THE REACHABILITY PROBLEM FOR GROUND TRS
AND SOME EXTENSIONS

A. DERUYVER and R. GILLERON
LIFL UA 369 CNRS
Universite des sciences et techniques de LILLE FLANDRES ARTOIS
U.ER. d' LEE.A. Bat. M3 59655 VILLENEUVE D'ASCQ CEDEX FRANCE

ABSTRACT

The reachability problem for term rewriting systems (TRS) is the problem of
deciding, for a given TRS S and two terms M and N, whether M can reduce to N by
applying the rules of S.

We show in this paper by some new methods based on algebraical tools of tree
automata, the decidability of this problem for ground TRS's and, for every ground
TRS S, we built a decision algorithm. In the order to obtain it, we compile the
system S and the compiled algorithm works in a real time (as a fonction of the
size of M and N).

We establish too some new results for ground TRS modulo different sets of
equations : modulo commutativity of an operator o, the reachability problem is
shown decidable with technics of finite tree automata; modulo associativity, the
problem is undecidable; modulo commutativity and associativity, it is decidable
with complexity of reachability problem for vector addition systems.

INTRODUCTION

The reachability problem for term rewriting systems (TRS) is the problem of
deciding, for given TRS S and two terms M and N, whether M can reduce to N by
applying the rules of S. It is well-known that this problem is undecidable for
general TRS's .In a first part we study this problem for more simple systems,
more specifically in the case of ground term rewriting systems.

A TRS is said to be ground if its set of rewriting rules R={ li->ri | ie I} (where I is
finite) is such that 1i and ri are ground terms(no variable occurs in these terms).
The decidability of the reachability problem for ground TRS was studied by
Dauchet M. [4].[5] as a consequence of decidability of confluence for ground TRS.
Oyamaguchi {15] and Togushi-Noguchi have shown this result too for ground TRS
and in the same way for quasi-ground TRS.We take again this study with two
innovator aspects:

- the modulary aspect of the decision algorithm which use all algebraical tools of
tree automata, that permits to clearly describe it.

- the exchange between time and space aspect which have permitted to obtain
some time complexities more and more reduced.

Therefore we have proceeded in three steps:

1- We begin with the TRS S not modified which gives the answer to the problem
with a time complexity not bounded.

supported by "Greco programmation” and "PRC mathematique et informatique”

228

2- We transform the system S in a GTT (ground tree transducer) which simulates
it, we will call this system, S'. Then the decision algorithm will have a quadratic
time complexity. The memory space of S' will be in O((number of rules of S)2).

3- Then, we obtain, after a compilation of S§' which could be realised in an
exponential time (reduction of nondeterminism), a real time decision algorithm
(linear complexity). The necessary memory space, after the compilation of §', will
be in O(exp(number of rules of S)).

If we make a comparison with the result of Oyamaguchi M.[15] we can have the
next figure:

s (S5 t1)
polynomial time of [|S]+||t]|+{|t]|

Oyamaguchi - Togashi - Noguchi »

compilation
in

polynomial

time

of (IS

oIS X il

GTT*=S' (S't,1)
reduction
of
nondeterminjsm
in exponential
time of
T

Ot with our

methods

A4
S'det (S'det, t, t) /

S = rewriting system

S'= our system 38 after compilation

S'det = our system S' after the reduction of nondeterminism

tt' = the given trees

18]} = size of the rewriting system S

it} = size of the tree t
A program, which is called VALERIANN, written in PROLOG realizes at the present
time this algorithm.(on SUN machine)

In a second part, we consider the case of a ground TRS RG modulo different sets
of equations in the next three cases:

EC :commutativity of an operator ¢

EA .associativity of an operator ¢

EA(C :associativity and commutativity of an operator o
RC.,RA,RAC denote the TRS obtained by orientation of equations into rules.We look
at the two next problems:

For a TRS S equal to RG U RC,RG U RA,RG U RAC and with conditions on the
configuration of terms (i) if F is a recognizable forest, is the class of F modulo S
recognizable 7(ii)decidability of the reachability problem
We have different results for each case:

229

For RGC, we have a positive answer for (i) and henceforth for (ii)

For RGA, we have a negative answer for the problems (i) and (ii)

For RGAC, we have a negative answer for (i) and a positive answer for (ii) with
the complexity of the reachability problem for vector addition systems.

1-PRELIMINARIES

Let us recall some classical definitions and some usefull results:
1- tree automata and recognizable forests.

Let £ be a finite ranked alphabet.
Ty is the set of terms (or trees) over X.
Definitionl: A frontier-to-root (bottom-up) tree automaton is a quadruplet M=(Z ,
Q , F, R) where
* ¥ is a finite ranked alphabet.
* (Q is a finite set of states.
* F is the set of final states, with F Q
* R is a finite set of transition rules, these rules have the next
configuration: c(qi1[x1], ..., ginlxn]) --> gqlc(x1, ... ,xn)]

if n=0, the rule is ¢' --> q[c']
We can dually define root-to-frontier(top-down) tree automata.
For more development see Gecseg F. & Steinby M.[7].
Definition2: A forest F is said to be recognizable if and only if there is a frontier-
to-root tree automaton which accepts it.
properties: the class REC of recognizable forests is closed under union,
intersection, and complementary.

2-algorithm of decision on tree automata
notation:

we note llmll the number of rules of the automaton m and Imq| the number of
states of the automaton m.
we note m the automaton which accepts the complementary of the language
accepted by m
a-Decision of the emptiness (M= &)
Let M an automaton. The time complexity to answer to the next problem:

Is the language which is accepted by M empty ?
is:
* linear, for word languages, if we have direct access to rules and if we use a
naive algorithm.

* in O(lIMiixIMgql), for tree languages.

b-Intersection of two automata M and M’, and decision of the emptiness of this
intersection. (M nM’ %)

* for word languages, the time complexity to answer to this problem is in
O(IMIIxIM1) .

* for tree languages, the time complexity is more important, it is in
O(IMIxIIM'IxIMglxIMq ').

230

c- Equivalence of M and M’ (M=M")
=M = MnM=g and M~M'=@

*deterministic case:
we can transform M in M by exchanging final states and the other states. Then we
return to the same case than b-.

* nondeterministic case:
the time complexity contains the time of reduction of nondeterminism which is
exponential.

3- Ground TRS and GTT.

*A tree rewriting system (TRS) S on Ty is a set of directed rewriting rules
R=(li--> ri | ie I}. Here, we only consider finite TRS (where I is finite), For more
development see Huet G. & Oppen D.[8].

[--- is the extension of --> according to tree substitutions.

The reduction relation I-*- on Ty is the reflexive and transitive closure of -->.

S is a ground TRS if and only if no variable occurs in rules.

*A ground tree transducer on Ty (a GTT in short) is the relation T or (G,D)
associated with two tree automata G and D and defined as follows:
T
t -><- t iff there exist u € TEUEgUEd such thatt -> u <- t'.
G D

where X is a finite ranked alphabet.
Eg and Ed are sets of states.
In order to produce actual pairs of terms, the set Eg and Ed are supposed non
disjoint. Eg m Ed is called the interface.

*Dauchet M. and Tison S., and Dauchet , Heuillart, Lescanne and Tison have proved
the next results:

Propositionl: There is an algorithm which associates to each ground TRS § a GTT
Ts such that S = Ts where:
S={ () | tI-*1'} and Ts={(t,t) | t -> u <~ t'}.
S G D
Proposition2: The confluence of ground TRS is decidable.

Proposition3: The reachability problem for ground TRS is decidable.

Propositiond;
If F is recognizable then [Fls={t' |3te F, t I-*- ' } is recognizable.
S

231

II-_ COMPILATION OF A GROUND TRS S AND DECISION ALGORITHM FOR THE
REACHABILITY PROBLEM

We will construct systems S' and S" , from the ground rewriting system S, so as
to reduce more and more the time of answer to the reachability problem .

To do that, we use the next tools: Automata, Recognizable forest and ground tree
transducer.

1-Creation of the system S'.

All along of the different steps, we will use the same example, so as to easily
follow the different transformations which are realized.

Let us write the next ground rewriting system:

2={b1,q,q1‘,p1,b!,c?',;‘), a , ¢

2 S A TR
rules = 1- b(b1) -> bi 2- albl,g) >q 3 q" > q{(q1")
4 qg?) > gt 5 qi'-> a{qi, q1) 6- b{q(@1)} -> c(pt, p(p1), pY)
7-p1 -> p(p1) 8- a(b1, a(g, b1)) -> b(q1")

First step:

In this part, we have to construct a GTT, from the system S, its frontier-to-root
automaton will accept left band sides of rules of S, and its root-to-frontier
automaton will generate right hand sides of rules of S. Its interface states will
make the connexion between left hand sides and right hand sides. for example we
built for the rule 8 a frontier-to-root automaton which accepts the left hand side,
where the terminal state is i8, and the other states are el4, el5, el6, el7.
Consider again our last system, then we will have the next rules:

frontier-to-root automaton G root-to-frontier automaton D
1- bl->el il-> b1
biel) -> il
2- bl>e2 i2->q
g-> e3
a(e2, ¢3) > i2
3- ql'>i3 i3 > q'(ed)
e4 > ql’
4 ql'->e5 i4 >ql’
q'(e5) -> i4
5- gql'->i5 i5 -> a(e6, e6) eb ->ql’
6- ql'>e7 i6 > c(e9,el0, ell)
q'{e7) ->e8 e >pl el2->pl
b(e8) -> i6 ell ->pl el0 > p(el2)
7- pl->i7 i7 > plel3) ei3 ->pl
8- q->eld i8 -> b(e18)
bl -> el5
bl ->¢el7 el ->ql’

a(el4, el5) > el6
a(el7, el6) -> i8 Interface states are: I={ i1,i2,i3,i4,i5,i6,i7,i8}

232

Second step:
Creation of the GTT, G*, which simulates the ground rewriting system S.

The principle is:
" it's not good generating, to nible"
To do that , we create some e-transitions, with the next induction rules:
e > flel,en)
el->el’,...,en->en
flel,...,en’) >¢

e->¢
The algorithm is :
1- we take a rule of the root-to-frontier auntomaton D
2- We examine, if we can find the right hand-side of this rule in the left hand-
side of one rule of the frontier-to-root automaton G.

* if it is the case, we create an e-transition with in left hand-side, the left
hand side of the rule of D which is choosen (a state of D), and in right hand side,
the state in which we arrive when we apply the rule of G which was found.Then
we choose the next rule of D and we start again in 2.

* if it is not the case, we choose a new rule of D and we start again in 2.

Such a transformation can be illustrated with the diagram of the figure 2.This
operation is realized in a polynomial time of n where n=lGIIxIID} .

g —> q2 by G
) — by G
generation nible
figure 2
Example:
Consider the rules 3 and 4 of the system S
The rule 3 was decomposed as follows: ql-»i3 i3-> g'{ed)
ed->ql’
And the rule 4 was decomposed in this way: ql' ->e5 i4->ql’
q'(e5) > i4

Consider the state e4 ,we get: e4 ->ql' and ql' ->5, ql' ->i3
so we get ed4 ->e5 and e4 -> i3

Consider now the state i3 we get: i3 > ¢'(e4)

and by the last step we get ed ->e5 80 i3-> g'(e5)

And we find q'(e5) -> i4 in the decomposition of the rule 4
So we deduce the next e-transition i3 -> 14

So, instead of doing the next rewritings:

i3 <> q'ed) -> ¢'(ql) > q'e5)-> i4
the GTT, G*, will directly pass by i3 to i4
So we have constructed in two steps, a GTT, denoted by G*, which simulates the
system S, we call G* , the system S'. The answer to our problem will be given with
S' in a quadratic time.

233

2-Creation of the system S,

In first time, we modify again the system S', so as to construct a frontier-to-root
automaton. This one will accept a forest, which symbolizes all transformations
that we can realize with the system S.

We can depict a tree which belongs to this forest like that:

O
|
a
/] A\
b ¢
. /.
. o
b ¢
/ /N
o
/A / \
b bl a c
A= /\ /N
. b a plppl
b1 YA .
. b atl .
b1 pi
b1

Inside this tree, we can bring to light, two trees t and t', with two morphisms ¢
and o¢'.

by ¢, we get: by @', we get:
o o]
J !
a a
/A /A
b c b c
/. /
i= o . = o
b c b c
| /A] I\
b o a bt o ¢
. I\ 71\
. b a ptp pt
bt R A .
. b at .
b1 pt
b1
¢ erases the right son of each ¢ erases the left son of
node # each node #

Like that, the tree A means that we can transform t in t with the system S'.
So, all transformations according to the system S', are coded in a recognizable
forest F.
with F={ t#t' | t |-*- '}
S

234

To create a frontier-to-root automaton which will accept this forest, we proceed
in three steps:
1- We keep nible rules of the sytem §'
2- We reverse generation rules of the system $' so as to convert them in bottom-
up rules (by reversing the arrows)
3- For interface states we add next rules:
if il=i2 with il a state of G and i2 a state of D
#(i1,12) -> ok and #(i1, i2) > (i1,i2)
and (i1,i2) -> ok

and then, for the other pairs of states, rules which have the next configuration:
if el=e2 with el a state of G and €2 a state of D

#el, e2) -> (ele2)
for all letters 'a’ of Z, we add, when it is possible, rules as follows:

a((el,el"), (e2,e2Y, ..., (enen)) > (ee)
Finally, when we know that the 'ok’ state allows to climb up to the root of the
tree, we add, for all letter 'a' of the alphabet, rules as follows:

a(ok, ok, ...,0k) > ok

but, now, in order to improve the time complexity, we obtain the automaton S",
by transforming F and by reducing the nondeterminism.
1- Suppression of a hidden difficulty:
We bring down, into F, # nodes, the lower as possible, so that descendant letters
of the # node would be always different.
ie: The next tree t:
t= # will be replace by b
/N /N
b b # #
/N /AN /\ /\
in order that our automaton could accept F with this modification. we must
bring it some new changes:

a- We keep in states the last letter which is accepted.
b- We will not create rules as follows:

#(il, i2) -> ok if il and i2 had accepted the same
letter.
2- Reduction of nondeterminism.
We do that in an exponential time, in the worst cases.

When we have made all these different steps, we obtain S".This one have a
number of rules which is running to exp(number of rules of S) (not very
readable), which are those of a frontier-to-root deterministic automaton S".

The answer to the question: "can t be transformed into t'?" by the system S, is
made in real time, because:

tl*-r < t#t' is accepted by S"
S

235

Remark:

But the reduction of the nondeterminism stands some very important problems,
all at once of memory space and of time of answer.

To avoid this problem, we can consider another method. We will see this method
in the next paragraph.

-Resolution of the reachability problem by using the system S' (G*

Let us take G and D, which are automata of the GTT G* (see p6), and let us take Mt
and M¢t', which are automata which accept t and t.

We call Dipy, the automaton obtained from D by reversing its arrows. So Djpy is a
frontier-to-root automaton.

To solve our problem we can study two cases:

- Wh nd Di re nondeterministi
We can answer to t l-*-t ? by using F
S
In fact tl-*-t = o-1(t) n ¢~1(t) N F

¢ and ¢' are morphisms which are defined above (p7). These one are independant
of t, t and S.

So we have a complexity equal to K(S) x I Mt Il x I Mt'll by omitting the access
time.

Besides, we can proceed in the same way to express the set of all transformations
of t, that we will call S(t), because:

S(t)=¢ (¢-1(t) N F)

The creation of the automaton which accepts S(t) is made with the next algorithm:
1-We make the intersection between the automaton Mt and the frontier-to-root
automaton G of the GTT G*, but this thing by keeping all rules which accept t.
2-We search inside this automaton, rules which conduct to a couple of states (q,i)
where i is an interface state of the GTT and q is any state, and we add all rules of
the root-to-frontier automaton D of the GTT which start from this interface state i
{(this by reversing the arrows so as to always have a frontier-to-root automaton).
Such an algorithm is realized with a time complexity in
O((IMtlIxIGlixIMtqixIGq+IDI).We will call this new automaton Mgt

to answer to t |-*- t', we make the intersection between the automata Mt' and
Mgst. So as to know if S(t) nt' # &

The answer is given after a time in O(IIMstIleIMt'HxlMsthlet'ql)

b- Wh and Di are deterministic

As G is deterministic, it can accept the tree t, likewise for Dipyand t.So we can, by
recognition of t by G (resp of t' by Dipv), mark all subtrees of t which could be
accepted by G (resp subtrees of t' accepted by Dinvy).Our aim, is to have two new
automata which will accept all at once t(or t') and trees which have the next
configuration:

236

subtrees #(i1)
which 7
are accepted by G
figure 3

where il and i2 are final states of the subtrees accepted by G (in fact, they are
interface states), here, #(il) and #(i2) replace these subtrees, they are leafs of the
tree,

This operation is called, the "marking" operation.
Here,the algorithm wused:

marking(x,l,y,e)

x: node

I: list of sons of the node x

y: state in which we arrive when we have accepted the node x (with rules of the automaton
Mt or Mt")

¢: state in which we arrive when we have accepted the node x (with rules of the automaton G

or Dinv)

begin

if it exists a rule of G (or Dinv) accepting the node x with the list 1 then

- We keep the state ¢ of G (or of Dinv) in which we arrive

after having made the recognition.
- We search if this state is an interface state :
if yes then we add the next rule
#(e) -> state(y) in front of the list of rules of
the automaton Mt (or Mt').
clse nothing
endif
else We keep a fictitious state 'p' so as to continue the
exploration of the tree
(remark: fathers of the node x ,couldn't be accepted by
Glor Dinv))
endif
end
study-node(x.l,y.e)
begin
if the letter x is a leaf then marking(x,ly.e)
else if the letter x is a node then
for each son fi of x do
-Take the rules of Mt {or Mt') which conducts
to this son :
< xi,li>-> state(fi)
-study-node(xi,li,fi,ei)
-keep each ei in the list I'
gnd
marking(x,!l',y.e)
endif

237

main program

begin
Take the rule which accepts the root node of t or t'
<x,I>->state(y) x: root node

Llist of sons

study-node(x,l,y.e)
/ *exploration of the tree t (or t') with "marking" operation*/
end
The two automata obtained, after having applied this algorithm on t and t', are
called Mty and Mty'.
we can remark that we make one and only one "marking" operation for each node
of the considered tree (ie: for each rule of the associated automaton).
Besides, the "marking" operation of a node is made in a linear time, so we can
deduce that the creation of automata Mtm and Mty is made with a time
complexity in O(IMtlI+IIMt'll).
Now, we only have to compare these automata so as to find a tree common to the
forest accepted by Mtmand Mtmy',this tree will have the next configuration:

part common to t and t'

I in)

figure 4

il, ..., in are interface states which represent all transformations made when we
go from t to t.

this operation is made in a very short time by using the next algorithm:
main program
begin
each automaton have only one final state, so we search the rules
which conduct to these states:

ie.: y-> state(ft) ft and ft' are final states of Mtm and
y1->state(ft') Min

compare-node(y,y1,ft,ft") /* comparison of nodes y and yl1*/
n

compare-node(y,yl,e,e')
begin
if y=<x,L> and yl=<x1,L1> then
if x=x1 then consider each list
L=cl,e2,...,en and
Ll=el'e2',...,en'
(ei and ei' are states)
for each couple of states (eiei’) do
-search rules which conduct to these two
states
i.e.: yi->state(ei)
yi'->state(ei’)
-compare-node(yi,yi',ei,ei')
ndfor
else_fail
endif

238

else if y=#(c1) and yl=<x1,L1> then
- take the rule so that y=<x,L>
(this rule always exists)
- compare-node(<x,L><x1,L1>e.e")
¢lse if y=<x,L> and yl=#(el") then
-take the rule so that
yl=<x1,L1>
(this rule always exists)
-comparg-node(<x,L><x1,L1>.e.e)
glse if y=#(el) and yl=#(cl) then OK
else take rules so that y=<x,L.> and yl=<x1,L1>
compare-node(<x,L><x1,L1>e.e")

gndif
endif
end
We can see that in this case too, we only consider one and only one time, each
rule of automata Mty and Mty'. So this algorithm is executed in a linear time,
and the answer to our problem will be given after a time complexity in the order
of IMtm !l+IIMtm'll.

We can compare this result with the result of complexity obtained in the paper of
Oyamaguchi M.[15]. Their algorithm operates in a polynomial time of n where n=
IM¢H+IM'I+ISIl, where |ISIl is the size of the given rewriting system. In our case,
the complexity is began linear and the size of S is not consider. This fact can be
explained because we have made a first operation of compilation on our rewriting
system (this operation is made only once). So after this operation, we can ask as
many questions as we want without making it again, that is why we earn much
time.

Remark:

If G and Dipv are nondeterminist, the reduction of the nondeterminism on them
is more realizable than on S” (the automaton which accepts all transformations
that we can make with S), because, they have a smaller number of rules than S",
so the time of execution of this operation is reduced.

III.Some extensions of ground TRS
Notation:X is a finite ranked alphabet

o is a letter of arity 2 and ce¢ Z

A=2u o)

Tz, TA are the set of terms (trees) over £,A
X is a set of variables

To(X) the set of terms over o indexed by X
To(D)={t=ts(t1,...,tn)/toc Ta(X), Vi, tie Ty}

Let R={lj1i/lj,ric Ty} be a ground TRS on Ty and Rg={lj—1i/li,ric Tg(Z),lie Tz} be a
ground TRS on Tp, the condition lj ¢ Ty, is necessary because we consider terms in
To(Z) and recognizable forests included in To(Z).

Let RG=RURg

LetEC={ o(x,y) = o(y, X)} and RC={ o(x,y) — oy, %)}

Let EA={ o(o(x, y), z) = o(x, o(y, 2))}

and RA={ o(o(x, y), z) = o(x, o(y, 2)); 6(x, 6(y, 2)) — o(o(x,y), 2)}

and EAC=EAWVEC and RAC=RAURC.

239

1.Com ativi

RGC=RGURC=RURGURC is the union of two ground TRS R and Rg and of RC TRS
associated with commutativity of the operator ¢

Example;

RGC={1:f(a)—a ;2: ga, a) -b3: ofa, b) obid: o(x,y) = oy, x) }

R={1;2} Ro=(3} RG={1;2;3},RC={4}

1.1:Recognizability of [FIR QI'R
Lemma 1.1:There exists a TRS Sg verifying: Vtt'e To(Z)

--*o t e Tg(X), t1-*- 1] |---*-— t3 |-*- '
(t!RGCt) e (31,2 (), ¥ ISGURC 2 2)
Proof : - Construction of Sg
We add to Rg new rules to simulate rewritings by R on terms of Ty which appear
in rules of Rg.
Ro={li=lic.(il,....lin1)—1i=Tic.(Ti1,...,Tipi)/ie Lni> Llio ioe To(X)}
vijklijrike Tz}
Let G= v {li1,....lini} and D=u I(I'il,...,l‘ipi}
ie ie

Let S={ (r,))e DxG / rI—I‘;— 1}

DxG is finite and for every r of D the set [r]R= {t‘/ r |-*- t'} is recognizable ([4]) so
we can construct S.
Let R'={ r—1/ (,]) € S} and Sg=RcUR'

- &
&= is obvious and = is proved by induction on the number n of utilisations of
rules of Rg .It is based on the two results:
-Each rule of R can commute with each rule of RC.
-Each rule of R' simulate the rewriting of a term of D in a term of G by R
So we obtain the decomposition of lemma 1.1, moreover we use a rule of R' only
to transform a term of D in a term of G.

Lemma 1.2;:There exists a TRS Vg verifying: V tt' e Tg(Z),
(tl-- -t) (311,12,13,t4e To(Z) ,
RGcC (tl*t]l*tzi*gi* - 1)
Re Vg RC R
Proof : To obtam Vo.we just add to S all the rules obtained by using
commutativity of the operator ¢ on left-hand-side of rules of Rg.

Proposition.1.3; F is a forest included in Tg(Z)
(F recognizable) = ([FIRgC recognizable)

Proof : [FIRge={t /3te F,t1-*- '}
¢ Rge

For every recognizable forest F and every ground TRS S, the forest [FIg is
recognizable([4]).For every recognizable forest F, the forest [FJRC is recognizable
(obvious with the bottom-up automaton recognizing F).So with the decomposition
of lemma 1.2 we have [FIRG(recognizable (R and V¢ are ground TRS).

1.2 :Reachability problem for RGC._ in Tg(X)

Proposition.1.4: For every t and t' in Tg(Z), we can decide whether t can reduce to
t' by applying rules of RG(C i.e the reachability problem is decidable for RG(C in
To(Z).

Proof : For every t in Tg(Z),we have [tJRGgc recognizable (consequence of
proposition 1.3) so we can decide if t' is in [t]RGC-

240

2.Associativity,
RGA=RGURA=RURgURA is the union of two ground TRS R and R¢g and of RA TRS

associated with associativity of the operator o.

Example:RGA={1: f(a, a) —2a;2: o(o(a, b), a) = o(b, b);3: o(c(x, y), z) - o(x, oy, z))
;41 o(x, o(y, 2)) = o(o(x, y), z) }
R={1} ; Ro={2} ; RG={1;2} ; RA={3;4}

2.1:Recognizability of [FIRG A
Example: Let R=Rg=0 anﬁ”’o RGA=RA and F be the recognizable forest generated

by the regular grammar { A — o(a, 6(A, b)) ;A—- o@,b) }

Then [FIRGgA=IFIRA={ te T{c;a;b}/¢(t)=anbﬂ,n>0 } where ¢(t) denotes the frontier of
the term t and [FJRGa is not recognizable so in general F recognizable does not
imply [FIRGgA recognizable

2.2:Reachability problem for RGA in Tg(Z)

Proposition 2.1: The reachability problem for RGA in Tg(Z) is undecidable
Proof; Let I' be a finite alphabet and Ry be a word rewriting system on I'* et
A=T'U{o} be a finite ranked alphabet (ali letters of A are of arity O except ¢ which

arity is 2).
Let £:T*% - Tp
m = f(m) defined by (if Imi=1 then f(m)=m)
and(if Imi>1 and m=ajal...ap then f(m)=c(al, 6(a2 ,6 (a3,...c(an-1, an)))))

So we can associate to Rw={ 15 r/Lre I'* } a TRS denoted RG defined by

Rg={ f(l) »)/ l>re Rw }and thus we can prove (t I-¥--t' Jex (®(t) |*--B(t"))
RGA Rw

The reachability problem for Rw in I'* is known undecidable so the reachability

problem for RGA in To(Z) is undecidable.

JAssociativity _and commutativit
RGAC=RGURAC=(RURg)UV(RAURC() is the union of the ground TRS RG and of RAC
TRS associated with commutativity and associativity of the operator ¢ .RG is itself
the union of the ground TRS R on Ty and of the TRS Rg on TAa(with A=ZU{c} and
conditions on the configuration of rules of Rg,see III Notations).

3.1: Recognizability of [FIRgAC
Example; With R=Rg=@ and 50 RGAC=RAC

with the forest F of the example of the section III.2.1 we have
[FIRGAC=IFIRAC=(t € T{o,a,b}/ I®(D)a=I®(t)lp } (where ®(1) is the frontier of the
term t and 1®(t)ia the number of occurences of a in the word @(t)) which is not
recognizable .So generally F recognizable does not imply [FIR A recognizable .

3.2: Reachability problem for RGAC.in Tg(2)
Lemma 3.1: There exists 2 TRS Sg such that : Vi,t' e Tg(Z)

tl-*- t) (3t1,02e To(E) , t ¥~] |--*— 2]-% ¢
(RGAC) (3t1,12e To(Z) 5 IScuRAcz R)
Proof; Similar to lemma 1.1,

With the notations of section IIL.1.1,let M=GuD={ul,...,um} be the set of all
subterms of Ty which appear as subterms of rules of Sg.

Example: So={ o(f(a, a), c) — o(f(a, a),d) ;2: o(a, f(a,a)) »c;3: of,d) —c}
then M={ a, f(a,a) ,c,d}

241

Let X={x1,...,xm} be an alphabet one to one with M
on X* we define the relation (m = m’')& (Vxe X, Imlx = Im'lx)
Letf: To(®) - X¥=
tztc.(tl,...,tn)l—>f(t)=xlyl...xmym where yi is the number of occurences of
the term uj (which belongs to M) in {t1,...,tn}
Thus to each tree t of Tg(Z), we can associate f(t) in X*/= and g(t) the list (or
multiset) of terms of {t1,...,tn} which are not in M (g(t) is the list of subterms of t
which cannot be transformed by Sg).
Example; So={1,2,3};M={a, f(a, a) c,d};X={x,y,z,t}
with t= c(o(c(zf(a a), ¢), b), o(c, b))
We get f(t)=yz+ and g(t)=(b,b)
Moreover to each rule lj - ri of Sg, we can associate the rule f(1j) —» f(ri) on X*/=
and thus to Sg is associated a TRS S on X*/=,
Example: With Sg,M,X defined in the previous example
we get SX={ IX :yz-> yt;2X:xy—»z;3X:zt >z}

Lemma 3.2:V t],12 € Tg(Z)
(t1 l---%-— 12 Y (f(t1) I- * f(t2) and g(t1) and g(t2) contain
ScURAC exactly the same terms)
Proof; -SX is a TRS on X"‘/= and by definition of X*/= the rewritings are made
modulo commutativity and associativity so each rule of SX simulates
commutativity,associativity and one rule of Sg
-the trees of g(t]1) cannot be rewritten by Sg so we must have the second
condition.
Example: With Sg,M,X,t of the previous example we have
t I--- o(o(o(f(a, a), d), b), o(c, b)) -—-—*--{--}t— o(o(f(a, a), ¢), a(b, b))
{1}
and f(t)=yz2 , f(t)=yz , yz2 |--- yzt |--- yz
g(H)=g(t)=(b,b). Ix = 3x
Lemma 3.3: The reachability problem for SX in X*/= is decidable.
Proof: To the TRS SX on X*/= ,we can associate the Petri net PSX defined as follow:
-Set of places P={p1,....pm} ,pi is associated with xj of X
-Set of transitions T=({t1,...,tn},ti is associated with the rule lj—rj.
-Pré and Post are defined by
if x11il,, xplim o xqril, er1m is the rule lj>rj of SX then for the transition tj we
have Pré(pj,ti)=1ij and Post(pj,ti)= rgl
Moreover to each m=x1Y¥Y!l..xm¥YMm of X*/= we associate the vector v(m) of NM
such that v(m)(i)=yi.
We can dually associate to a Petri net a TRS on P*/= so the reachability problem
for SX in X*/=z is equivalent to the reachability problem for Petri net indeed
decide if m can reduce to m' by applying rules of SX is decide if the vector v(m")
is reachable for the Petri net SPX with the initial marking v(m).The reachability
problem in Petri nets is decidable (Kosaraju[11],Mayr[13]) and so the reachability
problem for SX in X*/= is decidable.
Example: With Sg,M,X={x,y,z,t},SX={1X:yz—yt;2X:xy—2z;3X:zt—z} and t of the
previous example we have P={p,q,r,s} , T={t ,t',t"} and
010 000 0
Pre= }(1)(1) ;Post= (1)(1)8 tInitial marking v(m)= é
0

001 101

242

Petri net SPX with the initial marking v{m)}

Proposition 3.4: The reachability problem for RGAC in Tg(Z).is decidable
Proof:-If t and t' belong to Ty then RGAC=R and the reachability problem for the
ground TRS R is decidable

-If t belongs to Ty and t' does not belong to Tx,t cannot be rewrited in t
because of the condition lje Ty for rules of Rg(we forbid the generation of ¢ from
terms of Tx).

-If t=tg.(t1,...,tn) € To(Z) and t'=t's.(t'1,....,t'p) € To(Z) .We use the
decomposition of lemma 3.1 so we first rewrite the terms tj by the ground TRS R
on Ty and so each term tj can produce terms of M=GuD or not so we consider
F(t)={ts.(ul,....,un) if [{IRAM=0 then uj=tj ;if [tilRAM={m1,...,mj} then uj=tj or
uj=mj or .. or uj=mj 1.M is a finite set of terms and for each tj,the forest [tjilR is
recognizable so we can build the finite set F(t) for every t of Tg(Z).Dually, using
decomposition of lemma 3.1,we consider
F-1(t)={t's.(u'1,....0'p) / if [ti]"IRNM = @ then w'=tj ;if [ti]-lRAM={m'1,...,m’k} then
u'i=t'j or u'i=m'1 or...or vj=m'k} with [t']‘1R={t/ tl-*- ' for the TRS R} which is
recognizable so we can build the finite set F-1(t) for every t' of Tg(Z).We are now
ready to show

Lemma3.5:(t I--*-- t' e ((3T F(t), 3T'e F-1(1"), f(T) |-*-- £(T")) and
RGAC Sx

(there exists a one to one correspondance h between
g(T) and g(T") such that we have g(T) su l-l’;- h(u) € g(T))

Proof; We use in this proof the results of lemma 3.1, lemma 3.2 and the
construction of the finite sets F(t) and F-1(t).< is without difficulty using these
results. For = we have to examine the rewriting of t in t' by RGAC using the
decomposition of lemma 3.1 and build T of F(t) and T of F-1(t) verifying the two
properties.

t= tg.(t1,....,tn) Il-i*- t.(V1s...sVn)

tg.(v1,...,vn) l-eee¥euuu 'y (v'1,...,V'
o-(n)SoURAC o.(p)

t'G.(V'1,-.,Y'p) I—l’{"- te.(t'],...,.t'p)=t’

This construction is not difficult,we just have to look at every possible cases for
the rewritings by R: tjl-*-vie M ; ti I-*-vije M and then tjie M or tjie M ;and dually
Mov'il-*-t'y ; viie M,v'il-*-t'; and then t'ie M or t'je M.

Moreover, F(t) and F-1(t') are finite sets, for every {4t} of F(t)xF‘l(t’), we can
decide if the properties of lemma 3.5 are satisfied or not (lemma 3.4 and
decidability of the reachability problem for the ground TRS R) and so the
reachability problem for RGAC in Tg(Z) is decidable.

243

CONCLUSION

These works could permit to obtain some algebraical methods to realise the
compilation of TRS, so as to have an execution of these sorts of systems in a real
time.

Besides, these researches show the difficulty to have some good classes and make
us researching some partial algorithms of decision of the reachability problem
based on our methods for these classes.

BIBLIOGRAPHY

{11 BRAINERS : Tree-generating regular systems, Info and control (1969)
[2].G.W.BRAMS : Reseaux de Petri:theorie et pratique,tomes 1&2, Masson,Paris (1983)
[3] CHEW : An improved algorithm for computing with equations,21st FOCS (1980)
[4] DAUCHET, HEUILLARD, LESCANNE, TISON : The confluence of ground term tewriting
systems is decidable,2nd LICS (1987)
[S] DAUCHET & TISON : Tree automata and decidability in ground term rewriting systems

FCT' 85 (LNCS n° 199)
[6] N.DERSHOWITZ,J.HSIANG,N.JOSEPHSON and D.PLAISTED : Associative-commutative
rewriting,Proc.10th IJCAI, LNCS 202 (1983)
[7] GECSEG F. & STEINBY M : tree automata,Akadémiai Kiado, Budapest (1984)
[8] HUET.G & OPPEN.D.: Equations and rewrite rules:a survey,in formal languages :perspective
and open problems,Ed.Book R.,Academic Press(1980)
[9] J.P.JOUANNAUD : Church-Rosser computations with equational term rewriting
systems,Proc.4th Conf on Automata, Algebra and programming, LNCS 159 (1983)
[10] C.KIRCHNER : Methodes et outils de conception systematique d'algorithmes d'unification
dans les théories équationnelles,These d'etat de l'universite de Nancy I (1985)
[11] S.R.KOSARAJU : Decidability of reachability in vector addition systems, Proc.14th
Ann.Symp.on Theory of Computing, 267-281.(1982)
[12] KOZEN : Complexity of finitely presented algebra, 9th ACM th. comp. (1977)
[13] EEW.MAYR : An algorithm for the general Petri net reachability problem, Siam J
Comput.13 441.- 460
{14] NELSON & OPPEN : Fast decision algorithms based on congruence closure, JACM 27 (1980)
[15] OYAMAGUCHI M.: The reachability problem for quasi-ground Term Rewriting Systems,
Journal of Information Processing , vol 9 , n°4 (1986)
[16] PLAISTED D. & BACHMAIR L. : Associative path ordering, Proc. 1Ist conference on
Rewriting Techniques and Applications, LNCS 202 (1985)
[17] RAOULT J.C. : Finiteness results on rewriting systems, RAIRO, IT, vol 15 (1985)

