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Abstract

Pseudorandom binary sequences derived from the ML-sequences over
the integer residue ring Z=(2e) are proposed and studied in [1-10]. This
paper is divided into two parts. The �rst part is on the nondegenerative
ML-sequences. In this part the so-called quasi-period of a ML-sequence
is introduced, and it is noted that a ML-sequence may degenerate in the
sense that it has the quasi-period shorter than its period, and the problem
of constructing the nondegenerative ML-sequences is solved by giving a
criterion for nondegenerative primitive polynomials. In the second part,
based on the constructions [1, 6, 7] of some classes of injective mappings
which compress ML-sequences over rings to binary sequences, some new
classes of the injective compression mappings are proposed and proved.
Keywords: nondegenerate ML-sequence, quasi-period, injective compres-
sion mapping

1 Introduction

The maximal length sequences of elements in the integral residue ring Z=(2e)
(ML-sequences over Z=(2e)), whose de�nition will be recalled in the next section,
and the binary sequences derived fromML-sequences are proposed and studied in
[1-9]. The research shows that the binary sequences derived from ML-sequences
may provide a good source of pseudorandom sequences and have a potential
perspective in cryptographic applications.

The integral residue ring Z=(2e) is the set of 2e integral residue classes fi
(mod 2e)j0 � i < 2eg, the class i (mod 2e) will be written simply as i or any
integer of the form i + k2e with k being an integer. Any element b belonging
to Z=(2e) has a binary decomposition as b =

Pe�1

i=0 bi2
i; bi 2 f0; 1g, where bi

is called the ith level bit of b, and be�1 the highest level (or the most signi�-
cant bit) bit of b. If at is an element in Z=(2e) with the binary decomposition

at =
Pe�1

i=0 at;i2i; then the sequence � = fatg
1

t=0 has a binary decomposition

�This work was supported by Chinese Natural Science Foundation (69773015 and 19771088).

K. Ohta and D. Pei (Eds.): ASIACRYPT’98, LNCS 1514, pp. 315-326, 1998.
 Springer-Verlag Berlin Heidelberg 1998



� =
Pe�1

i=0 �i2i, where �i = fat;ig
1

t=0 is a binary sequence called the ith level
component of �.

The highest level component sequence of a ML-sequence over Z=(2e) is the
most naturally derived binary sequences. More binary sequences can be derived
from a ML-sequence over Z=(2e) by mixing the bits at its highest level with
the bits at the lower levels. This can provide a convenient way of generating
pseudorandom binary sequences on computers when e is chosen as the processor
word length. It is shown that the derived binary sequences have guaranteed
large periods [5] and guaranteed large lower bound of linear complexities [4].
It is also shown that the distributions of the elements 0 and 1 of the derived
binary sequences are close to be balanced [8, 9, 10]. In addition to these, it is
proved [1, 6, 7] that the mappingwhich compresses the ML-sequences over Z=(2e)
to its highest level component sequences is injective, and that a large class of
mappings which compress the ML-sequences over Z=(2e) to the binary sequences
by mixing the highest level component sequences with the lower level ones are
also injective. The injectiveness of these compression mappings is desirable when
the ML-sequences are used as a source of pseudorandom sequences, since in this
case, di�erent initial states of a ML-sequence do lead to di�erent pseudorandom
sequences.

In this paper we keep studying the ML-sequences and the compression map-
pings, the contents are divided into two parts. In the �rst part, the work is
started by noticing the phenomenon that a ML-sequence may degenerate in the
sense that its quasi-period (which will be de�ned in section 2) is shorter than its
period, and that the deganerative ML-sequences are undesirable in applications.
So we study the problem how to construct nondegenerative ML-sequences. As re-
sults, it is shown (Theorem 3) that an ML-sequence degenerates if and only if the
corresponding primitive polynomial (i.e., its minimal polynomial) degenerates in
the same sense that its quasi-period (which will be de�ned in section 2) is shorter
than its period, thus the problem constructing nondegenerate ML-sequences is
reduced to the problem constructing nondegenerate primitive polynomials, and
the latter is solved (Theorem 4) by giving a criterion for nondegenerative prim-
itive polynomials. In the second part, based on the constructions [1, 6, 7] of
some classes of injective compression mappings, some new classes of injective
compression mappings are proposed and proved.

2 Constructions of Nondegenerative

ML-Sequences

Before coming to the main topic, we recall some basic concepts and basic facts
which we need. Let � = faig

1

i=0 be a sequence of elements in Z=(2e), obey-

ing the linear recursion of the form ai+n = �
Pn�1

i=0 cjai+j (mod 2e); 8i � 0,
with (a0; a1; � � � ; an�1) specifying the initial condition, and with cj constants in

Z=(2e). As usual, the monic polynomial f(x) = xn+
Pn�1

j=0
cjx

j is called a char-
acteristic polynomial of �, the characteristic polynomial with the least degree is
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called the minimal polynomial of �. The polynomial f(x) has the binary decom-

position f(x) =
Pe�1

i=0
fi(x)2i, where fi(x) =

Pn�1

i=0
cj;ix

j and cj =
Pe�1

i=0
cj;i2i

is the binary decomposition of cj .
In this paper we always assume c0 � 1 (mod 2).

De�nition: The period of � = faig
1

i=0, denoted by per(�), is de�ned to be
the least positive integer t satisfying at+i = ai; 8i � 0.

De�nition: The period of f(x) over Z=(2e), denoted by per(f(x))2e , is de�ned
to be the least positive integer t satisfying xt � 1 (mod 2e; f(x)).

Both of per(f(x))2e and per(�) are upper bounded by 2e�1(2n � 1) [5], and
this upper bound is attainable.

De�nition: � is called a ML-sequence of degree n if its period attains this
upper bound 2e�1(2n � 1); and the polynomial f(x) is called primitive over
Z=(2e) if per(f(x)2e attains this upper bound 2e�1(2n � 1).

If f0(x) is primitive over Z=(2e), then there exists a polynomial r(x) 2
Z=(2e)[x] such that

x2
n

�1 � 1 � f0(x)r(x) (mod 2) (1)

it is clear that r(x) (mod 2) is uniquely determined; and there exists h(x) over
Z=(2e)[x] such that

x2
n

�1 � 1 + f0(x)r(x) + 2h(x)

� 1 + (f0(x) +
Pe�1

i=1 fi(x)2
i)r(x) + 2(h(x)� r(x)

Pe�1

i=1 fi(x)2
i�1)

� 1 + 2(h(x)� r(x)
Pe�1

i=1 fi(x)2
i�1)

� 1 + 2hf (x) (mod 2e; f(x))

where hf (x) = h(x)� r(x)
Pe�1

i=1 fi(x)2
i�1, hence

hf (x) � h(x) � r(x)f1(x) (mod 2; f0(x)) (2)

and

x2
n

�1 � 1 + 2hf (x) (mod 22; f(x)) (3)

Taking f1(x) = 0 in (3), we get

x2
n

�1 � 1 + 2h(x) (mod 22; f0(x)) (4)

It is also clear that both h(x) (mod 2; f0(x)) and hf (x) (mod 2; f0(x)) are uniquely
determined.

We know the following theorem.
Theorem 1 [2, 5]

1. Let per(f(x))2 = T , then per(f(x))2e = 2kT , where k is an integer with
0 � k < e.
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2. � is a ML-sequence of degree n if and only if f(x) is primitive over Z=(2e)
and �0 6= 0; and in this case, f(x) is the minimal polynomial of �.

3. The following conditions are equivalent:

(a) f(x) is primitive over Z=(2e), i.e., per(f(x))2e = 2e�1(2n � 1).

(b) f0(x) is primitive over Z=(2), and hf (x) 6= 0 (mod 2; f0(x)) when
e = 2 and hf (x)(hf (x) + 1) 6= 0 (mod 2; f0(x)) when e � 3.

(c) f0(x) is primitive over Z=(2), and f1(x) 6= r(x)�1h(x) (mod 2; f0(x))
when e = 2 and

f1(x) 6=

�
r(x)�1h(x) (mod 2; f0(x))
r(x)�1(h(x) + 1) (mod 2; f0(x))

when e � 3.
Lemma 1 [2] Denote the formal derivative of f0(x) by f 00(x), we have

1. r(x)�1 � xf 00(x) (mod 2; f0(x)).

2. Denote f0(x) =
P

i2S x
i where S is a subset of fij0 � i � ng, and de-

note �(x) = (
P

i;j2S;i<j x
i+j)2

n�1

(mod 2; f0(x)), then r(x)�1h(x) � �(x)
(mod 2; f0(x)).

Remark 1 Based on Lemma 1, The equivalent conditions for primitive poly-
nomials given in Theorem 1 can be easily checked.

De�nition: The quasi-period of � = faig
1

i=0, denoted by Qper(�), is de�ned
to be the least positive integer t satisfying at+i = cai; 8i � 0, with c 2 Z=(2e).

De�nition: The quasi-period of f(x) over Z=(2e), denoted by Qper(f(x))2e ,
is de�ned to be the least positive integer t satisfying xt � c (mod 2e; f(x)) with
c 2 Z=(2e).

De�nition: We say a ML-sequence � is nondegenerative ifQper(�) = per(�);
and say a primitive polynomial f(x) is nondegenerative if
Qper(f(x))Z=(2e) = per(f(x))Z=(2e).

The following theorem is on the relation between the quasi-periods and the
periods of the polynomials over Z=(2e).

Theorem 2 Let per(f(x))2 = T , and per(f(x))2e = 2kT , then Qper(f(x))2e =
2mT for some non-negative integer m with m � k.
Proof Let Qper(f(x))2e = t, �rst we claim T jt, hence t = bT for some in-
teger b. In fact, we have xt � c (mod 2e; f(x)) for some c 2 Z=(2e); since
(2e; f(x)) � (2; f0(x)), so xt � c (mod 2; f0(x)). We claim c � 1 (mod 2),

hence T jt; otherwise, we have c � 0 (mod 2), then 1 � x(2
kT )t � xt(2

kT ) � 0
(mod 2; f0(x)), a contradiction. Now consider the following set (where Z is the
integer ring):

T = ftjxt � c (mod 2e; f(x)); t 2 Z; c 2 Z=(2e)g (5)
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It is clear that T is an ideal of Z containing 2kT , and bT = Qper(f(x))2e is
the positive generator of T , so bT must be a factor of 2kT , thus b = 2m for an
integer m with m � k. 2

It is easy to prove the following theorem.

Theorem 3 If � is an ML-sequence of degree n, then Qper(�) = Qper(f(x))2e ,
as a consequence, � is nondegenerative degenerate if and only if f(x) is nonde-
generative.

Based on Theorem 1 and 2, the problem constructing nondegenerative ML-
sequences is reduced to the problem constructing nondegenerative primitive
polynomials. The latter can be solved by the following Theorem, which gives a
criterion for nondegenerative primitive polynomials.

Theorem 4 Let f(x) be primitive over Z=(2e), and let h(x) (mod 2; f0(x)) be
the polynomial de�ned as (4). We have

1. When e = 2, then the following conditions are equivalent:

(a) f(x) is nondegenerative.

(b) hf (x) 6= 1 (mod 2; f0(x)).

(c) f1(x) 6= r(x)�1(1 + h(x)) (mod 2; f0(x)).

2. When e � 3 and n is odd, then f(x) is always nondegenerative.

3. When e � 3 and n is even, then the following conditions are equivalent:

(a) f(x) is nondegenerative.

(b) hf (x)(1 + hf (x)) 6= 1 (mod 2; f0(x)).

(c)

f1(x) 6=

�
r(x)�1(x(2

n
�1)=3 + h(x)) (mod 2; f0(x))

r(x)�1(1 + x(2
n
�1)=3 + h(x)) (mod 2; f0(x))

Proof Write T = 2n � 1. Taking squares on the two sides of the equation (3),
we get

x2T � 1 + 22hf (x)(hf (x) + 1) (mod 23; f(x))

continueing this way we get

x2
i�2T � 1 + 2i�1hf (x)(hf (x) + 1) (mod 2i; f(x)); 8i � e

In particular, we get

x2
e�2T � 1 + 2e�1hf (x)(hf (x) + 1) (mod 2e; f(x)) (6)
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For e = 2, we have

Qper(f(x))2e < per(f(x))2e
 ! Qper(f(x))22 = T (by Theorem 2)
 ! c � xT � 1 + 2hf (x) (mod 22; f(x)) (by (3))
 ! 2hf (x) � 2b (mod 22; f(x)); b = 0or1 (mod 2)
 ! hf (x) � 1 (mod 2; f0(x)) (by the assumption and Theorem 1)
 ! f1(x) � r(x)�1(1 + h(x)) (mod 2; f0(x)) (by (2))

For e � 3, we get

Qper(f(x))2e < per(f(x))2e
 ! Qper(f(x))2e j2

e�2T

 ! c � x2
e�2T � 1 + 2e�1hf (x)(hf (x) + 1) (mod 2e; f(x))(by(6))

 ! 2e�1hf (x)(hf (x) + 1) � 2e�1b (mod 2e; f(x)); b = 0or1
 ! hf (x)(hf (x) + 1) � 1 (mod 2; f0(x))

(by the assumption and Theorem 1):

If we identify (Z=(2))[x]=(f0(x)) to the �nite �eld GF (2n), then it is clear
that the fact "hf (x)(hf (x) + 1) � 1 (mod 2; f0(x))" holds true if and only if
hf (x) is a root of the irreducible polynomial x2+x+1 over Z=(2) = GF (2), i.e.,
one of the two elements of order 3. It is known that there exists such hf (x) if and
only if n is even. Hence the item 2. is true. Now for the item 3., we know that
the two roots of x2+x+1 are xT=3 (mod 2; f0(x)) and 1+ xT=3 (mod 2; f0(x))
(the two elements of order 3), so "hf (x)(hf (x) + 1) � 1 (mod 2; f0(x))" holds
true if and only if hf (x) � xT=3 (mod 2; f0(x)) or 1+xT=3 (mod 2; f0(x)), which
is further equivalent to the conditions shown in (3c)(by (2)). 2

Remark 2 Based on Lemma 1, The equivalent conditions for nonprimitive
primitive polynomials given in Theorem 4 can be easily checked.

In studying the injective compression mappings, the so-called strongly prim-
itive polynomial is introduced [1], it is de�ned to be the primitive polynomial
with hf (x) 6= 1 (mod 2; f0(x)) when e = 2, and to be the primitive polynomial
with hf (x)(hf (x) + 1) 6= 1 (mod 2; f0(x)) when e � 3. Now from Theorem 3 we
get imeadiately

Corollary 1 f(x) is strongly primitive if and only if f(x) is nondegenerative
primitive, i.e., Qper(f(x))2e = per(f(x))2e .

3 Compressing Mappings on ML-Sequences

Let f(x) be a primitive polynomial of degree n over Z=(2e), We denote G(f(x))2e
the set of all sequences over Z=(2e) generated by f(x), S(f(x))2e = f� 2 G(f(x))
j �0 6= 0g the set of all ML-sequences over Z=(2e) generated by f(x) and GF (2)1

the set of all sequences over GF (2). For � 2 G(f(x))2e , we denote �i the ith
level component of �. Set T = 2n � 1, by (3), we have

x2
k�1T � 1 = 2khk(x) (mod f(x); 2e)
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where k = 1; 2; : : : ; e�1, deg hk(x) < n and hk(x) 6= 0 (mod 2). In fact h1(x) =
hf (x) (mod 2), h2(x) = : : : = he�1(x) = hf (x)(hf (x) + 1) (mod 2; f(x)).

Let � = faig
1

i=0 and � = fbig
1

i=0 be two sequences over Z=(2e), de�ne
� + � = fai + big

1

i=0, �� = faibig
1

i=0 and x� = faig
1

i=0 = fai+1g
1

i=0. For
g(x) =

Pn

j=0
cjx

j over Z=(2e), then g(x)� = g(x)faig
1

i=0 = f
Pn

j=0
cjaj+ig

1

i=0.
[1, 6, 7] propose the following injectiveness theorem.

Theorem 5 [1, 6, 7] Let f(x) be a primitive polynomial over Z=(2e), �; � 2
G(f(x))2e ,then � = � if and only if �e�1 = �e�1. If f(x) is strongly primi-
tive over Z=(2e), '(x0; x1; : : : ; xe�1) = xe�1 + cxe�2 + �(x0; x1; : : : ; xe�3) is a
Boolean function of e variables, where �(x0; x1; : : : ; xe�3) is a Boolean function
of e � 2 variables, c = 0 or 1, then for �; � 2 G(f(x))2e , � = � if and only if
'(�0; �1; : : : ; �e�1) = '(�0; �1; : : : ; �e�1) over GF (2).

By theorem 5, the compression mappingxe�1 or xe�1+cxe�2+�(x0; : : : ; xe�3)
on G(f(x))2e is injective, that is, the binary sequence �e�1 or �e�1 + c�e�2 +
�(�0; �1; :::; �e�3) can uniquely determine its original sequence �, in other words,
�e�1 or �e�1 + c�e�2 + �(�0; �1; : : : ; �e�3) contains all information of �.

We study the injectiveness of general compression mappings in this section.
Let '(x0; :::; xe�1) be a Boolean function with e variables, if the mapping

' :

�
G(f(x))2e ! GF (2)1

� = �0 + �12 + : : :+ �e�12e�1 7! '(�0; : : : ; �e�1)

is injective, then '(x0; :::; xe�1) contains xe�1 clearly, i.e., '(x0; : : : ; xe�2; 0) 6=
'(x0; : : : ; xe�2; 1).

De�nition: Let B = fxi0
0
xi1
1
: : :x

ie�1
e�1 | ik = 0 or 1, k = 0; 1; : : : ; e � 1g be

the set of all single terms of Boolean functions of e variables, de�ne the order in
B as follows:

xi00 x
i1
1 : : : x

ie�1
e�1 > xj00 x

j1
1 : : :x

je�1
e�1

provided that

i0 + i1 � 2 + : : :+ ie�1 � 2
e�1 > j0 + j1 � 2 + : : :+ je�1 � 2

e�1

Lemma 2 [10] Let f(x) be a strongly primitive polynomial of degree n over
Z=(2e), e � 3, '(x0; x1; : : : ; xe�1) is a Boolean function of e variables and
'(x0; x1; : : : ; xe�1) 6= 0 and 1. Let xk0xk1 : : :xkt�1 be the term of the maximal
order in '(x0; x1; : : : ; xe�1) and the product x0x1 of x0 and x1 is not a divisor
of xk0xk1 : : :xkt�1 , where 1 � t � e� 1, 0 � k0 < k1 < : : : < kt�1 � e� 1. Then
for �; � 2 S(f(x))2e , '(�0; : : : ; �e�1) = '(�0; : : : ; �e�1) implies �0 = �0.

Lemma 3 [10] Let f(x) be a primitive polynomial of degree n over Z=(2e),
e � 3, �; � 2 G(f(x))2e and �0 = �0, then, for 3 � k � e � 1, over GF (2)

(x2
k�2T � 1)(�k + �k) = (�k�1 + �k�1)h2(x)�0 + h2(x)(�1 + �1)

and
(xT � 1)(�2 + �2) = (�1 + �1)h1(x)�0 + h1(x)(�1 + �1)
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Lemma 4 [10] Let f(x) be a primitive polynomial of degree n over Z=(2e),
e � 3, �; � 2 G(f(x))2e and �0 = �0 6= 0. If (�1 + �1)h1(x)�0h2(x)�0 =
h1(x)(�1 + �1)h2(x)�0 over GF (2), then �1 = �1

Theorem 6 Let f(x) be a strongly primitive polynomial of degree n over Z=(2e),
e � 3, '(x0; : : : ; xe�1) = xe�1 + �(x0; : : : ; xe�2) is a Boolean function of e
variables, for �; � 2 S(f(x))2e , if

('(�0; : : : ; �e�1) + '(�0; : : : ; �e�1))h2(x)�0 = 0 (7)

then � = �.
Proof First we show �0 = �0. Set T = 2n � 1. x2

e�2
T � 1 acts on (7), then

(h2(x)�0 + h2(x)�0)h2(x)�0 = 0 since (x2
e�2

T � 1)�e�1 = h2(x)�0, (x2
e�2

T �
1)�e�1 = h2(x)�0 and the periods of �(�0; : : : ; �e�2) and �(�0; : : : ; �e�2) divide
2e�2T . So h2(x)(�0 + �0)h2(x)�0 = 0 which implies �0 + �0 = 0 since �0 + �0
is 0 or an ML-sequence. Thus �0 = �0.

If e = 3, then '(�0; �1; �2) +'(�0; �1; �2) = �2+ �2 + �(�0; �1) + �(�0; �1).
The period of �1 + �1 divides T since �0 = �0. So the period of �(�0; �1) +
�(�0; �1) divides T . Thus the period of (�(�0; �1)+�(�0; �1))h2(x)�0 divides T .
xT � 1 acts on

(�2 + �2 + �(�0; �1) + �(�0; �1))h2(x)�0 = 0 (8)

then 0 = (xT �1)((�2+�2)h2(x)�0) = (xT �1)(�2+�2)h2(x)�0. And by lemma
3, we have

(�1 + �1)h1(x)�0h2(x)�0 = h1(x)(�1 + �1)h2(x)�0

Thus �1 = �1 by lemma 4. So (�2 + �2)h2(x)�0 = 0 by (8). �2 + �2 is 0 or an
ML-sequence since �1 = �1 and �0 = �0. Therefore �2 = �2 because the product
of two ML-sequences over GF (2) is not 0.

If e > 3, set

�e�2(x0; : : : ; xe�2) = �(x0; : : : ; xe�2)
= xe�2�e�3(x0; : : : ; xe�3) + �e�3(x0; : : : ; xe�3)

and in general, we set

�k(x0; : : : ; xk) = xk�k�1(x0; : : : ; xk�1) + �k�1(x0; : : : ; xk�1)

k = e � 2; e� 3; : : : ; 2. x2
e�3

T � 1 acts on (7), we have

(x2
e�3

T � 1)(�e�1 + �e�1 + �e�2�e�3(�0; : : : ; �e�3)
+ �e�2�e�3(�0; : : : ; �e�3))h2(x)�0 = 0

that is

(x2
e�3

T �1)(�e�1+�e�1+�e�3(�0; : : : ; �e�3)+�e�3(�0; : : : ; �e�3))h2(x)�0 = 0
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By lemma 3,

((�e�2 + �e�2)h2(x)�0 + h2(x)(�1 + �1)
+ �e�3(�0; : : : ; �e�3) + �e�3(�0; : : : ; �e�3))h2(x)�0 = 0

that is

((�e�2 + �e�2 + �e�3(�0; : : : ; �e�3) + �e�3(�0; : : : ; �e�3))h2(x)�0
= h2(x)(�1 + �1)h2(x)�0 (9)

If e > 4, x2
e�4

T � 1 acts on (9) continuously, and so on, then we get

((�k + �k + �k�1(�0; : : : ; �k�1) + �k�1(�0; : : : ; �k�1))h2(x)�0
= h2(x)(�1 + �1)h2(x)�0 (10)

where k = e � 2; e� 3; : : : ; 2. Finally, xT � 1 acts on

((�2 + �2 + �1(�0; �1) + �1(�0; �1))h2(x)�0 = h2(x)(�1 + �1)h2(x)�0

and we get (�1 + �1)h1(x)�0h2(x)�0 = h1(x)(�1 + �1)h2(x)�0. So �1 = �1 by
lemma 4 and �k = �k by (10), k = 2; 3; : : : :e � 2. Lastly, �e�1 = �e�1 by (7).
Therefore � = �. 2

Corollary 2 Let f(x) be a strongly primitive polynomial of degree n over Z=(2e),
e � 3, '(x0; : : : ; xe�1) = xe�1 + �(x0; : : : ; xe�2) is a Boolean function of e
variables, then for �; � 2 S(f(x))2e ; � = � if and only if '(�0; : : : ; �e�1) =
'(�0; : : : ; �e�1)

Theorem 7 Let f(x) be a strongly primitive polynomial of degree n over Z=(2e),
e � 3, '(x0; x1; : : : ; xe�1) is a Boolean function of e variables containing xe�1,
and xk0xk1 : : : xkt�1 is the term of the maximal order in '(x0; x1; : : : ; xe�1). If
xk0xk1 : : : xkt�1 is not divided by x0 and x1, i.e. k0 � 2, then the compression
mapping

' :

�
S(f(x))2e ! GF (2)1

� = �0 + �12 + : : :+ �e�12e�1 7! '(�0; : : : ; �e�1)

is injective, i.e., for �; � 2 S(f(x))2e , then � = � if and only if '(�0; : : : ; �e�1) =
'(�0; : : : ; �e�1):
Proof If t = 1, the result follows immediately from corollary 2. Assume t > 1
in the following.

Let �; � 2 S(f(x))2e and '(�0; : : : ; �e�1) = '(�0; : : : ; �e�1), then �0 = �0
by lemma 2.

'(x0; x1; : : : ; xe�1) contains xe�1, that is, kt�1 = e � 1, so let

'(x0; : : : ; xe�1) = xe�1�(x0; : : : ; xe�2) + �(x0; : : : ; xe�2) (11)
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where �(x0; : : : ; xe�2) 6= 0.The term of maximal order in �(x0; : : : ; xe�2) is
xk0xk1 : : : xkt�2. Thus we set �kt�2(x0; : : : ; xkt�2) = �(x0; : : : ; xe�2) and

�kt�2(x0; : : : ; xkt�2) = xkt�2�kt�3(x0; : : : ; xkt�3) + �kt�2�1(x0; : : : ; xkt�2�1)

In general, we set

�ks(x0; : : : ; xks) = xks�ks�1(x0; : : : ; xks�1) + �ks�1(x0; : : : ; xks�1)
(12)

where s = t� 2; t� 1; : : : ; 2; 1; and

�k0(x0; : : : ; xk0) = xk0 + �k0�1(x0; : : : ; xk0�1) (13)

Set gi(x) =
Q

k

(x2
k�1

T � 1), where k takes over ki; ki+1; : : : ; kt�1 and i =

1; 2; : : : ; t� 1. g1(x) acts on '(�0; : : : ; �e�1) = '(�0; : : : ; �e�1), then, by (11),
(12) and (13), we get

(�k0 + �k0 + �k0�1(�0; : : : ; �k0�1) + �k0�1(�0; : : : ; �k0�1))h2(x)�0 = 0

So � = � (mod 2k0+1) by theorem 6.
(i) If t = 2, then

�e�1�k0(�0; : : : ; �k0) + �e�1�k0(�0; : : : ; �k0)
+ �(�0; : : : ; �e�2) + �(�0; : : : ; �e�2) = 0

that is

(�e�1 + �e�1)�k0(�0; : : : ; �k0
) + �(�0; : : : ; �e�2) + �(�0; : : : ; �e�2) = 0

(14)

By lemma 3

(x2
e�3

T � 1)(�e�1 + �e�1) = (�e�2 + �e�2)h2(x)�0 + h2(x)(�1 + �1)
= (�e�2 + �e�2)h2(x)�0

x2
e�3

T � 1 acts on (14) if e � 3 > k0, then by the period of �k0(�0; : : : ; �k0)
dividing 2e�3T ,

(�e�2 + �e�2)h2(x)�0�k0(�0; : : : ; �k0
)

+ (�e�3(�0; : : : ; �e�3) + �e�3(�0; : : : ; �e�3))h2(x) = 0

that is

((�e�2 + �e�2)�k0(�0; : : : ; �k0)
+ �e�3(�0; : : : ; �e�3) + �e�3(�0; : : : ; �e�3))h2(x) = 0

(15)

where �e�3(x0; : : : ; xe�3) is determined by

�e�2(x0; : : : ; xe�2) = �(x0; : : : ; xe�2)
= xe�2�e�3(x0; : : : ; xe�3) + �e�3(x0; : : : ; xe�2)
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x2
e�4

� 1 acts on (15) continuously if e � 4 � k0. In general we have

((�k + �k)�k0(�0; : : : ; �k0) + �k�1(�0; : : : ; �k�1) + �k�1(�0; : : : ; �k�1))h2(x) = 0

(16)

where k = e � 2; : : : ; k0 + 2; k0 + 1. �k0(�0; : : : ; �k0) = �k0(�0; : : : ; �k0) since
� = � (mod 2k0+1).

By the case k = k0 + 1 in (16), we have

(�k0+1 + �k0+1)�k0(�0; : : : ; �k0)h2(x)�0 = 0 (17)

Since (�k0+1 + �k0+1) is 0 or an ML-sequence over GF (2) and k0 � 2, if

x2
k�1

T � 1 acts on (17), where k = k0, then

[(x2
k�1T � 1)�k0(�0; : : : ; �k0)](�k0+1 + �k0+1)h2(x)�0 = 0 (18)

By �k0(�0; : : : ; �k0) = xk0 + �k0�1(�0; : : : ; �k0�1), (18) implies

(�k0+1 + �k0+1)h2(x)�0 = 0

So �k0+1 = �k0+1. And by (16), we obtain �k = �k, k = k0 + 1; : : : ; e � 2.
Finally, �e�1 = �e�1 by (14).

(ii) If t = 3; g2(x) acts on '(�0; : : : ; �e�1) = '(�0; : : : ; �e�1), then

(�k1�k0(�0; : : : ; �k0) + �k1�k0(�0; : : : ; �k0))h2(x)�0 = 0

that is

(�k1 + �k1)�k0(�0; : : : ; �k0)h2(x)�0 = 0 (19)

As in case (i), rk(x) =
k1�1Q

i=k

(x2
i�1T � 1) acts on (19), then we obtain

(�k + �k)�k0(�0; : : : ; �k0)h2(x)�0 = 0 (20)

k = k1 � 1; : : : ; k0 + 2; k0 + 1. So (�k0+1 + �k0+1)�k0(�0; : : : ; �k0)h2(x)�0 = 0.
By the process of proof in (i), we have �k0+1 = �k0+1. Thus �j = �j ; j =
k0 + 2; : : : ; k1, by (19) and (20).

Finally, as rk(x) acts on (19), sk(x) =
e�2Q

i=k

(x2
i�1

T � 1) acts on,

(�e�1 + �e�1)�k1(�0; : : : ; �k1) + �(�0; : : : ; �e�2) + �(�0; : : : ; �e�2) = 0

Similarly, we get �j = �j ; j = k1 + 1; : : : ; e� 1. Therefore � = �. 2
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