ML-Sequences over Rings $Z/(2^e)^*$: I. Constructions of Nondegenerative ML-Sequences II. Injectivness of Compression Mappings of New Classes

WenFeng Qi¹, JunHui Yang², JingJun Zhou¹

¹ Zhengzhou Information Engineering Institute, HeNan, China

²Institute of Software, Academia Sinica, State Key Lab. of Information Security, Beijing, China yangdai@mimi.cnc.ac.cn

Abstract

Pseudorandom binary sequences derived from the ML-sequences over the integer residue ring $Z/(2^e)$ are proposed and studied in [1-10]. This paper is divided into two parts. The first part is on the nondegenerative ML-sequences. In this part the so-called quasi-period of a ML-sequence is introduced, and it is noted that a ML-sequence may degenerate in the sense that it has the quasi-period shorter than its period, and the problem of constructing the nondegenerative ML-sequences is solved by giving a criterion for nondegenerative primitive polynomials. In the second part, based on the constructions [1, 6, 7] of some classes of injective mappings which compress ML-sequences over rings to binary sequences, some new classes of the injective compression mappings are proposed and proved. **Keywords:** nondegenerate ML-sequence, quasi-period, injective compression mapping

1 Introduction

The maximal length sequences of elements in the integral residue ring $Z/(2^e)$ (ML-sequences over $Z/(2^e)$), whose definition will be recalled in the next section, and the binary sequences derived from ML-sequences are proposed and studied in [1-9]. The research shows that the binary sequences derived from ML-sequences may provide a good source of pseudorandom sequences and have a potential perspective in cryptographic applications.

The integral residue ring $Z/(2^e)$ is the set of 2^e integral residue classes $\{i \pmod{2^e} | 0 \le i < 2^e\}$, the class $i \pmod{2^e}$ will be written simply as i or any integer of the form $i + k2^e$ with k being an integer. Any element b belonging to $Z/(2^e)$ has a binary decomposition as $b = \sum_{i=0}^{e-1} b_i 2^i, b_i \in \{0, 1\}$, where b_i is called the *i*th level bit of b, and b_{e-1} the highest level (or the most significant bit) bit of b. If a_t is an element in $Z/(2^e)$ with the binary decomposition $a_t = \sum_{i=0}^{e-1} a_{t,i} 2^i$, then the sequence $\alpha = \{a_t\}_{t=0}^{\infty}$ has a binary decomposition

^{*}This work was supported by Chinese Natural Science Foundation (69773015 and 19771088).

K. Ohta and D. Pei (Eds.): ASIACRYPT'98, LNCS 1514, pp. 315-326, 1998.

[©] Springer-Verlag Berlin Heidelberg 1998

 $\alpha = \sum_{i=0}^{e-1} \alpha_i 2^i$, where $\alpha_i = \{a_{t,i}\}_{t=0}^{\infty}$ is a binary sequence called the *i*th level component of α .

The highest level component sequence of a ML-sequence over $Z/(2^e)$ is the most naturally derived binary sequences. More binary sequences can be derived from a ML-sequence over $Z/(2^e)$ by mixing the bits at its highest level with the bits at the lower levels. This can provide a convenient way of generating pseudorandom binary sequences on computers when e is chosen as the processor word length. It is shown that the derived binary sequences have guaranteed large periods [5] and guaranteed large lower bound of linear complexities [4]. It is also shown that the distributions of the elements 0 and 1 of the derived binary sequences are close to be balanced [8, 9, 10]. In addition to these, it is proved [1, 6, 7] that the mapping which compresses the ML-sequences over $Z/(2^e)$ to its highest level component sequences is injective, and that a large class of mappings which compress the ML-sequences over $Z/(2^e)$ to the binary sequences by mixing the highest level component sequences with the lower level ones are also injective. The injectiveness of these compression mappings is desirable when the ML-sequences are used as a source of pseudorandom sequences, since in this case, different initial states of a ML-sequence do lead to different pseudorandom sequences.

In this paper we keep studying the ML-sequences and the compression mappings, the contents are divided into two parts. In the first part, the work is started by noticing the phenomenon that a ML-sequence may degenerate in the sense that its quasi-period (which will be defined in section 2) is shorter than its period, and that the deganerative ML-sequences are undesirable in applications. So we study the problem how to construct nondegenerative ML-sequences. As results, it is shown (Theorem 3) that an ML-sequence degenerates if and only if the corresponding primitive polynomial (*i.e.*, its minimal polynomial) degenerates in the same sense that its quasi-period (which will be defined in section 2) is shorter than its period, thus the problem constructing nondegenerate ML-sequences is reduced to the problem constructing nondegenerate primitive polynomials, and the latter is solved (Theorem 4) by giving a criterion for nondegenerative primitive polynomials. In the second part, based on the constructions [1, 6, 7] of some classes of injective compression mappings, some new classes of injective compression mappings are proposed and proved.

2 Constructions of Nondegenerative ML-Sequences

Before coming to the main topic, we recall some basic concepts and basic facts which we need. Let $\alpha = \{a_i\}_{i=0}^{\infty}$ be a sequence of elements in $Z/(2^e)$, obeying the linear recursion of the form $a_{i+n} = -\sum_{i=0}^{n-1} c_j a_{i+j} \pmod{2^e}, \forall i \ge 0$, with $(a_0, a_1, \dots, a_{n-1})$ specifying the initial condition, and with c_j constants in $Z/(2^e)$. As usual, the monic polynomial $f(x) = x^n + \sum_{j=0}^{n-1} c_j x^j$ is called a characteristic polynomial of α , the characteristic polynomial with the least degree is

called the minimal polynomial of α . The polynomial f(x) has the binary decomposition $f(x) = \sum_{i=0}^{e-1} f_i(x) 2^i$, where $f_i(x) = \sum_{i=0}^{n-1} c_{j,i} x^j$ and $c_j = \sum_{i=0}^{e-1} c_{j,i} 2^i$ is the binary decomposition of c_j .

In this paper we always assume $c_0 \equiv 1 \pmod{2}$.

Definition: The period of $\alpha = \{a_i\}_{i=0}^{\infty}$, denoted by $per(\alpha)$, is defined to be the least positive integer t satisfying $a_{t+i} = a_i, \forall i \geq 0$.

Definition: The period of f(x) over $Z/(2^e)$, denoted by $per(f(x))_{2^e}$, is defined to be the least positive integer t satisfying $x^t \equiv 1 \pmod{2^e}, f(x)$.

Both of $per(f(x))_{2^{\epsilon}}$ and $per(\alpha)$ are upper bounded by $2^{e-1}(2^n-1)$ [5], and this upper bound is attainable.

Definition: α is called a ML-sequence of degree *n* if its period attains this upper bound $2^{e-1}(2^n - 1)$; and the polynomial f(x) is called *primitive* over $Z/(2^e)$ if $per(f(x)_{2^e}$ attains this upper bound $2^{e-1}(2^n - 1)$.

If $f_0(x)$ is primitive over $Z/(2^e)$, then there exists a polynomial $r(x) \in Z/(2^e)[x]$ such that

$$x^{2^{n}-1} - 1 \equiv f_0(x)r(x) \pmod{2}$$
(1)

it is clear that $r(x) \pmod{2}$ is uniquely determined; and there exists h(x) over $Z/(2^e)[x]$ such that

$$\begin{aligned} x^{2^{n}-1} &\equiv 1 + f_{0}(x)r(x) + 2h(x) \\ &\equiv 1 + (f_{0}(x) + \sum_{i=1}^{e^{-1}} f_{i}(x)2^{i})r(x) + 2(h(x) - r(x)\sum_{i=1}^{e^{-1}} f_{i}(x)2^{i-1}) \\ &\equiv 1 + 2(h(x) - r(x)\sum_{i=1}^{e^{-1}} f_{i}(x)2^{i-1}) \\ &\equiv 1 + 2h_{f}(x) \pmod{2^{e}, f(x)} \end{aligned}$$

where $h_f(x) = h(x) - r(x) \sum_{i=1}^{e-1} f_i(x) 2^{i-1}$, hence

$$h_f(x) \equiv h(x) - r(x)f_1(x) \pmod{2, f_0(x)}$$
 (2)

 and

$$x^{2^{n}-1} \equiv 1 + 2h_{f}(x) \pmod{2^{2}, f(x)}$$
(3)

Taking $f_1(x) = 0$ in (3), we get

$$x^{2^{n}-1} \equiv 1 + 2h(x) \pmod{2^{2}, f_{0}(x)}$$
(4)

It is also clear that both $h(x) \pmod{2}, f_0(x)$ and $h_f(x) \pmod{2}, f_0(x)$ are uniquely determined.

We know the following theorem. **Theorem 1** [2, 5]

1. Let $per(f(x))_2 = T$, then $per(f(x))_{2^e} = 2^k T$, where k is an integer with $0 \le k < e$.

- 2. α is a ML-sequence of degree n if and only if f(x) is primitive over $Z/(2^e)$ and $\alpha_0 \neq 0$; and in this case, f(x) is the minimal polynomial of α .
- 3. The following conditions are equivalent:
 - (a) f(x) is primitive over $Z/(2^e)$, i.e., $per(f(x))_{2^e} = 2^{e-1}(2^n 1)$.
 - (b) $f_0(x)$ is primitive over Z/(2), and $h_f(x) \neq 0 \pmod{2}, f_0(x)$ when e = 2 and $h_f(x)(h_f(x) + 1) \neq 0 \pmod{2}, f_0(x)$ when $e \geq 3$.
 - (c) $f_0(x)$ is primitive over Z/(2), and $f_1(x) \neq r(x)^{-1}h(x) \pmod{2}$, $f_0(x)$) when e = 2 and

$$f_1(x) \neq \begin{cases} r(x)^{-1}h(x) \pmod{2}, f_0(x) \\ r(x)^{-1}(h(x)+1) \pmod{2}, f_0(x) \end{cases}$$

when $e \geq 3$.

Lemma 1 [2] Denote the formal derivative of $f_0(x)$ by $f'_0(x)$, we have

- 1. $r(x)^{-1} \equiv x f_0'(x) \pmod{2}, f_0(x)$.
- 2. Denote $f_0(x) = \sum_{i \in S} x^i$ where S is a subset of $\{i | 0 \le i \le n\}$, and denote $\rho(x) = (\sum_{i,j \in S, i < j} x^{i+j})^{2^{n-1}} \pmod{2}, f_0(x))$, then $r(x)^{-1}h(x) \equiv \rho(x) \pmod{2}, f_0(x)$.

Remark 1 Based on Lemma 1, The equivalent conditions for primitive polynomials given in Theorem 1 can be easily checked.

Definition: The quasi-period of $\alpha = \{a_i\}_{i=0}^{\infty}$, denoted by $Qper(\alpha)$, is defined to be the least positive integer t satisfying $a_{t+i} = ca_i, \forall i \geq 0$, with $c \in \mathbb{Z}/(2^e)$.

Definition: The quasi-period of f(x) over $Z/(2^e)$, denoted by $Qper(f(x))_{2^e}$, is defined to be the least positive integer t satisfying $x^t \equiv c \pmod{2^e, f(x)}$ with $c \in Z/(2^e)$.

Definition: We say a ML-sequence α is nondegenerative if $Qper(\alpha) = per(\alpha)$; and say a primitive polynomial f(x) is nondegenerative if $Qper(f(x))_{Z/(2^e)} = per(f(x))_{Z/(2^e)}$.

The following theorem is on the relation between the quasi-periods and the periods of the polynomials over $Z/(2^e)$.

Theorem 2 Let $per(f(x))_2 = T$, and $per(f(x))_{2^e} = 2^k T$, then $Qper(f(x))_{2^e} = 2^m T$ for some non-negative integer m with $m \leq k$.

Proof Let $Qper(f(x))_{2^e} = t$, first we claim T|t, hence t = bT for some integer b. In fact, we have $x^t \equiv c \pmod{2^e, f(x)}$ for some $c \in Z/(2^e)$; since $(2^e, f(x)) \subseteq (2, f_0(x))$, so $x^t \equiv c \pmod{2, f_0(x)}$. We claim $c \equiv 1 \pmod{2}$, hence T|t; otherwise, we have $c \equiv 0 \pmod{2}$, then $1 \equiv x^{(2^kT)t} \equiv x^{t(2^kT)} \equiv 0 \pmod{2, f_0(x)}$, a contradiction. Now consider the following set (where Z is the integer ring):

$$\mathcal{T} = \{t | x^t \equiv c \pmod{2^e}, f(x)\}, t \in \mathbb{Z}, c \in \mathbb{Z}/(2^e)\}$$
(5)

It is clear that \mathcal{T} is an ideal of Z containing 2^kT , and $bT = Qper(f(x))_{2^e}$ is the positive generator of \mathcal{T} , so bT must be a factor of 2^kT , thus $b = 2^m$ for an integer m with $m \leq k$.

It is easy to prove the following theorem.

Theorem 3 If α is an ML-sequence of degree n, then $Qper(\alpha) = Qper(f(x))_{2^e}$, as a consequence, α is nondegenerative degenerate if and only if f(x) is nondegenerative.

Based on Theorem 1 and 2, the problem constructing nondegenerative MLsequences is reduced to the problem constructing nondegenerative primitive polynomials. The latter can be solved by the following Theorem, which gives a criterion for nondegenerative primitive polynomials.

Theorem 4 Let f(x) be primitive over $Z/(2^e)$, and let $h(x) \pmod{2}, f_0(x)$ be the polynomial defined as (4). We have

- 1. When e = 2, then the following conditions are equivalent:
 - (a) f(x) is nondegenerative.
 (b) h_f(x) ≠ 1 (mod 2, f₀(x)).
 (c) f₁(x) ≠ r(x)⁻¹(1 + h(x)) (mod 2, f₀(x)).
- 2. When $e \ge 3$ and n is odd, then f(x) is always nondegenerative.
- 3. When $e \geq 3$ and n is even, then the following conditions are equivalent:
 - (a) f(x) is nondegenerative. (b) $h_f(x)(1+h_f(x)) \neq 1 \pmod{2}, f_0(x)$. (c) $f_1(x) \neq \begin{cases} r(x)^{-1}(x^{(2^n-1)/3}+h(x)) \pmod{2}, f_0(x)) \\ r(x)^{-1}(1+x^{(2^n-1)/3}+h(x)) \pmod{2}, f_0(x)) \end{cases}$

Proof Write $T = 2^n - 1$. Taking squares on the two sides of the equation (3), we get

$$x^{2T} \equiv 1 + 2^2 h_f(x) (h_f(x) + 1) \pmod{2^3}, f(x))$$

continueing this way we get

$$x^{2^{i-2}T} \equiv 1 + 2^{i-1}h_f(x)(h_f(x) + 1) \pmod{2^i, f(x)}, \forall i \le e$$

In particular, we get

$$x^{2^{e-2}T} \equiv 1 + 2^{e-1}h_f(x)(h_f(x) + 1) \pmod{2^e, f(x)}$$
(6)

For e = 2, we have

$$\begin{array}{rcl} Qper(f(x))_{2^e} < per(f(x))_{2^e} \\ \longleftrightarrow & Qper(f(x))_{2^2} = T \ (by \ Theorem \ 2) \\ \longleftrightarrow & c \equiv x^T \equiv 1 + 2h_f(x) \pmod{2^2, f(x)} \ (by \ (3)) \\ \leftrightarrow & 2h_f(x) \equiv 2b \pmod{2^2, f(x)}, b = 0 \\ \Leftrightarrow & h_f(x) \equiv 1 \pmod{2, f_0(x)} \ (by \ the \ assumption \ and \ Theorem \ 1) \\ \leftrightarrow & f_1(x) \equiv r(x)^{-1}(1 + h(x)) \pmod{2, f_0(x)} \ (by \ (2)) \end{array}$$

For $e \geq 3$, we get

$$\begin{array}{rcl} Qper(f(x))_{2^{e}} < per(f(x))_{2^{e}} \\ & \longleftrightarrow & Qper(f(x))_{2^{e}}|2^{e-2}T \\ & \longleftrightarrow & c \equiv x^{2^{e-2}T} \equiv 1 + 2^{e-1}h_{f}(x)(h_{f}(x) + 1) \pmod{2^{e}, f(x)}(by(6)) \\ & \longleftrightarrow & 2^{e-1}h_{f}(x)(h_{f}(x) + 1) \equiv 2^{e-1}b \pmod{2^{e}, f(x)}, b = 0or1 \\ & \longleftrightarrow & h_{f}(x)(h_{f}(x) + 1) \equiv 1 \pmod{2, f_{0}(x)} \\ & (by \ the \ assumption \ and \ Theorem \ 1). \end{array}$$

If we identify $(Z/(2))[x]/(f_0(x))$ to the finite field $GF(2^n)$, then it is clear that the fact " $h_f(x)(h_f(x) + 1) \equiv 1 \pmod{2}, f_0(x)$ " holds true if and only if $h_f(x)$ is a root of the irreducible polynomial $x^2 + x + 1$ over Z/(2) = GF(2), i.e., one of the two elements of order 3. It is known that there exists such $h_f(x)$ if and only if n is even. Hence the item 2. is true. Now for the item 3., we know that the two roots of $x^2 + x + 1$ are $x^{T/3} \pmod{2}, f_0(x)$ and $1 + x^{T/3} \pmod{2}, f_0(x)$ " (the two elements of order 3), so " $h_f(x)(h_f(x) + 1) \equiv 1 \pmod{2}, f_0(x)$ " holds true if and only if $h_f(x) \equiv x^{T/3} \pmod{2}, f_0(x)$ or $1 + x^{T/3} \pmod{2}, f_0(x)$, which is further equivalent to the conditions shown in (3c)(by (2)).

 $Remark \ 2$ Based on Lemma 1, The equivalent conditions for nonprimitive primitive polynomials given in Theorem 4 can be easily checked.

In studying the injective compression mappings, the so-called strongly primitive polynomial is introduced [1], it is defined to be the primitive polynomial with $h_f(x) \neq 1 \pmod{2}, f_0(x)$ when e = 2, and to be the primitive polynomial with $h_f(x)(h_f(x) + 1) \neq 1 \pmod{2}, f_0(x)$ when $e \geq 3$. Now from Theorem 3 we get imeadiately

Corollary 1 f(x) is strongly primitive if and only if f(x) is nondegenerative primitive, i.e., $Qper(f(x))_{2^e} = per(f(x))_{2^e}$.

3 Compressing Mappings on ML-Sequences

Let f(x) be a primitive polynomial of degree n over $Z/(2^e)$, We denote $G(f(x))_{2^e}$ the set of all sequences over $Z/(2^e)$ generated by f(x), $S(f(x))_{2^e} = \{\alpha \in G(f(x)) | \alpha_0 \neq \mathbf{0}\}$ the set of all ML-sequences over $Z/(2^e)$ generated by f(x) and $GF(2)^{\infty}$ the set of all sequences over GF(2). For $\alpha \in G(f(x))_{2^e}$, we denote α_i the *i*th level component of α . Set $T = 2^n - 1$, by (3), we have

$$x^{2^{k-1}T} - 1 = 2^{k} h_{k}(x) \pmod{f(x), 2^{e}}$$

where k = 1, 2, ..., e-1, deg $h_k(x) < n$ and $h_k(x) \neq 0 \pmod{2}$. In fact $h_1(x) = h_f(x) \pmod{2}$, $h_2(x) = ... = h_{e-1}(x) = h_f(x)(h_f(x) + 1) \pmod{2}$, f(x)).

Let $\alpha = \{a_i\}_{i=0}^{\infty}$ and $\beta = \{b_i\}_{i=0}^{\infty}$ be two sequences over $Z/(2^e)$, define $\alpha + \beta = \{a_i + b_i\}_{i=0}^{\infty}$, $\alpha\beta = \{a_ib_i\}_{i=0}^{\infty}$ and $x\alpha = \{a_i\}_{i=0}^{\infty} = \{a_{i+1}\}_{i=0}^{\infty}$. For $g(x) = \sum_{j=0}^{n} c_j x^j$ over $Z/(2^e)$, then $g(x)\alpha = g(x)\{a_i\}_{i=0}^{\infty} = \{\sum_{j=0}^{n} c_j a_{j+i}\}_{i=0}^{\infty}$. [1, 6, 7] propose the following injectiveness theorem.

Theorem 5 [1, 6, 7] Let f(x) be a primitive polynomial over $Z/(2^e)$, $\alpha, \beta \in G(f(x))_{2^e}$, then $\alpha = \beta$ if and only if $\alpha_{e-1} = \beta_{e-1}$. If f(x) is strongly primitive over $Z/(2^e)$, $\varphi(x_0, x_1, \ldots, x_{e-1}) = x_{e-1} + cx_{e-2} + \eta(x_0, x_1, \ldots, x_{e-3})$ is a Boolean function of e variables, where $\eta(x_0, x_1, \ldots, x_{e-3})$ is a Boolean function of e - 2 variables, c = 0 or 1, then for $\alpha, \beta \in G(f(x))_{2^e}$, $\alpha = \beta$ if and only if $\varphi(\alpha_0, \alpha_1, \ldots, \alpha_{e-1}) = \varphi(\beta_0, \beta_1, \ldots, \beta_{e-1})$ over GF(2).

By theorem 5, the compression mapping x_{e-1} or $x_{e-1}+cx_{e-2}+\eta(x_0,\ldots,x_{e-3})$ on $G(f(x))_{2^e}$ is injective, that is, the binary sequence α_{e-1} or $\alpha_{e-1} + c\alpha_{e-2} + \eta(\alpha_0,\alpha_1,\ldots,\alpha_{e-3})$ can uniquely determine its original sequence α , in other words, α_{e-1} or $\alpha_{e-1} + c\alpha_{e-2} + \eta(\alpha_0,\alpha_1,\ldots,\alpha_{e-3})$ contains all information of α .

We study the injectiveness of general compression mappings in this section. Let $\varphi(x_0, ..., x_{e-1})$ be a Boolean function with *e* variables, if the mapping

$$\varphi: \left\{ \begin{array}{c} G(f(x))_{2^e} \to GF(2)^{\infty} \\ \alpha = \alpha_0 + \alpha_1 2 + \ldots + \alpha_{e-1} 2^{e-1} \mapsto \varphi(\alpha_0, \ldots, \alpha_{e-1}) \end{array} \right.$$

is injective, then $\varphi(x_0, ..., x_{e-1})$ contains x_{e-1} clearly, *i.e.*, $\varphi(x_0, ..., x_{e-2}, 0) \neq \varphi(x_0, ..., x_{e-2}, 1)$.

Definition: Let $B = \{x_0^{i_0} x_1^{i_1} \dots x_{e-1}^{i_{e-1}} - i_k = 0 \text{ or } 1, k = 0, 1, \dots, e-1\}$ be the set of all single terms of Boolean functions of e variables, define the order in B as follows:

$$x_0^{i_0} x_1^{i_1} \dots x_{e-1}^{i_{e-1}} > x_0^{j_0} x_1^{j_1} \dots x_{e-1}^{j_{e-1}}$$

provided that

$$i_0 + i_1 \cdot 2 + \ldots + i_{e-1} \cdot 2^{e-1} > j_0 + j_1 \cdot 2 + \ldots + j_{e-1} \cdot 2^{e-1}$$

Lemma 2 [10] Let f(x) be a strongly primitive polynomial of degree n over $Z/(2^e)$, $e \geq 3$, $\varphi(x_0, x_1, \ldots, x_{e-1})$ is a Boolean function of e variables and $\varphi(x_0, x_1, \ldots, x_{e-1}) \neq 0$ and 1. Let $x_{k_0}x_{k_1} \ldots x_{k_{t-1}}$ be the term of the maximal order in $\varphi(x_0, x_1, \ldots, x_{e-1})$ and the product x_0x_1 of x_0 and x_1 is not a divisor of $x_{k_0}x_{k_1} \ldots x_{k_{t-1}}$, where $1 \leq t \leq e-1$, $0 \leq k_0 < k_1 < \ldots < k_{t-1} \leq e-1$. Then for $\alpha, \beta \in S(f(x))_{2^e}, \varphi(\alpha_0, \ldots, \alpha_{e-1}) = \varphi(\beta_0, \ldots, \beta_{e-1})$ implies $\alpha_0 = \beta_0$.

Lemma 3 [10] Let f(x) be a primitive polynomial of degree n over $Z/(2^e)$, $e \geq 3$, $\alpha, \beta \in G(f(x))_{2^e}$ and $\alpha_0 = \beta_0$, then, for $3 \leq k \leq e-1$, over GF(2)

$$(x^{2^{k-2}T} - 1)(\alpha_k + \beta_k) = (\alpha_{k-1} + \beta_{k-1})h_2(x)\alpha_0 + h_2(x)(\alpha_1 + \beta_1)$$

and

$$(x^{T} - 1)(\alpha_{2} + \beta_{2}) = (\alpha_{1} + \beta_{1})h_{1}(x)\alpha_{0} + h_{1}(x)(\alpha_{1} + \beta_{1})$$

Lemma 4 [10] Let f(x) be a primitive polynomial of degree n over $Z/(2^e)$, $e \geq 3$, $\alpha, \beta \in G(f(x))_{2^e}$ and $\alpha_0 = \beta_0 \neq 0$. If $(\alpha_1 + \beta_1)h_1(x)\alpha_0h_2(x)\alpha_0 = h_1(x)(\alpha_1 + \beta_1)h_2(x)\alpha_0$ over GF(2), then $\alpha_1 = \beta_1$

Theorem 6 Let f(x) be a strongly primitive polynomial of degree n over $Z/(2^e)$, $e \geq 3$, $\varphi(x_0, \ldots, x_{e-1}) = x_{e-1} + \eta(x_0, \ldots, x_{e-2})$ is a Boolean function of e variables, for $\alpha, \beta \in S(f(x))_{2^e}$, if

$$(\varphi(\alpha_0,\ldots,\alpha_{e-1})+\varphi(\beta_0,\ldots,\beta_{e-1}))h_2(x)\alpha_0=\mathbf{0}$$
(7)

then $\alpha = \beta$.

Proof First we show $\alpha_0 = \beta_0$. Set $T = 2^n - 1$. $x^{2^{e^{-2}T}} - 1$ acts on (7), then $(h_2(x)\alpha_0 + h_2(x)\beta_0)h_2(x)\alpha_0 = \mathbf{0}$ since $(x^{2^{e^{-2}T}} - 1)\alpha_{e^{-1}} = h_2(x)\alpha_0$, $(x^{2^{e^{-2}T}} - 1)\beta_{e^{-1}} = h_2(x)\beta_0$ and the periods of $\eta(\alpha_0, \ldots, \alpha_{e^{-2}})$ and $\eta(\beta_0, \ldots, \beta_{e^{-2}})$ divide $2^{e^{-2}T}$. So $h_2(x)(\alpha_0 + \beta_0)h_2(x)\alpha_0 = \mathbf{0}$ which implies $\alpha_0 + \beta_0 = \mathbf{0}$ since $\alpha_0 + \beta_0$ is $\mathbf{0}$ or an ML-sequence. Thus $\alpha_0 = \beta_0$.

If e = 3, then $\varphi(\alpha_0, \alpha_1, \alpha_2) + \varphi(\beta_0, \beta_1, \beta_2) = \alpha_2 + \beta_2 + \eta(\alpha_0, \alpha_1) + \eta(\beta_0, \beta_1)$. The period of $\alpha_1 + \beta_1$ divides T since $\alpha_0 = \beta_0$. So the period of $\eta(\alpha_0, \alpha_1) + \eta(\beta_0, \beta_1)$ divides T. Thus the period of $(\eta(\alpha_0, \alpha_1) + \eta(\beta_0, \beta_1))h_2(x)\alpha_0$ divides T. $x^T - 1$ acts on

$$(\alpha_2 + \beta_2 + \eta(\alpha_0, \alpha_1) + \eta(\beta_0, \beta_1))h_2(x)\alpha_0 = \mathbf{0}$$
(8)

then $\mathbf{0} = (x^T - 1)((\alpha_2 + \beta_2)h_2(x)\alpha_0) = (x^T - 1)(\alpha_2 + \beta_2)h_2(x)\alpha_0$. And by lemma 3, we have

$$(\alpha_1 + \beta_1)h_1(x)\alpha_0h_2(x)\alpha_0 = h_1(x)(\alpha_1 + \beta_1)h_2(x)\alpha_0$$

Thus $\alpha_1 = \beta_1$ by lemma 4. So $(\alpha_2 + \beta_2)h_2(x)\alpha_0 = 0$ by (8). $\alpha_2 + \beta_2$ is 0 or an *ML*-sequence since $\alpha_1 = \beta_1$ and $\alpha_0 = \beta_0$. Therefore $\alpha_2 = \beta_2$ because the product of two *ML*-sequences over *GF*(2) is not 0.

If e > 3, set

$$\begin{array}{rcl} \eta_{e-2}(x_0,\ldots,x_{e-2}) &=& \eta(x_0,\ldots,x_{e-2}) \\ &=& x_{e-2}\eta_{e-3}(x_0,\ldots,x_{e-3}) + \mu_{e-3}(x_0,\ldots,x_{e-3}) \end{array}$$

and in general, we set

$$\eta_k(x_0,\ldots,x_k) = x_k \eta_{k-1}(x_0,\ldots,x_{k-1}) + \mu_{k-1}(x_0,\ldots,x_{k-1})$$

 $k = e - 2, e - 3, \dots, 2. x^{2^{e-3}T} - 1$ acts on (7), we have

$$(x^{2^{e^{-s}T}} - 1)(\alpha_{e-1} + \beta_{e-1} + \alpha_{e-2}\eta_{e-3}(\alpha_0, \dots, \alpha_{e-3}) + \beta_{e-2}\eta_{e-3}(\beta_0, \dots, \beta_{e-3}))h_2(x)\alpha_0 = \mathbf{0}$$

that is

$$(x^{2^{e^{-3}}T}-1)(\alpha_{e^{-1}}+\beta_{e^{-1}}+\eta_{e^{-3}}(\alpha_0,\ldots,\alpha_{e^{-3}})+\eta_{e^{-3}}(\beta_0,\ldots,\beta_{e^{-3}}))h_2(x)\alpha_0=\mathbf{0}$$

By lemma 3,

$$\begin{array}{l} ((\alpha_{e-2}+\beta_{e-2})h_2(x)\alpha_0+h_2(x)(\alpha_1+\beta_1) \\ + \eta_{e-3}(\alpha_0,\ldots,\alpha_{e-3})+\eta_{e-3}(\beta_0,\ldots,\beta_{e-3}))h_2(x)\alpha_0 = \mathbf{0} \end{array}$$

that is

$$\begin{pmatrix} (\alpha_{e-2} + \beta_{e-2} + \eta_{e-3}(\alpha_0, \dots, \alpha_{e-3}) + \eta_{e-3}(\beta_0, \dots, \beta_{e-3}))h_2(x)\alpha_0 \\ = h_2(x)(\alpha_1 + \beta_1)h_2(x)\alpha_0$$
(9)

If e > 4, $x^{2^{e-4}T} - 1$ acts on (9) continuously, and so on, then we get

$$\begin{pmatrix} (\alpha_k + \beta_k + \eta_{k-1}(\alpha_0, \dots, \alpha_{k-1}) + \eta_{k-1}(\beta_0, \dots, \beta_{k-1}))h_2(x)\alpha_0 \\ = h_2(x)(\alpha_1 + \beta_1)h_2(x)\alpha_0$$
(10)

where $k = e - 2, e - 3, \dots, 2$. Finally, $x^T - 1$ acts on

$$((\alpha_2 + \beta_2 + \eta_1(\alpha_0, \alpha_1) + \eta_1(\beta_0, \beta_1))h_2(x)\alpha_0 = h_2(x)(\alpha_1 + \beta_1)h_2(x)\alpha_0$$

and we get $(\alpha_1 + \beta_1)h_1(x)\alpha_0h_2(x)\alpha_0 = h_1(x)(\alpha_1 + \beta_1)h_2(x)\alpha_0$. So $\alpha_1 = \beta_1$ by lemma 4 and $\alpha_k = \beta_k$ by (10), $k = 2, 3, \ldots, e-2$. Lastly, $\alpha_{e-1} = \beta_{e-1}$ by (7). Therefore $\alpha = \beta$.

Corollary 2 Let f(x) be a strongly primitive polynomial of degree n over $Z/(2^e)$, $e \geq 3$, $\varphi(x_0, \ldots, x_{e-1}) = x_{e-1} + \eta(x_0, \ldots, x_{e-2})$ is a Boolean function of evariables, then for $\alpha, \beta \in S(f(x))_{2^e}, \alpha = \beta$ if and only if $\varphi(\alpha_0, \ldots, \alpha_{e-1}) = \varphi(\beta_0, \ldots, \beta_{e-1})$

Theorem 7 Let f(x) be a strongly primitive polynomial of degree n over $Z/(2^e)$, $e \geq 3$, $\varphi(x_0, x_1, \ldots, x_{e-1})$ is a Boolean function of e variables containing x_{e-1} , and $x_{k_0}x_{k_1}\ldots x_{k_{t-1}}$ is the term of the maximal order in $\varphi(x_0, x_1, \ldots, x_{e-1})$. If $x_{k_0}x_{k_1}\ldots x_{k_{t-1}}$ is not divided by x_0 and x_1 , i.e. $k_0 \geq 2$, then the compression mapping

$$\varphi: \left\{ \begin{array}{c} S(f(x))_{2^e} \to GF(2)^{\infty} \\ \alpha = \alpha_0 + \alpha_1 2 + \ldots + \alpha_{e-1} 2^{e-1} \mapsto \varphi(\alpha_0, \ldots, \alpha_{e-1}) \end{array} \right.$$

is injective, i.e., for $\alpha, \beta \in S(f(x))_{2^e}$, then $\alpha = \beta$ if and only if $\varphi(\alpha_0, \ldots, \alpha_{e-1}) = \varphi(\beta_0, \ldots, \beta_{e-1})$.

Proof If t = 1, the result follows immediately from corollary 2. Assume t > 1 in the following.

Let $\alpha, \beta \in S(f(x))_{2^e}$ and $\varphi(\alpha_0, \ldots, \alpha_{e-1}) = \varphi(\beta_0, \ldots, \beta_{e-1})$, then $\alpha_0 = \beta_0$ by lemma 2.

 $\varphi(x_0, x_1, \dots, x_{e-1})$ contains x_{e-1} , that is, $k_{t-1} = e - 1$, so let

$$\varphi(x_0, \dots, x_{e-1}) = x_{e-1}\eta(x_0, \dots, x_{e-2}) + \lambda(x_0, \dots, x_{e-2})$$
(11)

where $\eta(x_0, ..., x_{e-2}) \neq 0$. The term of maximal order in $\eta(x_0, ..., x_{e-2})$ is $x_{k_0}x_{k_1}...x_{k_{t-2}}$. Thus we set $\eta_{k_{t-2}}(x_0, ..., x_{k_{t-2}}) = \eta(x_0, ..., x_{e-2})$ and

$$\eta_{k_{t-2}}(x_0,\ldots,x_{k_{t-2}})=x_{k_{t-2}}\eta_{k_{t-3}}(x_0,\ldots,x_{k_{t-3}})+\mu_{k_{t-2}-1}(x_0,\ldots,x_{k_{t-2}-1})$$

In general, we set

$$\eta_{k_s}(x_0, \dots, x_{k_s}) = x_{k_s} \eta_{k_{s-1}}(x_0, \dots, x_{k_{s-1}}) + \mu_{k_s-1}(x_0, \dots, x_{k_s-1})$$
(12)

where $s = t - 2, t - 1, \dots, 2, 1, and$

$$\eta_{k_0}(x_0, \dots, x_{k_0}) = x_{k_0} + \mu_{k_0 - 1}(x_0, \dots, x_{k_0 - 1})$$
(13)

Set $g_i(x) = \prod_k (x^{2^{k-1}T} - 1)$, where k takes over $k_i, k_{i+1}, \ldots, k_{t-1}$ and $i = 1, 2, \ldots, t-1$. $g_1(x)$ acts on $\varphi(\alpha_0, \ldots, \alpha_{e-1}) = \varphi(\beta_0, \ldots, \beta_{e-1})$, then, by (11), (12) and (13), we get

$$(\alpha_{k_0} + \beta_{k_0} + \mu_{k_0-1}(\alpha_0, \dots, \alpha_{k_0-1}) + \mu_{k_0-1}(\beta_0, \dots, \beta_{k_0-1}))h_2(x)\alpha_0 = 0$$

So $\alpha = \beta \pmod{2^{k_0+1}}$ by theorem 6. (i) If t = 2, then

$$\begin{array}{l} \alpha_{e-1}\eta_{k_0}(\alpha_0,\ldots,\alpha_{k_0})+\beta_{e-1}\eta_{k_0}(\beta_0,\ldots,\beta_{k_0}) \\ + \lambda(\alpha_0,\ldots,\alpha_{e-2})+\lambda(\beta_0,\ldots,\beta_{e-2})=\mathbf{0} \end{array}$$

that is

$$(\alpha_{e-1}+\beta_{e-1})\eta_{k_0}(\alpha_0,\ldots,\alpha_{k_0})+\lambda(\alpha_0,\ldots,\alpha_{e-2})+\lambda(\beta_0,\ldots,\beta_{e-2})=\mathbf{0}$$
(14)

By lemma 3

$$(x^{2^{e-3}T} - 1)(\alpha_{e-1} + \beta_{e-1}) = (\alpha_{e-2} + \beta_{e-2})h_2(x)\alpha_0 + h_2(x)(\alpha_1 + \beta_1) = (\alpha_{e-2} + \beta_{e-2})h_2(x)\alpha_0$$

 $x^{2^{e^{-3}T}} - 1$ acts on (14) if $e - 3 > k_0$, then by the period of $\eta_{k_0}(\alpha_0, \ldots, \alpha_{k_0})$ dividing $2^{e^{-3}T}$,

$$\begin{array}{l} (\alpha_{e-2} + \beta_{e-2})h_2(x)\alpha_0\eta_{k_0}(\alpha_0, \dots, \alpha_{k_0}) \\ + & (\lambda_{e-3}(\alpha_0, \dots, \alpha_{e-3}) + \lambda_{e-3}(\beta_0, \dots, \beta_{e-3}))h_2(x) = \mathbf{0} \end{array}$$

 $that \ is$

$$\begin{array}{l} ((\alpha_{e-2} + \beta_{e-2})\eta_{k_0}(\alpha_0, \dots, \alpha_{k_0}) \\ + \lambda_{e-3}(\alpha_0, \dots, \alpha_{e-3}) + \lambda_{e-3}(\beta_0, \dots, \beta_{e-3}))h_2(x) = \mathbf{0} \end{array}$$
(15)

where $\lambda_{e-3}(x_0, \ldots, x_{e-3})$ is determined by

$$\lambda_{e-2}(x_0, \dots, x_{e-2}) = \lambda(x_0, \dots, x_{e-2}) \\ = x_{e-2}\lambda_{e-3}(x_0, \dots, x_{e-3}) + \sigma_{e-3}(x_0, \dots, x_{e-2})$$

 $x^{2^{e-4}} - 1$ acts on (15) continuously if $e - 4 \ge k_0$. In general we have

$$((\alpha_k + \beta_k)\eta_{k_0}(\alpha_0, \dots, \alpha_{k_0}) + \lambda_{k-1}(\alpha_0, \dots, \alpha_{k-1}) + \lambda_{k-1}(\beta_0, \dots, \beta_{k-1}))h_2(x) = \mathbf{0}$$
(16)

where $k = e - 2, \ldots, k_0 + 2, k_0 + 1$. $\lambda_{k_0}(\alpha_0, \ldots, \alpha_{k_0}) = \lambda_{k_0}(\beta_0, \ldots, \beta_{k_0})$ since $\alpha = \beta \pmod{2^{k_0+1}}$.

By the case $k = k_0 + 1$ in (16), we have

$$(\alpha_{k_0+1} + \beta_{k_0+1})\lambda_{k_0}(\alpha_0, \dots, \alpha_{k_0})h_2(x)\alpha_0 = \mathbf{0}$$
(17)

Since $(\alpha_{k_0+1} + \beta_{k_0+1})$ is 0 or an ML-sequence over GF(2) and $k_0 \ge 2$, if $x^{2^{k-1}T} - 1$ acts on (17), where $k = k_0$, then

$$[(x^{2^{k-1}T} - 1)\eta_{k_0}(\alpha_0, \dots, \alpha_{k_0})](\alpha_{k_0+1} + \beta_{k_0+1})h_2(x)\alpha_0 = \mathbf{0}$$
(18)

By $\eta_{k_0}(\alpha_0, \ldots, \alpha_{k_0}) = x_{k_0} + \mu_{k_0-1}(\alpha_0, \ldots, \alpha_{k_0-1})$, (18) implies

$$(\alpha_{k_0+1} + \beta_{k_0+1})h_2(x)\alpha_0 = 0$$

So $\alpha_{k_0+1} = \beta_{k_0+1}$. And by (16), we obtain $\alpha_k = \beta_k$, $k = k_0 + 1, \dots, e-2$. Finally, $\alpha_{e-1} = \beta_{e-1}$ by (14).

(ii) If $t = 3, g_2(x)$ acts on $\varphi(\alpha_0, \ldots, \alpha_{e-1}) = \varphi(\beta_0, \ldots, \beta_{e-1})$, then

$$(\alpha_{k_1}\eta_{k_0}(\alpha_0,\ldots,\alpha_{k_0})+\beta_{k_1}\eta_{k_0}(\beta_0,\ldots,\beta_{k_0}))h_2(x)\alpha_0=\mathbf{0}$$

that is

$$(\alpha_{k_1} + \beta_{k_1})\eta_{k_0}(\alpha_0, \dots, \alpha_{k_0})h_2(x)\alpha_0 = \mathbf{0}$$
(19)

As in case (i),
$$r_k(x) = \prod_{i=k}^{k_1-1} (x^{2^{i-1}T} - 1)$$
 acts on (19), then we obtain

$$(\alpha_k + \beta_k)\eta_{k_0}(\alpha_0, \dots, \alpha_{k_0})h_2(x)\alpha_0 = \mathbf{0}$$
(20)

 $k = k_1 - 1, \ldots, k_0 + 2, k_0 + 1.$ So $(\alpha_{k_0+1} + \beta_{k_0+1})\eta_{k_0}(\alpha_0, \ldots, \alpha_{k_0})h_2(x)\alpha_0 = 0.$ By the process of proof in (i), we have $\alpha_{k_0+1} = \beta_{k_0+1}$. Thus $\alpha_j = \beta_j, j = k_0 + 2, \ldots, k_1$, by (19) and (20).

Finally, as $r_k(x)$ acts on (19), $s_k(x) = \prod_{i=k}^{e-2} (x^{2^{i-1}T} - 1)$ acts on,

$$(\alpha_{e-1}+\beta_{e-1})\eta_{k_1}(\alpha_0,\ldots,\alpha_{k_1})+\lambda(\alpha_0,\ldots,\alpha_{e-2})+\lambda(\beta_0,\ldots,\beta_{e-2})=\mathbf{0}$$

Similarly, we get $\alpha_j = \beta_j$, $j = k_1 + 1, \dots, e - 1$. Therefore $\alpha = \beta$.

References

- M.Q.Huang, Analysis and Cryptologic Evaluation of Primitive Sequences over an Integer Residue Ring, Doctoral Dissertation of Graduate School of USTC, Academia Sinica. 1988.
- [2] Z.D.Dai, M.Q.Huang, A Criterion for Primitiveness of Polynomials over Z/(2^d), Chinese Science Bulletin, Vol.36,No.11,June 1991.pp.892-895.
- [3] Z.D.Dai and M.Q.Huang, Linear Complexity and the Minimal Polynomials of Linear Recurring Sequences Over Z/(m), System Science and Mathematical Science, Vol.4, No.1, Feb.1991. pp.51-54.
- [4] Z.D.Dai, Beth T., Gollman D, Lower Bounds for the Linear Complexity of Sequences over Residue Rings, Advances in Cryptology-EUROCRYPT'90, Spring-Verlag LNCS 473 (1991), Editor: I.B. Damgard. pp.189-195.
- [5] Z.D.Dai, Binary Sequences Derived from ML-Sequences over Rings I:Periods and Minimal Polynomials, J. Cryptology, Vol 5, No4, 1992, pp.193-207.
- [6] M.Q.Huang, Z.D.Dai, Projective Maps of Linear Recurring Sequences with Maximal p-adic Periods, Fibonacci Quart 30(1992), No.2, pp.139-143.
- [7] K.C.Zeng, Z.D.Dai and M.Q.Huang, Injectiveness of Mappings from Ring Sequences to Their Sequences of Significant Bits, Symposium on Problems of Cryptology, State Key Laboratory of Information Security, Beijing, China, 1995, pp.132-141.
- [8] W.F.Qi, J.J.Zhou, Distribution of 0 and 1 in Highst Level of Primitive Sequences over $Z/(2^e)$, Science in China, Series A, 40(6),1997,606-611.
- [9] W.F.Qi, J.J.Zhou, Distribution of 0 and 1 in Highst Level of Primitive Sequences over Z/(2^e) (II), Chinese Science Bulletin, 43(8),1998, 633-635.
- [10] W.F.Qi, Compressing Maps of Primitive Sequences over $Z/(2^e)$ and Analysis of Their Derivative Sequences, Doctoral Dissertation of ZhengZhou Information Engineering Institute, 1997.