 7 . c o m p u t e ( f ) ;  

I f  t h e r e  a r e  n o  p a r a m e t e r s  i n  c o m p u t e  o p e r a t o r ,  t h e  s y s t e m  

c o m p u t e s  v a l u e s  f o r  a l l  c o m p o n e n t s  o f  X w h i c h  a r e  n o t  e v a l u a t e d  

b e f o r e .  S o ,  1 7 !  m i g h t  h a v e  b e e n  c o m p u t e d  b y  o p e r a t o r  f . c o m p u t e ( ) .  

T h e  c l a s s e s  a n d  o b j e c t s  a r e  d r a w n  t o g e t h e r  i n t o  p a c k a g e s ,  

w h i c h  a r e  s t o r e d  i n  t h e  s e m a n t i c  m e m o r y  ( a r c h i v e )  o f  t h e  NUT 

system. Usually a package contains the knowledge from a single 

field, such as geometry, electrisity, etc. 
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4. Dynamic realization of attribute grammars 

An attribute grammars (AG) provides an universally recognized 

formalism for the description of formal languages and compilers. 

Let us consider here relational AS, where semantic rules are 

presented by relations on the attributes of the productions 

[DM85]. In the following example these relations are represented 

by algebraic equations. 

Example 4.1 

Let us consider a simple language for a specification 

language of electrical circuits. The syntax of the language is 

presented by the following productions. 

p l :  S - - >  r e s i s t o r  L P a r s  

p 2 :  s - - >  ~ S  , S 

p 3 :  S - - >  s e r  ~ S  , S 

p 4 :  P a r s  - - >  P a r  

p5: Pars --> Pars ; Par 

p6: Par --> t--<number> 

pT: Par --> i-- <number> 

p8: Par --> u--<number> 

Production pl defines a phrase to describe a single resistor, 

productions p2 and p3 determine phrases for presenting a parallel 

and a serial connections of less circuits, respectlve]y. 

Productions p4-p8 describe how to express parameters (resistance, 

current and voltage) of some elements of the circuit. 

The scheme shown in Fig. I has the folowlng specification in 

this language. 

s er(resistQr(r=2), ap_g_F_(resistor(r=2,i=O.S),resistor~r=2))) ( 8 )  

r=1 
A 

r=2 
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To attach the semantics to the sentences, we associate attributes 

r,i and u with symbols S, Parm, Parms to denote the parameters of 

the corresponding parts of the scheme. The semantic rules are 

represented by the equations as follows 

R ={rno=r , J =i , u =u , i =u /rno}; pl n3 nO n3 nO n3 nO nO 

R =(I/r =llr +I/r i =i +i u =u u =u 
p2 nO n3 n5' nO n3 nS' nO n3' nO nS' 

i =u /r }; 
no no no 

R =(rno=r +r . i =i , i =i , u =u +u , i =u /rno}; 
p3 n3 n5 nO n3 nO n5 nO n3 n5 nO nO 

R - - , i =i ~ u =u 
p4-{rno-rnl nO nl nO 

R =R - , I =J 
p5 p4 {rno-rn3 nO n3 

R ={rno=<number>); 
p6 

R ={ino=<number>}; 
p7 

R ={Un0=<number>); 
p8 

nl }; 

U =U }; 
nO n3 

The decorated abstract syntax tree t of text (8) is repre- 

sented in Fig. 2. The unique possible valuation of this tree is 

computed from the system of algebraic equations, The nodes of the 

tree are denoted by their labels, the productions used in the 

nodes are written in parentheses. 

The AG is called consistent (well-defined) if attributes of 

all syntax trees are uniquely determined. Well-definedness of AG 

can be dynamically checked (separately with respect to every 

syntax tree) in linear time, In this section we demonstrate the 

possibilities to use the system NUT for this purpose. When the SSR 

rules a r e  used the proof of consistency is constructive: the 

program for attribute evaluation is built simultaneously. 
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I ¢pl) r'l'i'l° u'l / S ~  ~1 

PeP  (D6  PlIrR ¢p7) 

Fig. 2 

Fig. 3 shows the place of the NUT system in a compiler when 

dynamic realization of AG is used. System NUT itself is in the 

role of the semantic processor, some spetsialized parser has to be 

used to get syntax tree in the form proper for the NUT system. 

To design the attribute evaluator for consistent partial 

relational AG ~t is desirable to join the classes requlred for 

language definition into a separate package. The staying compo- 

nents of this package are knowledge about attributes and semantic 

rules of the underlying grammar (in Fig. 3 denoted by attribute 

models). In order to compute the semantics of the single program, 

the model of the parse tree of the program has to be constructed 

in the same package. 
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J 

attribute 
models 

I source 
text / 

fparsing 7 
Z tree / 

F ,3. 

The description of AG represents for every symbol of the 

underlying grammar the sets of attributes and their types. In the 

relational AG presented in example 3.1 the attributes are 

expressed in the NUT language in the following way. 

S, P, Parm, Parms: (vat i, u, r: numeri__q3; 

The c]ass representing the semantic rule of production 

p:X -->X ..... X defines objects with components CO, CI ..... Cn, 
0 1 n 

correspondingly to symbols Xo,X 1 ..... Xn. The type of a component 

C is determined by the attributes of symbol X , Thus for example 
i i 

3.I the classes for productions may be written as follows. 
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P I :  ( v a t  C O : S ; C 3 : P a r m s ;  

r e l a t i o n s  

C O . r = C 3 . r ;  

C 0 , i = C 3 . i ;  

C O . u = C 3 . u ;  

C O . i = C O . u l C O . m ) ;  

P 2 : ( v a r  C 0 , C 3 , C 5 : S ;  

r e l a t i o n s  

I / C O , R = l / C 3 . r + l / C 5 . r ;  

P d : ( v a r  c o :  P a r ;  C4 :  n u m e r i c  ; 

r e l a t i o n  

C O . u = C 4 ) ;  

To c o m p u t e  t h e  s e m a n t i c s  o f  t h e  s y n t a x  t r e e  t t h e  c o r r e s -  

p o n d i n g  o b j e c t  h a s  t o  b e  b u i l t  a n d  a f t e r  t h a t  t h e  p r o g r a m  c o m -  

p u t i n g  t h e  s e m a n t i c s  o f  t h a s  t o  b e  s y n t h e s i z e d .  S y n t a x  t r e e  h a s  

c o m p o n e n t s  ( e I e m e n t a r y  t r e e s )  a s  i n s t a n c e s  o f  p r o d u c t i o n s  w h i c h  

t o g e t h e r  w i t h  i t s  s e m a n t i c  r u l e s  i n d i c a t e  d e p e n d e n c i e s  b e t w e e n  

a t t r i b u t e s  o f  t .  So t h e  c l a s s  o f  t h e  o b j e c t  a s s o c i a t e d  w i t h  s y n t a x  

t r e e  i n  F i g u r e  2 may  b e  d e s i g n e d  a s  f o l l o w s .  

TREE: ( N I :  P6 C 4 = 1 ;  / * p r o d  p6  i s  u s e d  a t  n o d e  n l  * /  

/ * n o n t e r m i n a l  < n u m b e r > = 1  * /  

N 2 : P 4  C I = N 1 . C O :  

N 3 : P 1  C 3 = N 2 . C 0 ;  

N4:  P6 C 4 = 2 ;  

NS:  P4 C I = N 4 , C O ;  

N6;  P7 C 4 = 0 . 5 ;  

/ * p r o d  p4  i s  u s e d  a t  n o d e  n 2  * /  

/ * n o d e  n 2  i s  f a t h e r  f o r  n o d e  n l * /  

/ * l l k e  p r e v i o u s  o n e s * /  

N7:  P5 C I = N 5 . C O ,  C 3 = N 6 . C 0 ;  

N8:  p l  C 3 = N 7 . C 0 ;  

N 9 : P 6  C 4 = 2 ;  

N I O : P U  C I = N 9 . C O ;  



77 

NIl:P1 C3=NI0.C0; 

N12:P2 C3=N8.C0,CS=NII.C0; 

N 1 3 : P 3  C3=N3.C0,C5=N]2,C0); 

The semantics of the tree described above is computed by the 

operators. 

t:=new TREE; 

t.compute (NI3.C0); 

By the operators the system generates an object t and the 

corresponding computational model M(t). The last operator ~mposes 

on the system to prove the formula ! .... > t.N13.C0 by the SSR 
f 

rules. 

To develop a complete translator we need a proper syntax 

parser. The output of the parser must be either text of class TREE 

or, what is more desirable, the corresponding model M(t) in the 

internal representation form used by the program synthesizer. In 

an experimental realization of RAG we used parsers generated by 

the yacc. The output of these parsers was the abovedescribed text 

in the NUT language. 

5. Static realization of ANCAG. 

It is well-known that the task to test well-definedness of AG 

has intrinsically exponential time complexity, In practice some 

subclasses of AG are used the well-deflnedness of which can be 

checked in polynomial time. Let us consider absolutely noncircular 

attribute grammars (ANCAG) [CF82]. The cosistency of ANCAG can be 

statically proved by the SSE rules. 

In th~s case the NUT system is used as a constructor of 

semantic parts of compilers or ~nterpretators as shown in Fig. 4. 
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- " s e m a n t i c  

Fi8.4. 

In this c a s e  we also compose classes representing symbols and 

productions of the grammar. Differently from the last section, we 

suppose the given splitting of attributes as ~(x)={<I ,S > .... 
1 1 

<I ,S >} [Pen83]~ It is desirable to preserve this splitting when 
n n 

attribute models are being written: 

X : ( v a r  i n h  : ( v  ; t  . . . .  i : t  ) ;  
1 1 1 k k 

s y n t l : ( S l : U l ; . . . ; S e : U 2 ) ;  

inh2:(ik+l :tk+l' im:tm); 

s y n  : ( s  : u  ; . . . .  u ) ;  
2 1+1 +I m 

) ;  

w h e r e  t , t  . . . . .  u , u  . . . .  a r e  t e x t s  w h i c h  c o r r e s p o n d i n g l y  d e c l a r e  
1 2 1 2 

t h e  t y p e s  o f  a t t r i b u t e s  i , i  . . . .  s , s  . . . . .  
1 2 1 2 

An a t t r i b u t e  m o d e l  M ( p )  o f  p r o d u c t i o n  p :  X - >  X . . . X  i s  
0 1 n 

g i v e n  b y  t h e  c l a s s  
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Mp: (var X : X .... X :X ; /*components of production*/ 
0 0 n n 

T: an__q~; / * p o i n t e r  t o  s y n t a x  t r e e * /  

relations 

<Semantic rules> 

[MqI-T,X .inh -> X .synt ] ..... T,X .inh -> X .synt 
1 1 1 1 1 1 1 1 

{call visit(subtaskl(T,X .inh ), subtask2(T,X .inh ) .... 
1 1 2 1 

.... T,X .inh )}; 
1 1 

)~ 

The function visit is preprogrammed so that 

ql q2 .... t q visit(g ,g ,i)=gq i).t Here t q is subtree, where the pro- 

duction q ~{ql,q2 .... } is used at root and gq is procedure imple- 
q 

mentlng a visit to subtree t 

In this case the semantic processor will be synthesized by 

the operators Gr:=new MpO; Gr.compute (S .synt), where P0 is the 
0 

production with the start symbol of the grammar on the left-hand 

side. 

6 .  Conclusion 

The  d e v e l o p m e n t  o f  t h e  a b o v e s u g g e s t e d  m e t h o d s  f o r  r e a l i z a t i o n  

of semantics has initiated investigations with the goal to use 

computational models immediately as specification formalism for 

the definition of languages and compilers. The preliminary results 

in this direction are observed in [MP88]. Our experiments of 

specifying and implementing some aspects of languages (first of 

all contextual properties and semantics) in the manner described 

in the paper allow to expect success in a project of a language 

implementing system based on the presented methods. 
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