
THE REACHABILITY PROBLEM FOR GROUND TRS 
AND SOME EXTENSIONS 

A. DERUYVER and R. GILLERON 
LIFL UA 369 CNRS 

Universite des sciences et techniques de LILLE FLANDRES ARTOIS 
U.F.R. d' I.E.E.A. Bat. M3 59655 VILLENEUVE D'ASCQ CEDEX FRANCE 

~ S ~ A ~  

The reachabili ty problem for term rewriting systems (TRS) is the problem of 
deciding, for a given TRS S and two terms M and N, whether M can reduce to N by 
applying the rules of S. 
We show in this paper by some new methods based on algebraical tools of tree 
automata, the decidability of this problem for ground TRS's and, for every ground 
TRS S, we built a decision algorithm. In the order to obtain it, we compile the 
system S and the compiled algorithm works in a real time (as a fonction of the 
size of M and N). 
We establish too some new results for ground TRS modulo different sets of 
equations • modulo commutativity of  an operator o,  the reachability problem is 
shown decidable with technics of finite tree automata; modulo associativity, the 
problem is undecidable; modulo commutativi ty and associativity, it is decidable 
with complexity of reachability problem for vector addition systems. 

INTRODUCTION 
The reachabili ty problem for term rewriting systems (TRS) is the problem of 
deciding, for given TRS S and two terms M and N, whether M can reduce to N by 
applying the rules of S. It is well-known that this problem is undecidable for 
general TRS's .In a first part we study this problem for more simple systems, 
more specifically in the case of ground term rewriting systems. 
A TRS is said to be ground if its set of rewriting rules R={ li->ri I i~ I} (where I is 
finite) is such that li and ri are ground terms(no variable occurs in these terms). 
The decidability of  the reachabili ty problem for ground TRS was studied by 
Dauchet M. [4],[5] as a consequence of decidability of confluence for ground TRS. 
Oyamaguchi [15] and Togushi-Noguchi have shown this result too for ground TRS 
and in the same way for quasi-ground TRS.We take again this study with two 
innovator aspects: 

the modulary aspect of the decision algorithm which use all algebraical tools of 
tree automata, that permits to clearly describe it. 

the exchange between time and space aspect which have permitted to obtain 
some time complexities more and more reduced. 
Therefore we have proceeded in three steps: 
1- We begin with the TRS S not modified which gives the answer to the problem 
with a time complexity not bounded. 

supported by "Greco programmation" and "PRC mathematique et informatique" 
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2- We transform the system S in a GTT (ground tree transducer) which simulates 
it, we will call this system, S'. Then the decision algorithm will have a quadratic 
time complexity. The memory space of S' will be in O((number of rules of S)2). 
3- Then, we obtain, after a compilation of S' which could be realised in an 
exponential time (reduction of nondeterminism), a real time decision algorithm 
(linear complexity). The necessary memory space, after the compilation of S', will 
be in O(exp(number of rules of S)). 
If we make a comparison with the result of Oyamaguchi M.[15] we can have the 
next figure: 

Oyamaguchi - Togashi - Noguchi , 
. . . . . .  t t' ? S (S, t, t') > I'~" 

polynomial time of I l S l l + l l t l l + l l r ~  / / 7  I " ~  

compilation 

polynomial 
time 
of ltStl 

GTT*=S '  (S ' , t , t '  with our 
reduction I methods 

° '  Is nondetermin m 
in exponenti/~l 
time of | 
HSll 

S 'de t  (S'det,  t, t') J 

S = rewriting system 
S'= our system S after compilation 
S'det = our system S' after the reduction of nondeterminism 
t,t' = the given trees 
HSll = size of the rewriting system S 
fftl{ = size of the tree t 

A program, which is called VALERIANN, written in PROLOG realizes at the present 
time this algorithm.(on SUN machine) 
In a second part, we consider the case of a ground TRS RG modulo different sets 
of equations in the next three cases: 

EC :commutativity of an operator c 
EA :associativity of an operator 
EAC :associativity and commutativity of an operator (r 

RC,RA,RAC denote the TRS obtained by orientation of equations into rules.We look 
at the two next problems: 

For a TRS S equal to RG U RC,RG U RA,RG U RAC and with conditions on the 
configuration of terms (i) if F is a recognizable forest, is the class of F modulo S 
recognizable ?(ii)deeidability of the reachability problem 
We have different results for each case: 
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For RGC,  we have a positive answer for (i) and henceforth for (ii) 
For RGA,  we have a negative answer for the problems (i) and (ii) 
For R G A C ,  we have a negative answer for (i) and a positive answer for (ii) with 

the complexity of  the teachability problem for vector addition systems. 

I -PRELIMINARIES 

Let us recall some classical definitions and some usefull results: 
1- tree automata and recognizable forests. 

Let E be a finite ranked alphabet. 
Ty, is the set of terms (or trees) over E. 

D e f i n i t i o n l :  A frontier-to-root (bottom-up) tree automaton is a quadruplet M=(E,  
Q , F, R) where 

* Y, is a finite ranked alphabet. 
* Q is a finite set of states. 
* F is the set of final states, with F Q 
* R is a finite set of transition rules, these rules have the next 

configuration: c(q± 1 [xl] . . . . .  qirt[xn]) --> q[c(xl . . . . .  xn)] 

if n=0, the rule is c' --> q[c'] 
We can dually define root-to-frontier(top-down) tree automata. 
For more development see Gecseg F. & Steinby M.[7]. 
D e f i n i t i o n 2 :  A forest F is said to be recognizable if  and only if there is a frontier- 
to-root tree automaton which accepts it. 
p r o p e r t i e s :  the class REC of recognizable  forests  is closed under union, 
intersection, and complementary.  

2-algorithm of decision on tree automata 
n o t a t i o n :  
we note Ilmll the number of rules of the automaton m and Iraqi the number of 
states of the automaton m. 
we note m__ the automaton which accepts the complementary of the language 
accepted by m 
a-Decision of the emptiness (M= ~)  
Let M an automaton. The time complexity to answer to the next problem: 

Is the language which is accepted by M empty ? 
is: 
* linear, for word languages, if we have direct access to rules and if we use a 
naive algorithm. 

* in O(llMllxlMql), for tree languages. 

b-Intersection of two automata M and M', and decision of the emptiness of this 
intersection. (M riM" ~ ~) 
* for word languages, the time complexi ty to answer to this problem is in 
O(IIMII×IIM'II). 
* for  tree languages,  the t ime complex i ty  is more  important ,  it is in 
O(IIMII×IIM'IIxlMqlxIMq, I). 
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c- Equivalence of M and M" (M=M') 

M=M' ¢~ M n M'= O and M nM'  = O 

*deterministic case: 
we can transform M in M by exchanging final states and the other states. Then we 
return to the same case than b-. 

* nondeterministic case: 
the time complexity contains the time of reduction of nondeterminism which is 
exponential .  

3- Ground TRS and GTr.  

*A tree rewriting system (TRS) S on TE is a set of directed rewriting rules 

R={li--> ri I i e  I}, Here, we only consider finite TRS (where I is finite), For more 
development see Huet G. & Oppen D.[8]. 
I--- is the extension of --> according to tree substitutions. 
The reduction relation l-*- on TZ is the reflexive and transitive closure of -->. 

S is a ground TRS if and only if no variable occurs in rules. 

*A ground tree transducer on Ty~ ( a GTT in short) is the relation T or (G,D) 

associated with two tree automata G and D and defined as follows: 
T 

t -><- t ' i f f t h e r e e x i s t u ~  T Z u E g u E d  such that t  -> u <- f .  
G D 

where Z is a finite ranked alphabet. 
Eg and Ed are sets of states. 
In order to produce actual pairs of terms, the set Eg and Ed are supposed non 
disjoint. Eg n Ed is called the interface. 

*Dauchet M. and Tison S., and Dauchet , Heuillart, Lescanne and Tison have proved 
the next results: 

Proposi t ion1:  There is an algorithm which associates to each ground TRS S a GTT 
Ts such that S = Ts where: 

S= { (t,t') I t l-*-t'} and Ts={(t,t') I t --> u <-- t'}. 
S G D 

Proposit ion2:  The confluence of ground TRS is decidable. 

Proposi t ion3:  The reachability problem for ground TRS is decidable. 

Proposit ion4:  
If F is recognizable then [F]s= { t' I 3 t ~ F, t I-*- t' } is recognizable. 

S 
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II- COMPILATION OF A GROUND TRS S AND DECISION ALGORITHM FOR THE 
REACHABILITY PROBLEM 
We will  construct  systems S' and S" , from the ground rewrit ing system S, so as 
to reduce more and more the t ime of answer to the teachabi l i ty  problem . 

To do that, we use the next  tools: Automata,  Recognizable  forest and ground tree 
t r a n s d u c e r .  

1-Creation of the system S'. 
All  a long of the different steps, we will use the same example,  so as to easily 
fol low the different  t ransformat ions  which are realized. 
Let us write the next  ground rewrit ing system: 
T.: {  b l ,  q ,  q l ' ,  pl  , b ,  q', p, a c } 

I I I  / \ ' / 1 \  

rules = 1- b (b l ) ->  b l  2- a(bl, q) -> q 3- 

4- q(ql ' )  -> q l '  5- q l ' - >  a (ql ' ,  q l ' )  

7-pl -> p(pl) 8- a(bl,  a(q, bl))  -> b(ql') 

First stem 

q1' -> q'(ql') 

6- b(q'(q'l)) -> c(pl ,  p(pl), p l )  

frontier-to-root automaton G root-to-frontier automaton D 

1- bl -> el il-> bl 
b(el) -> il  

2- bl-> e2 i2-> q 
q-> e3 
a(e2, e3) -> i2 

3- ql'-> i3 i3 -> q'(e4) 

e4 -> ql' 
4- ql' -> e5 i4 -> ql' 

q'(e5) -> i4 

5- ql ' -> i5 i5 -> a(e6, e6) e6 -> ql' 

6- qr-> e7 
q'(e7) -> e8 
b(e8) -> i6 

i6 -> c(e9, eI0, el l)  
e9 -> pl ei2 -> pl 
e l l - > p l  el0->p(el2) 

7- pl -> i7 i7 -> p(e13) el3 -> pl 

8- q -> el4 
bl -> el5 
bl -> el7 
a(el4, el5) -> el6 
a(el7, el6) -> i8 

i8 -> b(e18) 

el8 -> ql' 

Interface states are: I={ il,i2,i3,i4,i5,i6,i7,i8} 

In this part, we have to construct  a GTT, from the system S, its frontier-to-root 
au tomaton  wi l l  accept  left  hand sides of rules  of S, and its root- to-f ront ier  
au tomaton  wil l  generate r ight  hand sides of rules of S. Its interface states will 
make the connexion  between left hand sides and right hand sides, for example we 
buil t  for the rule 8 a frontier-to-root automaton which accepts the left hand side, 
where the terminal  state is i8, and the other states are e l4 ,  e15, e l6 ,  e l7 .  
Consider  again our last system, then we will have the next rules: 
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Second step: 
Creat ion of  the G T r ,  G*, which s imulates  the ground rewri t ing  sys tem S. 
The pr inc ip le  is: 

" it 's not good generating, to nible" 
To do that , we  create  some e- t rans i t ions ,  with the next  induct ion  rules:  

e -> f (e l  . . . . .  en) 
e l - > e l ' ,  . . . .  en -> en' 

f (e l ' ,  . . . .  en') -> e' 

e -> e' 
The a lgor i thm is : 

1- we take a rule of  the root - to- f ront ie r  automaton D 
2- W e  examine ,  i f  we can f ind the r ight  hand-s ide  of  this rule  in the left  hand- 

side of  one rule of  the f ront ie r - to- root  automaton G. 
* i f  it is the case, we create an e - t r ans i t i on  with in lef t  hand-s ide ,  the lef t  

hand side of the rule of  D which is choosen (a state of  D), and in r ight  hand side, 
the state in which we arr ive when we apply  the rule of  G which was found.Then 
we choose  the next rule of  D and we start again in 2. 

* if  it is not the case, we choose a new rule of D and we start again in 2. 
Such a t r ans fo rma t ion  can  be i l lus t ra ted  with  the d i a g r a m  of  the f igure  2.This  
operat ion is rea l ized  in a po lynomia l  t ime of  n where n=llGIIxltDll . 

ql • q2 by G* 

generation nible 

f igure  2 

E x a m p l e :  
Cons ider  the rules 3 and 4 of  the system S 
The rule 3 was decomposed as follows: ql'->i3 

And  the rule 4 was decomposed  in this way:  ql '->e5 

Consider  the state e4 ,we get: e4-> ql '  
so we get e4 -> e5 and  e4 -> i3 

i3-> q'(e4) 
e4->ql' 
i4->ql' 

q'(e5) -> i4 

and q1' ->e5, ql '  ->i3 

Consider  now the state i3 we get: i3 -> q'(e4) 
and by the last  step we get e4 ->e5 so i3-> q'(e5) 
And we find q'(e5) -> i4 in the decomposi t ion  of  the rule 4 
So we deduce  the next  e - t r a n s i t i o n  i3 -> i4 

So, ins tead of  doing the next  rewri t ings:  
i3 -> q'(e4) -> q'(ql') -> q'(e5)-> i4 

the GTT, G*, will  direct ly  pass by i3 to i4 
So we have const ructed  in two steps, a GTT, denoted  by G*, which simulates  the 
sys tem S, we cal l  G* , the system S'. The answer  to our p rob lem will  be given with 
S' in a quadrat ic  t ime. 
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2-Creation o f  the system S~'. 
In first time, we modify  again the system S', so as to construct  a frontier-to-root 
automaton.  This one will accept  a forest ,  which symbol izes  all t ransformations 
that we can realize with the system S. 
We can depict a tree which belongs to this forest like that: 

b'l 

0 
I 
a 

/ 
b 

/ 
# 

/ \ 

b b l  
A= 

\ 
c 

/ . 

C 
/ \ 

ct # 
/ \ 

a c 

/ \  /1\ 
b a pl  p p l  

/ \  
b a l  , 

t)'1 p l  

61 

Inside this tree, we can bring to light, two trees t and t', with two morphisms cp 
and cp'. 

by cp, we get: by cp', we get: 
0 0 

I I 
a a 

/ \ / \ 
b c b c 

/ . / . 
t= (x t'= C~ 

I / \  1 / \  
b c~ a b l  c~ c 

/ \  / I \  
b a p l  p p l  

"bl I \ 
b a l  

I~I I~1 
61 

cp erases the right son of each 
node # 

cp' erases the left son of 
each node # 

Like that, the tree A means that we can transform t in t' with the system S'. 
So, all t ransformations according to the system S', are coded in a recognizable 
forest F. 

with F={ t#t' I t I-*- t'} 
S 
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To create a frontier-to-root automaton which will accept this forest, we proceed 
in three steps: 
1- We keep nible rules of the sytem S' 
2- We reverse generation rules of the system S' so as to convert them in bottom- 
up rules (by reversing the arrows) 
3- For interface states we add next rules: 

if i l=i2 with il  a state of G and i2 a state of D 
#(il,  i2) -> ok and #(il,  i2) -> (il,i2) 

and (il,i2) -> ok 

and then, for the other pairs of states, rules which have the next configuration: 
if  e l~  e2 with el a state of G and e2 a state of D 

#(el,  e2) -> (el,e2) 
for all letters 'a' of Z, we add, when it is possible, rules as follows: 

a((el,el ') ,  (e2,e2') . . . . .  (en,en')) -> (e,e') 
Finally, when we know that the 'ok' state allows to climb up to the root of the 
tree, we add, for all letter 'a' of the alphabet, rules as follows: 

a( ok, ok . . . . .  ok) -> ok 

but, now, in order to improve the time complexity, we obtain the automaton S", 
by transforming F and by reducing the nondeterminism. 
1- Suppression of a hidden difficulty: 
We bring down, into F, # nodes, the lower as possible, so that descendant letters 
of the # node would be always different. 

ie: The next tree t: 
t= # will be replace by b 

/ \ / \ 

b b # # 
/ \ / \ / \  / \  

in order that our automaton could accept F with this modification, we must 
bring it some new changes: 

a- We keep in states the last letter which is accepted. 
b- We will not create rules as follows: 

#(il ,  i2) -> ok if i l  and i2 had accepted the same 
letter. 

2- Reduction of nondeterminism. 
We do that in an exponential time, in the worst cases. 

When we have made all these different steps, we obtain S".This one have a 
number of  rules which is running to exp(number  of  rules of  S) (not very 
readable), which are those of a frontier-to-root deterministic automaton S". 
The answer to the question: "can t be transformed into t'?" by the system S, is 
made in real time, because: 

t I-*-t '  ¢~ t#t' is accepted by S" 
S 
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Remark:  
But the reduction of the nondeterminism stands some very important problems, 
all at once of memory space and of time of answer. 
To avoid this problem, we can consider another method. We will see this method 
in the next paragraph. 

3-Resoluti0n of the reachability problem by using the system S' (G*~ 
Let us take G and D, which are automata of the GTT G* (see p6), and let us take Mt 
and Mt', which are automata which accept t and t'. 
We call Dinv,  the automaton obtained from D by reversing its arrows. So Dinv is a 
f ront ier - to- root  automaton.  
To solve our problem we can study two cases: 

a- When G and D~r~v are nondeterministic 

We can answer to t l - * - t '  ? b y u s i n g F  
S 

In fact t I-*- t' ¢~ 9--1(0 n 9 ' - l ( t ' )  n F 
9 and 9' are morphisms which are defined above (p7). These one are independant 
of t, t' and S. 
So we have a complexity equal to K(S) x II Mt I1 x 1t Mt'll by omitting the access 
t ime. 
Besides, we can proceed in the same way to express the set of all transformations 
of t, that we will call S(t), because: 

S(t)= 9 ' (9 -1 (0  n F) 

The creation of the automaton which accepts S(t) is made with the next algorithm: 
1-We make the intersection between the automaton Mt and the frontier-to-root 
automaton G of the GTT G*, but this thing by keeping all rules which accept t. 
2-We search inside this automaton, rules which conduct to a couple of states (q,i) 
where i is an interface state of the GTT and q is any state, and we add all rules of 
the root-to-frontier automaton D of the GTT which start from this interface state i 
(this by reversing the arrows so as to always have a frontier-to-root automaton). 
Such  an a l g o r i t h m  is  r e a l i z e d  wi th  a t i m e  c o m p l e x i t y  in 
O((llMtllxtlGllxlMtqlxlGql)+llDll).We will call this new automaton Mst 
to answer to t I-*- t', we make the intersection between the automata Mt' and 
Mst. So as to know if S(t) n t' ~ 

The answer is given after a time in O(llMstllxllMt'llxlMstql×lMt'ql) 

b- When G and Di r ty  are deterministic 

As G is deterministic, it can accept the tree t, likewise for Dinvand t'.So we can, by 
recognition of t by G (resp of t' by Dinv),  mark all subtrees of t which could be 
accepted by G (resp subtrees of t' accepted by Dinv).Our aim, is to have two new 
automata which will accept all at once t(or t') and trees which have the next 
configurat ion:  
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subtrees # ~  
which Z 

are accepted by G 
figure 3 

w h e r e  i l  a n d  i2 a re  f i n a l  s t a t e s  o f  t he  s u b t r e e s  a c c e p t e d  by  G ( in  f ac t ,  t hey  are  
i n t e r f a c e  s t a t e s ) ,  he re ,  # ( i l )  and  # ( i2 )  r e p l a c e  t h e s e  s u b t r e e s ,  t h e y  are  l ea f s  of  the  

t r e e .  

T h i s  o p e r a t i o n  is  c a l l ed ,  the  " m a r k i n g "  o p e r a t i o n .  
H e r e , t h e  a l g o r i t h m  used :  

m a r k i n g ( x , l , y , e )  
x: node 
I: list of sons of the node x 
y: state in which we arrive when we have accepted the node x (with rules of the automaton 
Mt or Mr') 
e: state in which we arrive when we have accepted the node x (with rules of the automaton G 
or Dinv) 
b e ~ i n  

if__ it exists a rule of G (or D i r t y )  accepting the node x with the list 1 then  

- We keep the state e of G (or of D i n v )  in which we arrive 

after having made the recognition. 
- We search if this state is an interface state : 

i f  yes then  we add the next rule 
#(e) -> state(y) in front of the list of rules of 

the automaton Mt (or Mt'). 
else nothing 

endif  
else We keep a fictitious state 'p' so as to continue the 

exploration of the tree 
(remark: fathers of the node x ,couldn't be accepted by 

G(or Dinv)) 
~n4 i f  
end  

s tudy-node(x , l , y , e )  
b e g i n  
if the letter x is a leaf l~h~n marking(x, l ,y ,e)  
else Jf  the letter x is a node then  

for each son fi of x do 
-Take the rules of Mt (or Mt') which conducts 

to this son : 
< xi,li>-> state(fi) 

-study-node(xi,li,fi,ei) 
-keep each ei in the list r 

end 
marking(x,l',y,e) 

end i f  

end  
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main program 
be~in 

Take the rule which accepts the root node of t or t' 
<x,l>->state(y) x: root node 

l:list of sons 
study-node(x,l,y,e) 

/ *exploration of the tree t (or t') with "marking" operation*/ 
end 
The two au toma ta  obta ined ,  af ter  having app l ied  this a lgor i thm on t and t', are 
ca l led  Mtm and Mtm' .  
we can remark  that we make one and only one "marking" opera t ion  for  each node 
of  the cons idered  tree (ie: for each rule of  the associa ted  automaton) .  
Besides ,  the "marking"  opera t ion  of  a node is made  in a l inear  t ime,  so we can 
d e d u c e  that  the  c r e a t i o n  of  a u t o m a t a  M t m  and M t m '  is made  with a t ime 
complex i ty  in O(llMtll+llMt'll). 
Now, we only have to compare  these automata  so as to f ind a tree common to the 
forest  accepted  by M t m a n d  Mtm' , th i s  tree wi l l  have the next  conf igurat ion:  

part common to t and t' 

~ l n )  

f igure  4 

i l  . . . . .  in are in ter face  states which  represen t  all  t r ans format ions  made  when we 
go from t to t'. 
this opera t ion  is made  in a very short  t ime by using the next  a lgor i thm:  
main program 

b~gin 
each automaton have only one final state, so we search the rules 

which conduct to these states: 
i.e.: y-> state(ft) ft and ft' are final states of Mta and 

yl->state(ft') Mta, 

compare-node(y,yl,ft,ft') /* comparison of nodes y and yl*/  
~n~t 

comp are-node(y,y 1 ,e,e') 
bogin 

if y=<x,L> and yl=<xl,Ll> then 
if x=xl then consider each list 

L=el,e2 ..... en and 
I I i LI= el ,e2 ..... en 

(ei and ei' are states) 
for each couple of states (ei,ei') do 

-search rules which conduct to these two 
states 

i.e.: yi->state(ei) 
yi'->state(ei') 

-compare-node(yi,yi',ei,ei') 
endfor 

else fail 
~n~lif 
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el s~ jf y=#(el) and yl=<xl,Ll> then 
- take the rule so that y=<x,L> 

(this rule always exists) 
- compare-node(<x,L>,<x 1,Ll>,e,e') 

else if y=<x,L> and yl=#(el') th~n 
-take the rule so that 

yl=<xl,Ll> 
(this rule always exists) 

-compare-node(<x,L>,<x 1,Lt>,e,e') 
else if y=#(el) and yl=#(el) then OK 

else take rules so that y=<x,L> and yl=<xl,Ll> 
compare-node(<x,L>,<xl,Ll>,e,e3 

endif 
endif 

endif 
endif 

~n4 
We can see that in this case too, we only consider one and only one time, each 
rule of automata Mtm and Mtm' .  So this algorithm is executed in a linear time, 
and the answer to our problem will be given after a time complexity in the order 
of IIMtmll+llMtm'll. 

We can compare this result with the result of complexity obtained in the paper of 
Oyamaguchi M.[15]. Their algorithm operates in a polynomial time of n where n= 
IIMtll+llMt'll+llSII, where IISII is the size of the given rewriting system. In our case, 
the complexity is began linear and the size of S is not consider. This fact can be 
explained because we have made a first operation of compilation on our rewriting 
system (this operation is made only once). So after this operation, we can ask as 
many questions as we want without making it again, that is why we earn much 
t ime.  
Remark:  
If  G and Dinv are nondeterminist, the reduction of the nondeterminism on them 
is more realizable than on S" (the automaton which accepts all transformations 
that we can make with S), because, they have a smaller number of rules than S", 
so the time of execution of this operation is reduced. 

III .Some extensions of ground TRS 
Nota t ion :E  is a finite ranked alphabet 

a is a letter of arity 2 and a~ 

TE,TA are the set of terms (trees) over E,A 
X is a set of variables 
Tc~(X) the set of terms over a indexed by X 
To(E)= { t=to(t I ..... t n ) / t ~  TO(X), Vi,ti~ TE} 

Let R={li~ri/ l i , r ie TE} be a ground TRS on TE and Ra={li~ri / l i , r iE Tc(E),Ii~TE} be a 
ground TRS on TA, the condition li ~ TE is necessary because we consider terms in 
Ta (E)  and recognizable forests included in Ta(E).  
Let RG=RuRa 
LetEC={ g(x, y) = a(y,x)} and RC={ a(x, y) ~ a(y, x)} 
Let EA={ a(a(x, y), z) = a(x, a(y, z))} 
and RA={ a( a(x, y), z) ~ a(x, a(y, z)) ; a(x, a(y, z)) ~ a(  a(x, y), z)} 
and EAC=EAt3EC and RAC=RA~RC. 
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1.Commutativi tY 
R G C = R G u R C = R u R a u R C  is the union of two ground TRS R and Ra  and of RC TRS 
associated with commutativity of the operator a 

RGC={l:f(a)-->a ;2: g(a, a) ->b;3: a(a, b) --->b;4: a(x, y) ---> a(y, x) } 
R={ 1;2} ~5-={3 },RG={ 1;2;3 },RC={4} 

1.1:Recognizability of rF]RGC 
Lemma 1.1 :There exists a'~l~S Sa verifying: Vt,t'e Ta(Y.) 
(t I--*--RGCt' ) ¢=~ ( B tl ,t2 e Ta(~;), t ~*- tlsauRcI---*--- t2 I-*-R t' ) 

Proof  : - Construction of Sa 
We add to Ra  new rules to simulate rewritings by R on terms of TZ which appear 
in rules of Ra. 
Ra={li=lia.(lil ..... lini)-->ri=ria.(ri 1,...,ripi)/ie I,ni>l ;lia,rioe T~(X)} 

Vi,j,k,lij,rike TZ } 
Let G=.u  ~lil ..... lini} and D = ~  Jri l  ..... ripi} 

1E 1E 

Let S={ (r,1)e DxG / rl-*- 1 } 
R 

DxG is finite and for every r of D the set [r]R={t'/ r I-*- t'} is recognizable ([4]) so 
we can construct S. R 
Let R'={ r--->l / (r,1) • S} and Sa=RauR '  

-¢: :~ 

is obvious and ~ is proved by induction on the number n of utilisations of 
rules of Ra  .It is based on the two results: 
-Each rule of R can commute with each rule of RC. 
-Each rule of R' simulate the rewriting of a term of D in a term of G by R 
So we obtain the decomposition of lemma 1.1, moreover we use a rule of R' only 
to transform a term of D in a term of G. 

Lemma 1.2:There exists a TRS Va verifying: V t,t' e T a ( Z ) ,  
(tl-- *--t')¢:~ (3 tl ,t2,t3 ,t4e T a ( ~ ) ,  

RGC ( t I-*- tl I-*- t2 I-*- t3 I-*- t4 1-*- t' ) 
R R C V¢~ R C R 

P roQf : To obtain V a , w e  just  add to S all the rules obtained 
commutativity of the operator a on left-hand-side of rules of  Ra.  

by using 

Prooosi t ion. l .3 :  F is a forest included in Ta(Z) 
( F recognizable ) ~ ( ~ ] R G C  recognizable ) 
~ f  : [F]RGC={t ' / 3 t e F ,  t ~ '  } 

For every recognizable forest F and every ground TRS S, the forest [F]s is 
recognizable([4]).For every recognizable forest F, the forest [F]Rc  is recognizable 
(obvious with the bottom-up automaton recognizing F).So with the decomposition 
of lemma 1.2 we have [F]RGC recognizable (R and Vo are ground TRS). 

1.2 :Reachabilitv oroblem for RGC in Tcy(•) 
Proposition.l.Z~: For every t and t' in Ta(~:), we can decide whether t can reduce to 
t' by applying rules of RGC i.e the teachability problem is decidable for RGC in 
T~E). 
Proof  : For every t in Ta(•) ,we have [ t ]RGC recognizable  (consequence of 
proposition 1.3) so we can decide if t' is in [t]RGC. 
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2.Associativity. 
RGA = RGwRA= R wRawRA is the union of two ground TRS R and Ra and of RA TRS 
associated with associativity of the operator a. 

Lxa~P.!g:RGA=[I f(a, a) ~a;2:  a(a(a, b), a) ~ a(b, b) ;3: a(a(x, y), z) --> a(x, a(y, z)) 
;4: a(x, a(y, z)) --> a(a(x, y), z) } 
R={1} ; Ra={2} ; RG={1;2} "RA={3;4} 

2.1 :Recognizability of [F]RGA 
Let R=Ra=~ anT'7o RGA=RA and F be the recognizable forest generated 

by the regular grammar { A -~ a(a, a(A, b)) ; A ---> a(a, b) } 
Then [F]RGA=[F]RA={ t•T{a;a;b}/O(t)=anbn,n>0 } where ~(t) denotes the frontier of 
the term t and [F]RGA is not recognizable so in general F recognizable does not 
imply [F]RGA recognizable 

2.2:Reachability problem for RGA in TffL.Yd 

Proposition 2.1: The reachability problem for RGA in Ta(Y.) is undecidable 
P Pr..o~f_; Let F be a finite alphabet and Rw be a word rewriting system on F* ,let 
A=Fw{a} be a finite ranked alphabet (all letters of A are of arity 0 except a which 
arity is 2). 
Let f : F * - ~ T A  

m I--->f(m) defined by ( if Iml=l then f(m)=m) 
and( if Iml>l and m=ala2.. .an then f(m)=a(al ,  a(a2 ,a (a3 . . . .  a(an-1, an)))) ) 

So we can associate to Rw={ 1 --, r / 1,r • F* } a TRS denoted RG defined by 
RG={ f(1) ---> f(r)/l--->r • Rw }and thus we can prove (t l-*--t' )¢=~(¢P(t) I- -- (t')) 

RGA ~;ep 
The reachability problem for Rw in F* is known undecidable so the reachability 
problem for RGA in Ta(E) is undecidable. 

3.Associativity and commutativity. 
R G A C = R G u R A C = ( R u R a ) u ( R A u R C )  is the union of the ground TRS RG and of RAC 
TRS associated with commutativity and associativity of the operator a .RG is itself 
the union of the ground TRS R on TZ and of the TRS Ra on TA(with A=Eu{a} and 
conditions on the configuration of rules of Ra,see III Notations). 

3.1: Recognizability of [F]RGAC 
With R=Ro=0 a n ~ G A C = R A C  
with the forest F of the example of the section Ili.2.1 we have 

[F]RGAC=[F]RAC={ t • T{a,a,b}/l~P(t)la=leP(t)Ib } (where ~P(t) is the frontier of the 
term t and I~(t)ia the number of occurences of a in the word ~(t)  ) which is not 
recognizable .So generally F recognizable does not imply [F]RGAC recognizable . 

3.2: Reachability problem for RGAC in Ta ZLZ_~ 
Lemma 3.1: There exists a TRS Sa such that : Vt,t' • Ta(Z) 
( t 1--*-- t' )¢~( 3 t l , t 2 •  Ta(Z)  , t t-*- tl I---*--- t2 I-*- t') 

RGA C R SauRAC R 
P_Loof" Similar to lemma 1.1. 
With the notations of section I I I . l . l , le t  M = G u D = { u l  ..... urn} be the set of all 
subterms of TZ which appear as subterms of rules of Sa. 

Sa={ a ( f ( a , a ) , c ) o  a(f(a, a), d) ;2: a ( a , f ( a , a ) ) ~ c ; 3 :  a ( c , d ) ~ c }  
thenM={ a ,  f(a,a) , c , d  } 
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Let X={xl ..... Xm} be an alphabet one to one with M 
on X* we define the relation ( m =- m' )¢:~(Vxs X, Imlx = Im'lx ) 
Let f : Ta(E) ---) X*/- 

t=ta . ( t l  ..... tn ) l~f ( t )=xlYl . . .Xm ym where yi is the number of occurences of 
the term ui (which belongs to M) in {tl ..... tn} 

Thus to each tree t of Ta(Y.), we can associate f(t) in X*/-- and g(t) the list (or 
multiset) of terms of {tl ..... tn} which are not in M (g ( t )  is the list of subterms of t 
which cannot be transformed by Sa). 
E~amp!¢; Sa={ 1,2,3 };M={a, f(a, a) ,c,d};X={x,y,z,t} 
with t= a(a(a(~(a, a), c), b), a(c, b)) 
We get f(t)=yz z and g(t)=(b,b) 
Moreover to each rule li --+ ri of Sa, we can associate the rule f(li) ~ f(ri) on X*/- 
and thus to Sa is associated a TRS SX on X*/-. 

With Sa,M,X defined in the previous example 
we ge tSx={  1 X : y z - o y t ; 2 X : x y ~ z ; 3 X : z t ~ z }  

Lemma 3.2: V t l , t2 ~ Ta(E) 
( tl  I---*--- t2 )¢:~(f( t l )  I-*_-f(t2) and g(t l )  and g(t2) contain 

S a u R A C  S X  exactly the same terms ) 
Pro Q f ; - S x  is a TRS on X*/-  and by definition of X*/-  the rewritings are made 
modulo commuta t iv i ty  and associat ivi ty so each rule of SX simulates 
commutativity,associativity and one rule of Sa 

-the trees of g( t l )  cannot be rewritten by Sa so we must have the second 
condition. 

Examp!e: With Sa,M,X,t of the previous example we have 
t I--- a(a(a(f(a, a), d), b), a(c, b)) I . . . .  * . . . .  t'= a(a(f(a,  a), c), a(b, b)) 

{1} RACU{3} 
and f(t)=yz 2 , f(t')=yz , yz 2 yzt/-~- 

g(t)=g(t')=(b,b). ~-X - ,~ yz 
Lemma 3.3: The reachability problem for SX in X*/- is decidable. 
Proof: To the TRS SX on X*/-- ,we can associate the Petri net PSx  defined as follow: 
-Set of places P={Pl ..... Pm} ,Pi is associated with xi of X 
-Set of transitions T={tl  ..... tn},ti is associated with the rule l i~ r i .  
-Pr6 and Post are defined by :. 
if x l l i l . . . x m  lim ~ xl r i l . . .Xm n m  is the rule li---)ri of SX then for the transition ti we 
have Pr6(p',ti)=li" and Post(p' , t i)=ri '  j j i j  1j 
Moreover to each m=xlY ...xmY m of X*/-  we associate the vector v(m) of N m 
such that v(m)(i)=yi. 
We can dually associate to a Petri net a TRS on P*/-  so the reachability problem 
for SX in X*/_= is equivalent to the reachability problem for Petri net indeed 
decide if m can reduce to m' by applying rules of SX is decide if the vector v(m') 
is reachable for the Petri net SPx  with the initial marking v(m).The reachability 
problem in Petri nets is decidable (Kosaraju[ll] ,Mayr[13]) and so the reachability 
problem for SX in X*/-  is decidable. 
]~7~atnple.._2 With Sa ,M,X={x ,y , z , t } ,Sx={  1X:yz--+yt ;2X:xy~z;3X:zt- -oz} and t of the 
previous example we have P={p,q,r,s} , T={t ,t',t"} and 

/il 110 100 
P r e = J l 0 1 J ; P o s t q 0 1 0 J ; I n i t i a l  marking v(m)= 

k.O01J k, l O l J  
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Petri net SPX with the initial marking v(m) 

Proposition 3.4; The reachability problem for RGAC in T~(Z).is decidable 
Proof;-If  t and t' belong to TZ then RGAC=R and the reachability problem for the 
ground TRS R is decidable 

-If t belongs to TZ and t' does not belong to T~,t  cannot be rewrited in t' 
because of the condition li~ TZ for rules of Ra(we forbid the generation of ~ from 
terms of Ty~). 

-If t = t a . ( t l  . . . . .  tn)  ~ Ta(y-)  and t '= t ' a . ( t ' l  ..... t 'p )  a T o ( E )  .We use the 
decomposition of lemma 3.1 so we first rewrite the terms ti by the ground TRS R 
on TE and so each term ti can produce terms of M = G u D  or not so we consider 
F ( t )={ tg . (u l  ..... u n ) / i f  [ti]Rc~M=O .then ui=ti ;if [ti]Rc~M={ml,. . . ,m'}j then ui=ti or 
u i = m l  or ... or ui=mj }.M is a fimte set of terms and for each ti,the forest [ti]R is 
recognizable so we can build the finite set F(t) for every t of T~(E).Dually,  using 
decomposition of lemma 3.1,we consider 

if [ t i ] - l R n M  = ~ then Ul=tl ;if [ti]- RC~M={m 1 ..... mk} then F,l(!))={t'~.(U'l ..... U'p) / . . . . . .  " , I , ' 
u i = t i  or u i=m 1 or...or u'i=m'k} with [t']-lR={t/_,., tl-*- t' for the TRS R} which is 
recognizable so we can build the finite set F - l ( t )  for every t of Tg(E).We are now 
ready to show 

Lemma3.5:( t I--*-- t' )¢~( (3T~F( t ) ,  3T '~F-I( t ' ) ,  f(T) I-*-- f(T') ) and 
RGAC SX 

(there exists a one to one correspondance h between 
g(T) and g(T') such that we have g(T) ~ u I-*- h(u) ~ g(T'))) 

R 

Proof:  We use in this proof the results of  lemma 3.1, lemma 3.2 and the 
construction of the finite sets F(t) and F - l ( t ' ) . =  is without difficulty using these 
results .For ~ we have to examine the rewriting of t in t' by R G A C  using the 
decomposition of lemma 3.1 and build T of F(t) and T' of F - l ( t )  verifying the two 
proper t ies .  

t= tc.(t l  ..... tn) I-*- tcr.(Vl ..... Vn) 
R 

t a . (v l  ..... Vn) I . . . .  * . . . .  t' "v' ' 
S c u R A C  cr.t 1 ..... V p) 

t 'a.(v' l  ..... v'p) I-*- t'c~.(t'l ..... t'p)=t' 
R 

This construction is not difficult,we just have to look at every possible cases for 
the rewritings by R: t i l -*-vie  M ; ti l-*-vi~ M and then tie M or ti~ M ;and dually 
M~v'il-*-t'i ; v'i~ M,v'il-*-t ' i  and then t'i~ M or t'i~ M. 

Moreover, F(t) and F - l ( t  ') are finite sets, for every (t,t') of  F( t )xF ' l ( t ' ) ,  we can 
decide if the properties of lemma 3.5 are satisfied or not (lemma 3.4 and 
decidability of the reachability problem for the ground TRS R ) and so the 
reachability problem for RGAC in T~(~;) is decidable. 
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CONCLUSION 

These  works  could  permi t  to obta in  some a lgebra ica l  methods  to real ise  the 
compila t ion of TRS, so as to have an execution of these sorts of systems in a real 
t ime .  
Besides, these researches show the difficulty to have some good classes and make 
us researching some part ial  a lgori thms of decis ion of the reachabi l i ty  problem 
based on our methods for these classes. 
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