
THE REACHABILITY PROBLEM FOR GROUND TRS
AND SOME EXTENSIONS

A. DERUYVER and R. GILLERON
LIFL UA 369 CNRS

Universite des sciences et techniques de LILLE FLANDRES ARTOIS
U.F.R. d' I.E.E.A. Bat. M3 59655 VILLENEUVE D'ASCQ CEDEX FRANCE

~ S ~ A ~

The reachabili ty problem for term rewriting systems (TRS) is the problem of
deciding, for a given TRS S and two terms M and N, whether M can reduce to N by
applying the rules of S.
We show in this paper by some new methods based on algebraical tools of tree
automata, the decidability of this problem for ground TRS's and, for every ground
TRS S, we built a decision algorithm. In the order to obtain it, we compile the
system S and the compiled algorithm works in a real time (as a fonction of the
size of M and N).
We establish too some new results for ground TRS modulo different sets of
equations • modulo commutativity of an operator o, the reachability problem is
shown decidable with technics of finite tree automata; modulo associativity, the
problem is undecidable; modulo commutativi ty and associativity, it is decidable
with complexity of reachability problem for vector addition systems.

INTRODUCTION
The reachabili ty problem for term rewriting systems (TRS) is the problem of
deciding, for given TRS S and two terms M and N, whether M can reduce to N by
applying the rules of S. It is well-known that this problem is undecidable for
general TRS's .In a first part we study this problem for more simple systems,
more specifically in the case of ground term rewriting systems.
A TRS is said to be ground if its set of rewriting rules R={ li->ri I i~ I} (where I is
finite) is such that li and ri are ground terms(no variable occurs in these terms).
The decidability of the reachabili ty problem for ground TRS was studied by
Dauchet M. [4],[5] as a consequence of decidability of confluence for ground TRS.
Oyamaguchi [15] and Togushi-Noguchi have shown this result too for ground TRS
and in the same way for quasi-ground TRS.We take again this study with two
innovator aspects:

the modulary aspect of the decision algorithm which use all algebraical tools of
tree automata, that permits to clearly describe it.

the exchange between time and space aspect which have permitted to obtain
some time complexities more and more reduced.
Therefore we have proceeded in three steps:
1- We begin with the TRS S not modified which gives the answer to the problem
with a time complexity not bounded.

supported by "Greco programmation" and "PRC mathematique et informatique"

228

2- We transform the system S in a GTT (ground tree transducer) which simulates
it, we will call this system, S'. Then the decision algorithm will have a quadratic
time complexity. The memory space of S' will be in O((number of rules of S)2).
3- Then, we obtain, after a compilation of S' which could be realised in an
exponential time (reduction of nondeterminism), a real time decision algorithm
(linear complexity). The necessary memory space, after the compilation of S', will
be in O(exp(number of rules of S)).
If we make a comparison with the result of Oyamaguchi M.[15] we can have the
next figure:

Oyamaguchi - Togashi - Noguchi ,
. t t' ? S (S, t, t') > I'~"

polynomial time of I l S l l + l l t l l + l l r ~ / / 7 I " ~

compilation

polynomial
time
of ltStl

GTT*=S ' (S ' , t , t ' with our
reduction I methods

° ' Is nondetermin m
in exponenti/~l
time of |
HSll

S 'de t (S'det, t, t') J

S = rewriting system
S'= our system S after compilation
S'det = our system S' after the reduction of nondeterminism
t,t' = the given trees
HSll = size of the rewriting system S
fftl{ = size of the tree t

A program, which is called VALERIANN, written in PROLOG realizes at the present
time this algorithm.(on SUN machine)
In a second part, we consider the case of a ground TRS RG modulo different sets
of equations in the next three cases:

EC :commutativity of an operator c
EA :associativity of an operator
EAC :associativity and commutativity of an operator (r

RC,RA,RAC denote the TRS obtained by orientation of equations into rules.We look
at the two next problems:

For a TRS S equal to RG U RC,RG U RA,RG U RAC and with conditions on the
configuration of terms (i) if F is a recognizable forest, is the class of F modulo S
recognizable ?(ii)deeidability of the reachability problem
We have different results for each case:

229

For RGC, we have a positive answer for (i) and henceforth for (ii)
For RGA, we have a negative answer for the problems (i) and (ii)
For R G A C , we have a negative answer for (i) and a positive answer for (ii) with

the complexity of the teachability problem for vector addition systems.

I -PRELIMINARIES

Let us recall some classical definitions and some usefull results:
1- tree automata and recognizable forests.

Let E be a finite ranked alphabet.
Ty, is the set of terms (or trees) over E.

D e f i n i t i o n l : A frontier-to-root (bottom-up) tree automaton is a quadruplet M=(E,
Q , F, R) where

* Y, is a finite ranked alphabet.
* Q is a finite set of states.
* F is the set of final states, with F Q
* R is a finite set of transition rules, these rules have the next

configuration: c(q± 1 [xl] qirt[xn]) --> q[c(xl xn)]

if n=0, the rule is c' --> q[c']
We can dually define root-to-frontier(top-down) tree automata.
For more development see Gecseg F. & Steinby M.[7].
D e f i n i t i o n 2 : A forest F is said to be recognizable if and only if there is a frontier-
to-root tree automaton which accepts it.
p r o p e r t i e s : the class REC of recognizable forests is closed under union,
intersection, and complementary.

2-algorithm of decision on tree automata
n o t a t i o n :
we note Ilmll the number of rules of the automaton m and Iraqi the number of
states of the automaton m.
we note m__ the automaton which accepts the complementary of the language
accepted by m
a-Decision of the emptiness (M= ~)
Let M an automaton. The time complexity to answer to the next problem:

Is the language which is accepted by M empty ?
is:
* linear, for word languages, if we have direct access to rules and if we use a
naive algorithm.

* in O(llMllxlMql), for tree languages.

b-Intersection of two automata M and M', and decision of the emptiness of this
intersection. (M riM" ~ ~)
* for word languages, the time complexi ty to answer to this problem is in
O(IIMII×IIM'II).
* for tree languages, the t ime complex i ty is more important , it is in
O(IIMII×IIM'IIxlMqlxIMq, I).

230

c- Equivalence of M and M" (M=M')

M=M' ¢~ M n M'= O and M nM' = O

*deterministic case:
we can transform M in M by exchanging final states and the other states. Then we
return to the same case than b-.

* nondeterministic case:
the time complexity contains the time of reduction of nondeterminism which is
exponential .

3- Ground TRS and GTr.

*A tree rewriting system (TRS) S on TE is a set of directed rewriting rules

R={li--> ri I i e I}, Here, we only consider finite TRS (where I is finite), For more
development see Huet G. & Oppen D.[8].
I--- is the extension of --> according to tree substitutions.
The reduction relation l-*- on TZ is the reflexive and transitive closure of -->.

S is a ground TRS if and only if no variable occurs in rules.

*A ground tree transducer on Ty~ (a GTT in short) is the relation T or (G,D)

associated with two tree automata G and D and defined as follows:
T

t -><- t ' i f f t h e r e e x i s t u ~ T Z u E g u E d such that t -> u <- f .
G D

where Z is a finite ranked alphabet.
Eg and Ed are sets of states.
In order to produce actual pairs of terms, the set Eg and Ed are supposed non
disjoint. Eg n Ed is called the interface.

*Dauchet M. and Tison S., and Dauchet , Heuillart, Lescanne and Tison have proved
the next results:

Proposi t ion1: There is an algorithm which associates to each ground TRS S a GTT
Ts such that S = Ts where:

S= { (t,t') I t l-*-t'} and Ts={(t,t') I t --> u <-- t'}.
S G D

Proposit ion2: The confluence of ground TRS is decidable.

Proposi t ion3: The reachability problem for ground TRS is decidable.

Proposit ion4:
If F is recognizable then [F]s= { t' I 3 t ~ F, t I-*- t' } is recognizable.

S

231

II- COMPILATION OF A GROUND TRS S AND DECISION ALGORITHM FOR THE
REACHABILITY PROBLEM
We will construct systems S' and S" , from the ground rewrit ing system S, so as
to reduce more and more the t ime of answer to the teachabi l i ty problem .

To do that, we use the next tools: Automata, Recognizable forest and ground tree
t r a n s d u c e r .

1-Creation of the system S'.
All a long of the different steps, we will use the same example, so as to easily
fol low the different t ransformat ions which are realized.
Let us write the next ground rewrit ing system:
T.: { b l , q , q l ' , pl , b , q', p, a c }

I I I / \ ' / 1 \

rules = 1- b (b l) -> b l 2- a(bl, q) -> q 3-

4- q(ql ') -> q l ' 5- q l ' - > a (ql ' , q l ')

7-pl -> p(pl) 8- a(bl, a(q, bl)) -> b(ql')

First stem

q1' -> q'(ql')

6- b(q'(q'l)) -> c(pl , p(pl), p l)

frontier-to-root automaton G root-to-frontier automaton D

1- bl -> el il-> bl
b(el) -> il

2- bl-> e2 i2-> q
q-> e3
a(e2, e3) -> i2

3- ql'-> i3 i3 -> q'(e4)

e4 -> ql'
4- ql' -> e5 i4 -> ql'

q'(e5) -> i4

5- ql ' -> i5 i5 -> a(e6, e6) e6 -> ql'

6- qr-> e7
q'(e7) -> e8
b(e8) -> i6

i6 -> c(e9, eI0, el l)
e9 -> pl ei2 -> pl
e l l - > p l el0->p(el2)

7- pl -> i7 i7 -> p(e13) el3 -> pl

8- q -> el4
bl -> el5
bl -> el7
a(el4, el5) -> el6
a(el7, el6) -> i8

i8 -> b(e18)

el8 -> ql'

Interface states are: I={ il,i2,i3,i4,i5,i6,i7,i8}

In this part, we have to construct a GTT, from the system S, its frontier-to-root
au tomaton wi l l accept left hand sides of rules of S, and its root- to-f ront ier
au tomaton wil l generate r ight hand sides of rules of S. Its interface states will
make the connexion between left hand sides and right hand sides, for example we
buil t for the rule 8 a frontier-to-root automaton which accepts the left hand side,
where the terminal state is i8, and the other states are e l4 , e15, e l6 , e l7 .
Consider again our last system, then we will have the next rules:

232

Second step:
Creat ion of the G T r , G*, which s imulates the ground rewri t ing sys tem S.
The pr inc ip le is:

" it 's not good generating, to nible"
To do that , we create some e- t rans i t ions , with the next induct ion rules:

e -> f (e l en)
e l - > e l ' , en -> en'

f (e l ' , en') -> e'

e -> e'
The a lgor i thm is :

1- we take a rule of the root - to- f ront ie r automaton D
2- W e examine , i f we can f ind the r ight hand-s ide of this rule in the left hand-

side of one rule of the f ront ie r - to- root automaton G.
* i f it is the case, we create an e - t r ans i t i on with in lef t hand-s ide , the lef t

hand side of the rule of D which is choosen (a state of D), and in r ight hand side,
the state in which we arr ive when we apply the rule of G which was found.Then
we choose the next rule of D and we start again in 2.

* if it is not the case, we choose a new rule of D and we start again in 2.
Such a t r ans fo rma t ion can be i l lus t ra ted with the d i a g r a m of the f igure 2.This
operat ion is rea l ized in a po lynomia l t ime of n where n=llGIIxltDll .

ql • q2 by G*

generation nible

f igure 2

E x a m p l e :
Cons ider the rules 3 and 4 of the system S
The rule 3 was decomposed as follows: ql'->i3

And the rule 4 was decomposed in this way: ql '->e5

Consider the state e4 ,we get: e4-> ql '
so we get e4 -> e5 and e4 -> i3

i3-> q'(e4)
e4->ql'
i4->ql'

q'(e5) -> i4

and q1' ->e5, ql ' ->i3

Consider now the state i3 we get: i3 -> q'(e4)
and by the last step we get e4 ->e5 so i3-> q'(e5)
And we find q'(e5) -> i4 in the decomposi t ion of the rule 4
So we deduce the next e - t r a n s i t i o n i3 -> i4

So, ins tead of doing the next rewri t ings:
i3 -> q'(e4) -> q'(ql') -> q'(e5)-> i4

the GTT, G*, will direct ly pass by i3 to i4
So we have const ructed in two steps, a GTT, denoted by G*, which simulates the
sys tem S, we cal l G* , the system S'. The answer to our p rob lem will be given with
S' in a quadrat ic t ime.

233

2-Creation o f the system S~'.
In first time, we modify again the system S', so as to construct a frontier-to-root
automaton. This one will accept a forest , which symbol izes all t ransformations
that we can realize with the system S.
We can depict a tree which belongs to this forest like that:

b'l

0
I
a

/
b

/

/ \

b b l
A=

\
c

/ .

C
/ \

ct #
/ \

a c

/ \ /1\
b a pl p p l

/ \
b a l ,

t)'1 p l

61

Inside this tree, we can bring to light, two trees t and t', with two morphisms cp
and cp'.

by cp, we get: by cp', we get:
0 0

I I
a a

/ \ / \
b c b c

/ . / .
t= (x t'= C~

I / \ 1 / \
b c~ a b l c~ c

/ \ / I \
b a p l p p l

"bl I \
b a l

I~I I~1
61

cp erases the right son of each
node #

cp' erases the left son of
each node #

Like that, the tree A means that we can transform t in t' with the system S'.
So, all t ransformations according to the system S', are coded in a recognizable
forest F.

with F={ t#t' I t I-*- t'}
S

234

To create a frontier-to-root automaton which will accept this forest, we proceed
in three steps:
1- We keep nible rules of the sytem S'
2- We reverse generation rules of the system S' so as to convert them in bottom-
up rules (by reversing the arrows)
3- For interface states we add next rules:

if i l=i2 with il a state of G and i2 a state of D
#(il, i2) -> ok and #(il, i2) -> (il,i2)

and (il,i2) -> ok

and then, for the other pairs of states, rules which have the next configuration:
if e l~ e2 with el a state of G and e2 a state of D

#(el, e2) -> (el,e2)
for all letters 'a' of Z, we add, when it is possible, rules as follows:

a((el,el ') , (e2,e2') (en,en')) -> (e,e')
Finally, when we know that the 'ok' state allows to climb up to the root of the
tree, we add, for all letter 'a' of the alphabet, rules as follows:

a(ok, ok ok) -> ok

but, now, in order to improve the time complexity, we obtain the automaton S",
by transforming F and by reducing the nondeterminism.
1- Suppression of a hidden difficulty:
We bring down, into F, # nodes, the lower as possible, so that descendant letters
of the # node would be always different.

ie: The next tree t:
t= # will be replace by b

/ \ / \

b b # #
/ \ / \ / \ / \

in order that our automaton could accept F with this modification, we must
bring it some new changes:

a- We keep in states the last letter which is accepted.
b- We will not create rules as follows:

#(il , i2) -> ok if i l and i2 had accepted the same
letter.

2- Reduction of nondeterminism.
We do that in an exponential time, in the worst cases.

When we have made all these different steps, we obtain S".This one have a
number of rules which is running to exp(number of rules of S) (not very
readable), which are those of a frontier-to-root deterministic automaton S".
The answer to the question: "can t be transformed into t'?" by the system S, is
made in real time, because:

t I-*-t ' ¢~ t#t' is accepted by S"
S

235

Remark:
But the reduction of the nondeterminism stands some very important problems,
all at once of memory space and of time of answer.
To avoid this problem, we can consider another method. We will see this method
in the next paragraph.

3-Resoluti0n of the reachability problem by using the system S' (G*~
Let us take G and D, which are automata of the GTT G* (see p6), and let us take Mt
and Mt', which are automata which accept t and t'.
We call Dinv, the automaton obtained from D by reversing its arrows. So Dinv is a
f ront ier - to- root automaton.
To solve our problem we can study two cases:

a- When G and D~r~v are nondeterministic

We can answer to t l - * - t ' ? b y u s i n g F
S

In fact t I-*- t' ¢~ 9--1(0 n 9 ' - l (t ') n F
9 and 9' are morphisms which are defined above (p7). These one are independant
of t, t' and S.
So we have a complexity equal to K(S) x II Mt I1 x 1t Mt'll by omitting the access
t ime.
Besides, we can proceed in the same way to express the set of all transformations
of t, that we will call S(t), because:

S(t)= 9 ' (9 -1 (0 n F)

The creation of the automaton which accepts S(t) is made with the next algorithm:
1-We make the intersection between the automaton Mt and the frontier-to-root
automaton G of the GTT G*, but this thing by keeping all rules which accept t.
2-We search inside this automaton, rules which conduct to a couple of states (q,i)
where i is an interface state of the GTT and q is any state, and we add all rules of
the root-to-frontier automaton D of the GTT which start from this interface state i
(this by reversing the arrows so as to always have a frontier-to-root automaton).
Such an a l g o r i t h m is r e a l i z e d wi th a t i m e c o m p l e x i t y in
O((llMtllxtlGllxlMtqlxlGql)+llDll).We will call this new automaton Mst
to answer to t I-*- t', we make the intersection between the automata Mt' and
Mst. So as to know if S(t) n t' ~

The answer is given after a time in O(llMstllxllMt'llxlMstql×lMt'ql)

b- When G and Di r ty are deterministic

As G is deterministic, it can accept the tree t, likewise for Dinvand t'.So we can, by
recognition of t by G (resp of t' by Dinv), mark all subtrees of t which could be
accepted by G (resp subtrees of t' accepted by Dinv).Our aim, is to have two new
automata which will accept all at once t(or t') and trees which have the next
configurat ion:

236

subtrees # ~
which Z

are accepted by G
figure 3

w h e r e i l a n d i2 a re f i n a l s t a t e s o f t he s u b t r e e s a c c e p t e d by G (in f ac t , t hey are
i n t e r f a c e s t a t e s) , he re , # (i l) and # (i2) r e p l a c e t h e s e s u b t r e e s , t h e y are l ea f s of the

t r e e .

T h i s o p e r a t i o n is c a l l ed , the " m a r k i n g " o p e r a t i o n .
H e r e , t h e a l g o r i t h m used :

m a r k i n g (x , l , y , e)
x: node
I: list of sons of the node x
y: state in which we arrive when we have accepted the node x (with rules of the automaton
Mt or Mr')
e: state in which we arrive when we have accepted the node x (with rules of the automaton G
or Dinv)
b e ~ i n

if__ it exists a rule of G (or D i r t y) accepting the node x with the list 1 then

- We keep the state e of G (or of D i n v) in which we arrive

after having made the recognition.
- We search if this state is an interface state :

i f yes then we add the next rule
#(e) -> state(y) in front of the list of rules of

the automaton Mt (or Mt').
else nothing

endif
else We keep a fictitious state 'p' so as to continue the

exploration of the tree
(remark: fathers of the node x ,couldn't be accepted by

G(or Dinv))
~n4 i f
end

s tudy-node(x , l , y , e)
b e g i n
if the letter x is a leaf l~h~n marking(x, l ,y ,e)
else Jf the letter x is a node then

for each son fi of x do
-Take the rules of Mt (or Mt') which conducts

to this son :
< xi,li>-> state(fi)

-study-node(xi,li,fi,ei)
-keep each ei in the list r

end
marking(x,l',y,e)

end i f

end

237

main program
be~in

Take the rule which accepts the root node of t or t'
<x,l>->state(y) x: root node

l:list of sons
study-node(x,l,y,e)

/ *exploration of the tree t (or t') with "marking" operation*/
end
The two au toma ta obta ined , af ter having app l ied this a lgor i thm on t and t', are
ca l led Mtm and Mtm' .
we can remark that we make one and only one "marking" opera t ion for each node
of the cons idered tree (ie: for each rule of the associa ted automaton) .
Besides , the "marking" opera t ion of a node is made in a l inear t ime, so we can
d e d u c e that the c r e a t i o n of a u t o m a t a M t m and M t m ' is made with a t ime
complex i ty in O(llMtll+llMt'll).
Now, we only have to compare these automata so as to f ind a tree common to the
forest accepted by M t m a n d Mtm' , th i s tree wi l l have the next conf igurat ion:

part common to t and t'

~ l n)

f igure 4

i l in are in ter face states which represen t all t r ans format ions made when we
go from t to t'.
this opera t ion is made in a very short t ime by using the next a lgor i thm:
main program

b~gin
each automaton have only one final state, so we search the rules

which conduct to these states:
i.e.: y-> state(ft) ft and ft' are final states of Mta and

yl->state(ft') Mta,

compare-node(y,yl,ft,ft') /* comparison of nodes y and yl*/
~n~t

comp are-node(y,y 1 ,e,e')
bogin

if y=<x,L> and yl=<xl,Ll> then
if x=xl then consider each list

L=el,e2 en and
I I i LI= el ,e2 en

(ei and ei' are states)
for each couple of states (ei,ei') do

-search rules which conduct to these two
states

i.e.: yi->state(ei)
yi'->state(ei')

-compare-node(yi,yi',ei,ei')
endfor

else fail
~n~lif

238

el s~ jf y=#(el) and yl=<xl,Ll> then
- take the rule so that y=<x,L>

(this rule always exists)
- compare-node(<x,L>,<x 1,Ll>,e,e')

else if y=<x,L> and yl=#(el') th~n
-take the rule so that

yl=<xl,Ll>
(this rule always exists)

-compare-node(<x,L>,<x 1,Lt>,e,e')
else if y=#(el) and yl=#(el) then OK

else take rules so that y=<x,L> and yl=<xl,Ll>
compare-node(<x,L>,<xl,Ll>,e,e3

endif
endif

endif
endif

~n4
We can see that in this case too, we only consider one and only one time, each
rule of automata Mtm and Mtm' . So this algorithm is executed in a linear time,
and the answer to our problem will be given after a time complexity in the order
of IIMtmll+llMtm'll.

We can compare this result with the result of complexity obtained in the paper of
Oyamaguchi M.[15]. Their algorithm operates in a polynomial time of n where n=
IIMtll+llMt'll+llSII, where IISII is the size of the given rewriting system. In our case,
the complexity is began linear and the size of S is not consider. This fact can be
explained because we have made a first operation of compilation on our rewriting
system (this operation is made only once). So after this operation, we can ask as
many questions as we want without making it again, that is why we earn much
t ime.
Remark:
If G and Dinv are nondeterminist, the reduction of the nondeterminism on them
is more realizable than on S" (the automaton which accepts all transformations
that we can make with S), because, they have a smaller number of rules than S",
so the time of execution of this operation is reduced.

III .Some extensions of ground TRS
Nota t ion :E is a finite ranked alphabet

a is a letter of arity 2 and a~

TE,TA are the set of terms (trees) over E,A
X is a set of variables
Tc~(X) the set of terms over a indexed by X
To(E)= { t=to(t I t n) / t ~ TO(X), Vi,ti~ TE}

Let R={li~ri/ l i , r ie TE} be a ground TRS on TE and Ra={li~ri / l i , r iE Tc(E),Ii~TE} be a
ground TRS on TA, the condition li ~ TE is necessary because we consider terms in
Ta (E) and recognizable forests included in Ta(E).
Let RG=RuRa
LetEC={ g(x, y) = a(y,x)} and RC={ a(x, y) ~ a(y, x)}
Let EA={ a(a(x, y), z) = a(x, a(y, z))}
and RA={ a(a(x, y), z) ~ a(x, a(y, z)) ; a(x, a(y, z)) ~ a(a(x, y), z)}
and EAC=EAt3EC and RAC=RA~RC.

2 3 9

1.Commutativi tY
R G C = R G u R C = R u R a u R C is the union of two ground TRS R and Ra and of RC TRS
associated with commutativity of the operator a

RGC={l:f(a)-->a ;2: g(a, a) ->b;3: a(a, b) --->b;4: a(x, y) ---> a(y, x) }
R={ 1;2} ~5-={3 },RG={ 1;2;3 },RC={4}

1.1:Recognizability of rF]RGC
Lemma 1.1 :There exists a'~l~S Sa verifying: Vt,t'e Ta(Y.)
(t I--*--RGCt') ¢=~ (B tl ,t2 e Ta(~;), t ~*- tlsauRcI---*--- t2 I-*-R t')

Proof : - Construction of Sa
We add to Ra new rules to simulate rewritings by R on terms of TZ which appear
in rules of Ra.
Ra={li=lia.(lil lini)-->ri=ria.(ri 1,...,ripi)/ie I,ni>l ;lia,rioe T~(X)}

Vi,j,k,lij,rike TZ }
Let G=.u ~lil lini} and D = ~ Jri l ripi}

1E 1E

Let S={ (r,1)e DxG / rl-*- 1 }
R

DxG is finite and for every r of D the set [r]R={t'/ r I-*- t'} is recognizable ([4]) so
we can construct S. R
Let R'={ r--->l / (r,1) • S} and Sa=RauR '

-¢: :~

is obvious and ~ is proved by induction on the number n of utilisations of
rules of Ra .It is based on the two results:
-Each rule of R can commute with each rule of RC.
-Each rule of R' simulate the rewriting of a term of D in a term of G by R
So we obtain the decomposition of lemma 1.1, moreover we use a rule of R' only
to transform a term of D in a term of G.

Lemma 1.2:There exists a TRS Va verifying: V t,t' e T a (Z) ,
(tl-- *--t')¢:~ (3 tl ,t2,t3 ,t4e T a (~) ,

RGC (t I-*- tl I-*- t2 I-*- t3 I-*- t4 1-*- t')
R R C V¢~ R C R

P roQf : To obtain V a , w e just add to S all the rules obtained
commutativity of the operator a on left-hand-side of rules of Ra.

by using

Prooosi t ion. l .3 : F is a forest included in Ta(Z)
(F recognizable) ~ (~] R G C recognizable)
~ f : [F]RGC={t ' / 3 t e F , t ~ ' }

For every recognizable forest F and every ground TRS S, the forest [F]s is
recognizable([4]).For every recognizable forest F, the forest [F]Rc is recognizable
(obvious with the bottom-up automaton recognizing F).So with the decomposition
of lemma 1.2 we have [F]RGC recognizable (R and Vo are ground TRS).

1.2 :Reachabilitv oroblem for RGC in Tcy(•)
Proposition.l.Z~: For every t and t' in Ta(~:), we can decide whether t can reduce to
t' by applying rules of RGC i.e the teachability problem is decidable for RGC in
T~E).
Proof : For every t in Ta(•) ,we have [t]RGC recognizable (consequence of
proposition 1.3) so we can decide if t' is in [t]RGC.

240

2.Associativity.
RGA = RGwRA= R wRawRA is the union of two ground TRS R and Ra and of RA TRS
associated with associativity of the operator a.

Lxa~P.!g:RGA=[I f(a, a) ~a;2: a(a(a, b), a) ~ a(b, b) ;3: a(a(x, y), z) --> a(x, a(y, z))
;4: a(x, a(y, z)) --> a(a(x, y), z) }
R={1} ; Ra={2} ; RG={1;2} "RA={3;4}

2.1 :Recognizability of [F]RGA
Let R=Ra=~ anT'7o RGA=RA and F be the recognizable forest generated

by the regular grammar { A -~ a(a, a(A, b)) ; A ---> a(a, b) }
Then [F]RGA=[F]RA={ t•T{a;a;b}/O(t)=anbn,n>0 } where ~(t) denotes the frontier of
the term t and [F]RGA is not recognizable so in general F recognizable does not
imply [F]RGA recognizable

2.2:Reachability problem for RGA in TffL.Yd

Proposition 2.1: The reachability problem for RGA in Ta(Y.) is undecidable
P Pr..o~f_; Let F be a finite alphabet and Rw be a word rewriting system on F* ,let
A=Fw{a} be a finite ranked alphabet (all letters of A are of arity 0 except a which
arity is 2).
Let f : F * - ~ T A

m I--->f(m) defined by (if Iml=l then f(m)=m)
and(if Iml>l and m=ala2.. .an then f(m)=a(al , a(a2 ,a (a3 a(an-1, an)))))

So we can associate to Rw={ 1 --, r / 1,r • F* } a TRS denoted RG defined by
RG={ f(1) ---> f(r)/l--->r • Rw }and thus we can prove (t l-*--t')¢=~(¢P(t) I- -- (t'))

RGA ~;ep
The reachability problem for Rw in F* is known undecidable so the reachability
problem for RGA in Ta(E) is undecidable.

3.Associativity and commutativity.
R G A C = R G u R A C = (R u R a) u (R A u R C) is the union of the ground TRS RG and of RAC
TRS associated with commutativity and associativity of the operator a .RG is itself
the union of the ground TRS R on TZ and of the TRS Ra on TA(with A=Eu{a} and
conditions on the configuration of rules of Ra,see III Notations).

3.1: Recognizability of [F]RGAC
With R=Ro=0 a n ~ G A C = R A C
with the forest F of the example of the section Ili.2.1 we have

[F]RGAC=[F]RAC={ t • T{a,a,b}/l~P(t)la=leP(t)Ib } (where ~P(t) is the frontier of the
term t and I~(t)ia the number of occurences of a in the word ~(t)) which is not
recognizable .So generally F recognizable does not imply [F]RGAC recognizable .

3.2: Reachability problem for RGAC in Ta ZLZ_~
Lemma 3.1: There exists a TRS Sa such that : Vt,t' • Ta(Z)
(t 1--*-- t')¢~(3 t l , t 2 • Ta(Z) , t t-*- tl I---*--- t2 I-*- t')

RGA C R SauRAC R
P_Loof" Similar to lemma 1.1.
With the notations of section I I I . l . l , le t M = G u D = { u l urn} be the set of all
subterms of TZ which appear as subterms of rules of Sa.

Sa={ a (f (a , a) , c) o a(f(a, a), d) ;2: a (a , f (a , a)) ~ c ; 3 : a (c , d) ~ c }
thenM={ a , f(a,a) , c , d }

241

Let X={xl Xm} be an alphabet one to one with M
on X* we define the relation (m =- m')¢:~(Vxs X, Imlx = Im'lx)
Let f : Ta(E) ---) X*/-

t=ta . (t l tn) l~f (t)=xlYl . . .Xm ym where yi is the number of occurences of
the term ui (which belongs to M) in {tl tn}

Thus to each tree t of Ta(Y.), we can associate f(t) in X*/-- and g(t) the list (or
multiset) of terms of {tl tn} which are not in M (g (t) is the list of subterms of t
which cannot be transformed by Sa).
E~amp!¢; Sa={ 1,2,3 };M={a, f(a, a) ,c,d};X={x,y,z,t}
with t= a(a(a(~(a, a), c), b), a(c, b))
We get f(t)=yz z and g(t)=(b,b)
Moreover to each rule li --+ ri of Sa, we can associate the rule f(li) ~ f(ri) on X*/-
and thus to Sa is associated a TRS SX on X*/-.

With Sa,M,X defined in the previous example
we ge tSx={ 1 X : y z - o y t ; 2 X : x y ~ z ; 3 X : z t ~ z }

Lemma 3.2: V t l , t2 ~ Ta(E)
(tl I---*--- t2)¢:~(f(t l) I-*_-f(t2) and g(t l) and g(t2) contain

S a u R A C S X exactly the same terms)
Pro Q f ; - S x is a TRS on X*/- and by definition of X*/- the rewritings are made
modulo commuta t iv i ty and associat ivi ty so each rule of SX simulates
commutativity,associativity and one rule of Sa

-the trees of g(t l) cannot be rewritten by Sa so we must have the second
condition.

Examp!e: With Sa,M,X,t of the previous example we have
t I--- a(a(a(f(a, a), d), b), a(c, b)) I * t'= a(a(f(a, a), c), a(b, b))

{1} RACU{3}
and f(t)=yz 2 , f(t')=yz , yz 2 yzt/-~-

g(t)=g(t')=(b,b). ~-X - ,~ yz
Lemma 3.3: The reachability problem for SX in X*/- is decidable.
Proof: To the TRS SX on X*/-- ,we can associate the Petri net PSx defined as follow:
-Set of places P={Pl Pm} ,Pi is associated with xi of X
-Set of transitions T={tl tn},ti is associated with the rule l i~ r i .
-Pr6 and Post are defined by :.
if x l l i l . . . x m lim ~ xl r i l . . .Xm n m is the rule li---)ri of SX then for the transition ti we
have Pr6(p',ti)=li" and Post(p' , t i)=ri ' j j i j 1j
Moreover to each m=xlY ...xmY m of X*/- we associate the vector v(m) of N m
such that v(m)(i)=yi.
We can dually associate to a Petri net a TRS on P*/- so the reachability problem
for SX in X*/_= is equivalent to the reachability problem for Petri net indeed
decide if m can reduce to m' by applying rules of SX is decide if the vector v(m')
is reachable for the Petri net SPx with the initial marking v(m).The reachability
problem in Petri nets is decidable (Kosaraju[ll] ,Mayr[13]) and so the reachability
problem for SX in X*/- is decidable.
]~7~atnple.._2 With Sa ,M,X={x ,y , z , t } ,Sx={ 1X:yz--+yt ;2X:xy~z;3X:zt- -oz} and t of the
previous example we have P={p,q,r,s} , T={t ,t',t"} and

/il 110 100
P r e = J l 0 1 J ; P o s t q 0 1 0 J ; I n i t i a l marking v(m)=

k.O01J k, l O l J

242

Petri net SPX with the initial marking v(m)

Proposition 3.4; The reachability problem for RGAC in T~(Z).is decidable
Proof;-If t and t' belong to TZ then RGAC=R and the reachability problem for the
ground TRS R is decidable

-If t belongs to TZ and t' does not belong to T~,t cannot be rewrited in t'
because of the condition li~ TZ for rules of Ra(we forbid the generation of ~ from
terms of Ty~).

-If t = t a . (t l tn) ~ Ta(y-) and t '= t ' a . (t ' l t 'p) a T o (E) .We use the
decomposition of lemma 3.1 so we first rewrite the terms ti by the ground TRS R
on TE and so each term ti can produce terms of M = G u D or not so we consider
F (t)={ tg . (u l u n) / i f [ti]Rc~M=O .then ui=ti ;if [ti]Rc~M={ml,. . . ,m'}j then ui=ti or
u i = m l or ... or ui=mj }.M is a fimte set of terms and for each ti,the forest [ti]R is
recognizable so we can build the finite set F(t) for every t of T~(E).Dually, using
decomposition of lemma 3.1,we consider

if [t i] - l R n M = ~ then Ul=tl ;if [ti]- RC~M={m 1 mk} then F,l(!))={t'~.(U'l U'p) / " , I , '
u i = t i or u i=m 1 or...or u'i=m'k} with [t']-lR={t/_,., tl-*- t' for the TRS R} which is
recognizable so we can build the finite set F - l (t) for every t of Tg(E).We are now
ready to show

Lemma3.5:(t I--*-- t')¢~((3T~F(t) , 3T '~F-I(t ') , f(T) I-*-- f(T')) and
RGAC SX

(there exists a one to one correspondance h between
g(T) and g(T') such that we have g(T) ~ u I-*- h(u) ~ g(T')))

R

Proof: We use in this proof the results of lemma 3.1, lemma 3.2 and the
construction of the finite sets F(t) and F - l (t ') . = is without difficulty using these
results .For ~ we have to examine the rewriting of t in t' by R G A C using the
decomposition of lemma 3.1 and build T of F(t) and T' of F - l (t) verifying the two
proper t ies .

t= tc.(t l tn) I-*- tcr.(Vl Vn)
R

t a . (v l Vn) I * t' "v' '
S c u R A C cr.t 1 V p)

t 'a.(v' l v'p) I-*- t'c~.(t'l t'p)=t'
R

This construction is not difficult,we just have to look at every possible cases for
the rewritings by R: t i l -*-vie M ; ti l-*-vi~ M and then tie M or ti~ M ;and dually
M~v'il-*-t'i ; v'i~ M,v'il-*-t ' i and then t'i~ M or t'i~ M.

Moreover, F(t) and F - l (t ') are finite sets, for every (t,t') of F(t)xF ' l (t ') , we can
decide if the properties of lemma 3.5 are satisfied or not (lemma 3.4 and
decidability of the reachability problem for the ground TRS R) and so the
reachability problem for RGAC in T~(~;) is decidable.

243

CONCLUSION

These works could permi t to obta in some a lgebra ica l methods to real ise the
compila t ion of TRS, so as to have an execution of these sorts of systems in a real
t ime .
Besides, these researches show the difficulty to have some good classes and make
us researching some part ial a lgori thms of decis ion of the reachabi l i ty problem
based on our methods for these classes.

BIBLIOGRAPHY

[1] BRAINERS : Tree-generating regular systems, Info and control (1969)
[2].G.W.BRAMS : Reseaux de Petri:theorie et pratique,tomes l&2, Masson,Paris (1983)
[3] CHEW : An improved algorithm for computing with equations,21st FOCS (1980)
[4] DAUCHET, HEUILLARD, LESCANNE, TISON : The confluence of ground term tewriting
systems is decidable,2nd LICS (1987)
[5] DAUCHET & TISON : Tree automata and decidability in ground term rewriting systems

FCT' 85 (LNCS n ° 199)
[6] N.DERSHOWITZ,J.HSIANG,N.JOSEPHSON and D.PLAISTED : Associative-commutative
rewriting,Proc.10th IJCAI, LNCS 202 (1983)
[7] GECSEG F. & STEINBY M : tree automata,Akad6miai Kiado, Budapest (1984)
[8] HUET.G & OPPEN.D.: Equations and rewrite rules:a survey,in formal languages :perspective
and open problems,Ed.Book R.,Academic Press(1980)
[9] J . P . J O U A N N A U D : Church-Rosser computations with equational term rewriting
systems,Proc.4th Conf on Automata, Algebra and programming,LNCS 159 (1983)
[10] C.KIRCHNER • Methodes et outils de conception systematique d'algorithmes d'unification
dans les th6ories 6quationnelles,These d'etat de runiversite de Nancy I (1985)
[11] S.R.KOSARAJU : Decidability of reachability in vector addition systems, Proc.14th
Ann.Symp.on Theory of Computing, 267-281.(1982)
[12] KOZEN : Complexity of finitely presented algebra, 9th ACM th. comp. (1977)
[13] E.W.MAYR : An algorithm for the general Petri net reachability problem, Siam J
Comput.13 441.- 460
[14] NELSON & OPPEN : Fast decision algorithms based on congruence closure, JACM 27 (1980)
[15] OYAMAGUCHI M.: The reachability problem for quasi-ground Term Rewriting Systems,
Journal of Information Processing , vol 9 , n°4 (1986)
[16] PLAISTED D. & BACHMAIR L. : Associative path ordering, Proc. 1st conference on
Rewriting Techniques and Applications, LNCS 202 (1985)
[17] RAOULT J.C. : Finiteness results on rewriting systems, RAIRO, IT, vol 15 (1985)

