ML-Sequences over Rings $Z /\left(2^{e}\right)^{*}$:
 I. Constructions of Nondegenerative ML-Sequences II. Injectivness of Compression Mappings of New Classes

WenFeng Qi ${ }^{1}$, JunHui Yang ${ }^{2}$, JingJun Zhou ${ }^{1}$
${ }^{1}$ Zhengzhou Information Engineering Institute, HeNan, China
${ }^{2}$ Institute of Software, Academia Sinica, State Key Lab. of Information Security, Beijing, China yangdai@mimi.cnc.ac.cn

Abstract

Pseudorandom binary sequences derived from the ML-sequences over the integer residue ring $Z /\left(2^{e}\right)$ are proposed and studied in [1-10]. This paper is divided into two parts. The first part is on the nondegenerative ML-sequences. In this part the so-called quasi-period of a ML-sequence is introduced, and it is noted that a ML-sequence may degenerate in the sense that it has the quasi-period shorter than its period, and the problem of constructing the nondegenerative ML-sequences is solved by giving a criterion for nondegenerative primitive polynomials. In the second part, based on the constructions $[1,6,7]$ of some classes of injective mappings which compress ML-sequences over rings to binary sequences, some new classes of the injective compression mappings are proposed and proved. Keywords: nondegenerate ML-sequence, quasi-period, injective compression mapping

1 Introduction

The maximal length sequences of elements in the integral residue ring $Z /\left(2^{e}\right)$ (ML-sequences over $Z /\left(2^{e}\right)$), whose definition will be recalled in the next section, and the binary sequences derived from ML-sequences are proposed and studied in [1-9]. The research shows that the binary sequences derived from ML-sequences may provide a good source of pseudorandom sequences and have a potential perspective in cryptographic applications.

The integral residue ring $Z /\left(2^{e}\right)$ is the set of 2^{e} integral residue classes $\{i$ $\left.\left(\bmod 2^{e}\right) \mid 0 \leq i<2^{e}\right\}$, the class $i\left(\bmod 2^{e}\right)$ will be written simply as i or any integer of the form $i+k 2^{e}$ with k being an integer. Any element b belonging to $Z /\left(2^{e}\right)$ has a binary decomposition as $b=\sum_{i=0}^{e-1} b_{i} 2^{i}, b_{i} \in\{0,1\}$, where b_{i} is called the i th level bit of b, and b_{e-1} the highest level (or the most significant bit) bit of b. If a_{t} is an element in $Z /\left(2^{e}\right)$ with the binary decomposition $a_{t}=\sum_{i=0}^{e-1} a_{t, i} 2^{i}$, then the sequence $\alpha=\left\{a_{t}\right\}_{t=0}^{\infty}$ has a binary decomposition

[^0]$\alpha=\sum_{i=0}^{e-1} \alpha_{i} 2^{i}$, where $\alpha_{i}=\left\{a_{t, i}\right\}_{t=0}^{\infty}$ is a binary sequence called the i th level component of α.

The highest level component sequence of a ML-sequence over $Z /\left(2^{e}\right)$ is the most naturally derived binary sequences. More binary sequences can be derived from a ML-sequence over $Z /\left(2^{e}\right)$ by mixing the bits at its highest level with the bits at the lower levels. This can provide a convenient way of generating pseudorandom binary sequences on computers when e is chosen as the processor word length. It is shown that the derived binary sequences have guaranteed large periods [5] and guaranteed large lower bound of linear complexities [4]. It is also shown that the distributions of the elements 0 and 1 of the derived binary sequences are close to be balanced [8, 9, 10]. In addition to these, it is proved $[1,6,7]$ that the mapping which compresses the ML-sequences over $Z /\left(2^{e}\right)$ to its highest level component sequences is injective, and that a large class of mappings which compress the ML-sequences over $Z /\left(2^{e}\right)$ to the binary sequences by mixing the highest level component sequences with the lower level ones are also injective. The injectiveness of these compression mappings is desirable when the ML-sequences are used as a source of pseudorandom sequences, since in this case, different initial states of a ML-sequence do lead to different pseudorandom sequences.

In this paper we keep studying the ML-sequences and the compression mappings, the contents are divided into two parts. In the first part, the work is started by noticing the phenomenon that a ML-sequence may degenerate in the sense that its quasi-period (which will be defined in section 2) is shorter than its period, and that the deganerative ML-sequences are undesirable in applications. So we study the problem how to construct nondegenerative ML-sequences. As results, it is shown (Theorem 3) that an ML-sequence degenerates if and only if the corresponding primitive polynomial (i.e., its minimal polynomial) degenerates in the same sense that its quasi-period (which will be defined in section 2) is shorter than its period, thus the problem constructing nondegenerate ML-sequences is reduced to the problem constructing nondegenerate primitive polynomials, and the latter is solved (Theorem 4) by giving a criterion for nondegenerative primitive polynomials. In the second part, based on the constructions [1, 6, 7] of some classes of injective compression mappings, some new classes of injective compression mappings are proposed and proved.

2 Constructions of Nondegenerative ML-Sequences

Before coming to the main topic, we recall some basic concepts and basic facts which we need. Let $\alpha=\left\{a_{i}\right\}_{i=0}^{\infty}$ be a sequence of elements in $Z /\left(2^{e}\right)$, obeying the linear recursion of the form $a_{i+n}=-\sum_{i=0}^{n-1} c_{j} a_{i+j}\left(\bmod 2^{e}\right), \forall i \geq 0$, with $\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ specifying the initial condition, and with c_{j} constants in $Z /\left(2^{e}\right)$. As usual, the monic polynomial $f(x)=x^{n}+\sum_{j=0}^{n-1} c_{j} x^{j}$ is called a characteristic polynomial of α, the characteristic polynomial with the least degree is
called the minimal polynomial of α. The polynomial $f(x)$ has the binary decomposition $f(x)=\sum_{i=0}^{e-1} f_{i}(x) 2^{i}$, where $f_{i}(x)=\sum_{i=0}^{n-1} c_{j, i} x^{j}$ and $c_{j}=\sum_{i=0}^{e-1} c_{j, i} 2^{i}$ is the binary decomposition of c_{j}.

In this paper we always assume $c_{0} \equiv 1(\bmod 2)$.
Definition: The period of $\alpha=\left\{a_{i}\right\}_{i=0}^{\infty}$, denoted by $\operatorname{per}(\alpha)$, is defined to be the least positive integer t satisfying $a_{t+i}=a_{i}, \forall i \geq 0$.

Definition: The period of $f(x)$ over $Z /\left(2^{e}\right)$, denoted by $\operatorname{per}(f(x))_{2^{e}}$, is defined to be the least positive integer t satisfying $x^{t} \equiv 1\left(\bmod 2^{e}, f(x)\right)$.

Both of $\operatorname{per}(f(x))_{2^{e}}$ and $\operatorname{per}(\alpha)$ are upper bounded by $2^{e-1}\left(2^{n}-1\right)$ [5], and this upper bound is attainable.

Definition: α is called a ML-sequence of degree n if its period attains this upper bound $2^{e-1}\left(2^{n}-1\right)$; and the polynomial $f(x)$ is called primitive over $Z /\left(2^{e}\right)$ if $\operatorname{per}\left(f(x)_{2^{e}}\right.$ attains this upper bound $2^{e-1}\left(2^{n}-1\right)$.

If $f_{0}(x)$ is primitive over $Z /\left(2^{e}\right)$, then there exists a polynomial $r(x) \in$ $Z /\left(2^{e}\right)[x]$ such that

$$
\begin{equation*}
x^{2^{n}-1}-1 \equiv f_{0}(x) r(x) \quad(\bmod 2) \tag{1}
\end{equation*}
$$

it is clear that $r(x)(\bmod 2)$ is uniquely determined; and there exists $h(x)$ over $Z /\left(2^{e}\right)[x]$ such that

$$
\begin{aligned}
x^{2^{n}-1} & \equiv 1+f_{0}(x) r(x)+2 h(x) \\
& \equiv 1+\left(f_{0}(x)+\sum_{i=1}^{e-1} f_{i}(x) 2^{i}\right) r(x)+2\left(h(x)-r(x) \sum_{i=1}^{e-1} f_{i}(x) 2^{i-1}\right) \\
& \equiv 1+2\left(h(x)-r(x) \sum_{i=1}^{e-1} f_{i}(x) 2^{i-1}\right) \\
& \equiv 1+2 h_{f}(x)\left(\bmod 2^{e}, f(x)\right)
\end{aligned}
$$

where $h_{f}(x)=h(x)-r(x) \sum_{i=1}^{e-1} f_{i}(x) 2^{i-1}$, hence

$$
\begin{equation*}
h_{f}(x) \equiv h(x)-r(x) f_{1}(x) \quad\left(\bmod 2, f_{0}(x)\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2^{n}-1} \equiv 1+2 h_{f}(x) \quad\left(\bmod 2^{2}, f(x)\right) \tag{3}
\end{equation*}
$$

Taking $f_{1}(x)=0$ in (3), we get

$$
\begin{equation*}
x^{2^{n}-1} \equiv 1+2 h(x) \quad\left(\bmod 2^{2}, f_{0}(x)\right) \tag{4}
\end{equation*}
$$

It is also clear that both $h(x)\left(\bmod 2, f_{0}(x)\right)$ and $h_{f}(x)\left(\bmod 2, f_{0}(x)\right)$ are uniquely determined.

We know the following theorem.
Theorem 1 [2, 5]

1. Let $\operatorname{per}(f(x))_{2}=T$, then $\operatorname{per}(f(x))_{2^{e}}=2^{k} T$, where k is an integer with $0 \leq k<e$.
2. α is a ML-sequence of degree n if and only if $f(x)$ is primitive over $Z /\left(2^{e}\right)$ and $\alpha_{0} \neq 0$; and in this case, $f(x)$ is the minimal polynomial of α.
3. The following conditions are equivalent:
(a) $f(x)$ is primitive over $Z /\left(2^{e}\right)$, i.e., $\operatorname{per}(f(x))_{2^{e}}=2^{e-1}\left(2^{n}-1\right)$.
(b) $f_{0}(x)$ is primitive over $Z /(2)$, and $h_{f}(x) \neq 0\left(\bmod 2, f_{0}(x)\right)$ when $e=2$ and $h_{f}(x)\left(h_{f}(x)+1\right) \neq 0\left(\bmod 2, f_{0}(x)\right)$ when $e \geq 3$.
(c) $f_{0}(x)$ is primitive over $Z /(2)$, and $f_{1}(x) \neq r(x)^{-1} h(x)\left(\bmod 2, f_{0}(x)\right)$ when $e=2$ and

$$
f_{1}(x) \neq\left\{\begin{array}{l}
r(x)^{-1} h(x) \quad\left(\bmod 2, f_{0}(x)\right) \\
r(x)^{-1}(h(x)+1) \quad\left(\bmod 2, f_{0}(x)\right)
\end{array}\right.
$$

when $e \geq 3$.
Lemma 1 [2] Denote the formal derivative of $f_{0}(x)$ by $f_{0}^{\prime}(x)$, we have

1. $r(x)^{-1} \equiv x f_{0}^{\prime}(x)\left(\bmod 2, f_{0}(x)\right)$.
2. Denote $f_{0}(x)=\sum_{i \in S} x^{i}$ where S is a subset of $\{i \mid 0 \leq i \leq n\}$, and denote $\rho(x)=\left(\sum_{i, j \in S, i<j} x^{i+j}\right)^{2^{n-1}}\left(\bmod 2, f_{0}(x)\right)$, then $r(x)^{-1} h(x) \equiv \rho(x)$ $\left(\bmod 2, f_{0}(x)\right)$.

Remark 1 Based on Lemma 1, The equivalent conditions for primitive polynomials given in Theorem 1 can be easily checked.

Definition: The quasi-period of $\alpha=\left\{a_{i}\right\}_{i=0}^{\infty}$, denoted by $\operatorname{Qper}(\alpha)$, is defined to be the least positive integer t satisfying $a_{t+i}=c a_{i}, \forall i \geq 0$, with $c \in Z /\left(2^{e}\right)$.

Definition: The quasi-period of $f(x)$ over $Z /\left(2^{e}\right)$, denoted by $\operatorname{Qper}(f(x))_{2^{e}}$, is defined to be the least positive integer t satisfying $x^{t} \equiv c\left(\bmod 2^{e}, f(x)\right)$ with $c \in Z /\left(2^{e}\right)$.

Definition: We say a ML-sequence α is nondegenerative if $\operatorname{Qper}(\alpha)=\operatorname{per}(\alpha)$; and say a primitive polynomial $f(x)$ is nondegenerative if $\operatorname{Qper}(f(x))_{Z /\left(2^{e}\right)}=\operatorname{per}(f(x))_{Z /\left(2^{e}\right)}$.

The following theorem is on the relation between the quasi-periods and the periods of the polynomials over $Z /\left(2^{e}\right)$.
Theorem 2 Let $\operatorname{per}(f(x))_{2}=T$, and $\operatorname{per}(f(x))_{2^{e}}=2^{k} T$, then $\operatorname{Qper}(f(x))_{2^{e}}=$ $2^{m} T$ for some non-negative integer m with $m \leq k$.
Proof Let $\operatorname{Qper}(f(x))_{2^{e}}=t$, first we claim $T \mid t$, hence $t=b T$ for some integer b. In fact, we have $x^{t} \equiv c\left(\bmod 2^{e}, f(x)\right)$ for some $c \in Z /\left(2^{e}\right)$; since $\left(2^{e}, f(x)\right) \subseteq\left(2, f_{0}(x)\right)$, so $x^{t} \equiv c\left(\bmod 2, f_{0}(x)\right)$. We claim $c \equiv 1(\bmod 2)$, hence $T \mid t$; otherwise, we have $c \equiv 0(\bmod 2)$, then $1 \equiv x^{\left(2^{k} T\right) t} \equiv x^{t\left(2^{k} T\right)} \equiv 0$ $\left(\bmod 2, f_{0}(x)\right)$, a contradiction. Now consider the following set (where Z is the integer ring):

$$
\begin{equation*}
\mathcal{T}=\left\{t \mid x^{t} \equiv c \quad\left(\bmod 2^{e}, f(x)\right), t \in Z, c \in Z /\left(2^{e}\right)\right\} \tag{5}
\end{equation*}
$$

It is clear that \mathcal{T} is an ideal of Z containing $2^{k} T$, and $b T=\operatorname{Qper}(f(x))_{2^{e}}$ is the positive generator of \mathcal{T}, so $b T$ must be a factor of $2^{k} T$, thus $b=2^{m}$ for an integer m with $m \leq k$.

It is easy to prove the following theorem.
Theorem 3 If α is an ML-sequence of degree n, then $\operatorname{Qper}(\alpha)=\operatorname{Qper}(f(x))_{2^{e}}$, as a consequence, α is nondegenerative degenerate if and only if $f(x)$ is nondegenerative.

Based on Theorem 1 and 2, the problem constructing nondegenerative MLsequences is reduced to the problem constructing nondegenerative primitive polynomials. The latter can be solved by the following Theorem, which gives a criterion for nondegenerative primitive polynomials.

Theorem 4 Let $f(x)$ be primitive over $Z /\left(2^{e}\right)$, and let $h(x)\left(\bmod 2, f_{0}(x)\right)$ be the polynomial defined as (4). We have

1. When $e=2$, then the following conditions are equivalent:
(a) $f(x)$ is nondegenerative.
(b) $h_{f}(x) \neq 1\left(\bmod 2, f_{0}(x)\right)$.
(c) $f_{1}(x) \neq r(x)^{-1}(1+h(x))\left(\bmod 2, f_{0}(x)\right)$.
2. When $e \geq 3$ and n is odd, then $f(x)$ is always nondegenerative.
3. When $e \geq 3$ and n is even, then the following conditions are equivalent:
(a) $f(x)$ is nondegenerative.
(b) $h_{f}(x)\left(1+h_{f}(x)\right) \neq 1\left(\bmod 2, f_{0}(x)\right)$.
(c)

$$
f_{1}(x) \neq\left\{\begin{array}{l}
r(x)^{-1}\left(x^{\left(2^{n}-1\right) / 3}+h(x)\right) \quad\left(\bmod 2, f_{0}(x)\right) \\
r(x)^{-1}\left(1+x^{\left(2^{n}-1\right) / 3}+h(x)\right) \quad\left(\bmod 2, f_{0}(x)\right)
\end{array}\right.
$$

Proof Write $T=2^{n}-1$. Taking squares on the two sides of the equation (3), we get

$$
x^{2 T} \equiv 1+2^{2} h_{f}(x)\left(h_{f}(x)+1\right) \quad\left(\bmod 2^{3}, f(x)\right)
$$

continueing this way we get

$$
x^{2^{i-2} T} \equiv 1+2^{i-1} h_{f}(x)\left(h_{f}(x)+1\right) \quad\left(\bmod 2^{i}, f(x)\right), \forall i \leq e
$$

In particular, we get

For $e=2$, we have

$$
\begin{aligned}
& \text { Qper }(f(x))_{2^{e}}<\operatorname{per}(f(x))_{2^{e}} \\
& \longleftrightarrow \operatorname{Qper}(f(x))_{2^{2}}=T(b y \text { Theorem 2) } \\
& \longleftrightarrow c \equiv x^{T} \equiv 1+2 h_{f}(x)\left(\bmod 2^{2}, f(x)\right)(b y(3)) \\
& \longleftrightarrow 2 h_{f}(x) \equiv 2 b\left(\bmod 2^{2}, f(x)\right), b=0 \operatorname{or} 1 \quad(\bmod 2) \\
& \longleftrightarrow h_{f}(x) \equiv 1 \quad\left(\bmod 2, f_{0}(x)\right)(b y \text { the assumption and Theorem 1) } \\
& \longleftrightarrow f_{1}(x) \equiv r(x)^{-1}(1+h(x))\left(\bmod 2, f_{0}(x)\right)(b y(2))
\end{aligned}
$$

For $e \geq 3$, we get

$$
\begin{aligned}
& \operatorname{Qper}(f(x))_{2^{e}}<\operatorname{per}(f(x))_{2^{e}} \\
\longleftrightarrow & \operatorname{Qper}(f(x))_{2^{e}} \mid 2^{e-2} T \\
\longleftrightarrow & c \equiv x^{2^{e-2} T} \equiv 1+2^{e-1} h_{f}(x)\left(h_{f}(x)+1\right) \quad\left(\bmod 2^{e}, f(x)\right)(b y(6)) \\
\longleftrightarrow & 2^{e-1} h_{f}(x)\left(h_{f}(x)+1\right) \equiv 2^{e-1} b\left(\bmod 2^{e}, f(x)\right), b=0 \operatorname{or} 1 \\
\longleftrightarrow & h_{f}(x)\left(h_{f}(x)+1\right) \equiv 1 \quad\left(\bmod 2, f_{0}(x)\right) \\
& \text { (by the assumption and Theorem 1). }
\end{aligned}
$$

If we identify $(Z /(2))[x] /\left(f_{0}(x)\right)$ to the finite field $G F\left(2^{n}\right)$, then it is clear that the fact " $h_{f}(x)\left(h_{f}(x)+1\right) \equiv 1\left(\bmod 2, f_{0}(x)\right)$ " holds true if and only if $h_{f}(x)$ is a root of the irreducible polynomial $x^{2}+x+1$ over $Z /(2)=G F(2)$, i.e., one of the two elements of order 3. It is known that there exists such $h_{f}(x)$ if and only if n is even. Hence the item 2. is true. Now for the item 3., we know that the two roots of $x^{2}+x+1$ are $x^{T / 3}\left(\bmod 2, f_{0}(x)\right)$ and $1+x^{T / 3}\left(\bmod 2, f_{0}(x)\right)$ (the two elements of order 3), so " $h_{f}(x)\left(h_{f}(x)+1\right) \equiv 1\left(\bmod 2, f_{0}(x)\right)$ " holds true if and only if $h_{f}(x) \equiv x^{T / 3}\left(\bmod 2, f_{0}(x)\right)$ or $1+x^{T / 3}\left(\bmod 2, f_{0}(x)\right)$, which is further equivalent to the conditions shown in (3c)(by (2)).

Remark 2 Based on Lemma 1, The equivalent conditions for nonprimitive primitive polynomials given in Theorem 4 can be easily checked.

In studying the injective compression mappings, the so-called strongly primitive polynomial is introduced [1], it is defined to be the primitive polynomial with $h_{f}(x) \neq 1\left(\bmod 2, f_{0}(x)\right)$ when $e=2$, and to be the primitive polynomial with $h_{f}(x)\left(h_{f}(x)+1\right) \neq 1\left(\bmod 2, f_{0}(x)\right)$ when $e \geq 3$. Now from Theorem 3 we get imeadiately
Corollary $1 f(x)$ is strongly primitive if and only if $f(x)$ is nondegenerative primitive, i.e., $\operatorname{Qper}(f(x))_{2^{e}}=\operatorname{per}(f(x))_{2^{e}}$.

3 Compressing Mappings on ML-Sequences

Let $f(x)$ be a primitive polynomial of degree n over $Z /\left(2^{e}\right)$, We denote $G(f(x))_{2^{e}}$ the set of all sequences over $Z /\left(2^{e}\right)$ generated by $f(x), S(f(x))_{2^{e}}=\{\alpha \in G(f(x))$ $\left.\mid \alpha_{0} \neq \mathbf{0}\right\}$ the set of all ML-sequences over $Z /\left(2^{e}\right)$ generated by $f(x)$ and $G F(2)^{\infty}$ the set of all sequences over $G F(2)$. For $\alpha \in G(f(x))_{2^{e}}$, we denote α_{i} the i th level component of α. Set $T=2^{n}-1$, by (3), we have

$$
x^{2^{k-1} T}-1=2^{k} h_{k}(x) \quad\left(\bmod f(x), 2^{e}\right)
$$

where $k=1,2, \ldots, e-1, \operatorname{deg} h_{k}(x)<n$ and $h_{k}(x) \neq 0(\bmod 2)$. In fact $h_{1}(x)=$ $h_{f}(x)(\bmod 2), h_{2}(x)=\ldots=h_{e-1}(x)=h_{f}(x)\left(h_{f}(x)+1\right)(\bmod 2, f(x))$.

Let $\alpha=\left\{a_{i}\right\}_{i=0}^{\infty}$ and $\beta=\left\{b_{i}\right\}_{i=0}^{\infty}$ be two sequences over $Z /\left(2^{e}\right)$, define $\alpha+\beta=\left\{a_{i}+b_{i}\right\}_{i=0}^{\infty}, \alpha \beta=\left\{a_{i} b_{i}\right\}_{i=0}^{\infty}$ and $x \alpha=\left\{a_{i}\right\}_{i=0}^{\infty}=\left\{a_{i+1}\right\}_{i=0}^{\infty}$. For $g(x)=\sum_{j=0}^{n} c_{j} x^{j}$ over $Z /\left(2^{e}\right)$, then $g(x) \alpha=g(x)\left\{a_{i}\right\}_{i=0}^{\infty}=\left\{\sum_{j=0}^{n} c_{j} a_{j+i}\right\}_{i=0}^{\infty}$.
$[1,6,7]$ propose the following injectiveness theorem.
Theorem $5[1,6,7]$ Let $f(x)$ be a primitive polynomial over $Z /\left(2^{e}\right), \alpha, \beta \in$ $G(f(x))_{2^{e}}$, then $\alpha=\beta$ if and only if $\alpha_{e-1}=\beta_{e-1}$. If $f(x)$ is strongly primitive over $Z /\left(2^{e}\right), \varphi\left(x_{0}, x_{1}, \ldots, x_{e-1}\right)=x_{e-1}+c x_{e-2}+\eta\left(x_{0}, x_{1}, \ldots, x_{e-3}\right)$ is a Boolean function of e variables, where $\eta\left(x_{0}, x_{1}, \ldots, x_{e-3}\right)$ is a Boolean function of $e-2$ variables, $c=0$ or 1 , then for $\alpha, \beta \in G(f(x))_{2^{e}}, \alpha=\beta$ if and only if $\varphi\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{e-1}\right)=\varphi\left(\beta_{0}, \beta_{1}, \ldots, \beta_{e-1}\right) \operatorname{over} G F(2)$.

By theorem 5, the compression mapping x_{e-1} or $x_{e-1}+c x_{e-2}+\eta\left(x_{0}, \ldots, x_{e-3}\right)$ on $G(f(x))_{2^{e}}$ is injective, that is, the binary sequence α_{e-1} or $\alpha_{e-1}+c \alpha_{e-2}+$ $\eta\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{e-3}\right)$ can uniquely determine its original sequence α, in other words, α_{e-1} or $\alpha_{e-1}+c \alpha_{e-2}+\eta\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{e-3}\right)$ contains all information of α.

We study the injectiveness of general compression mappings in this section. Let $\varphi\left(x_{0}, \ldots, x_{e-1}\right)$ be a Boolean function with e variables, if the mapping

$$
\varphi:\left\{\begin{array}{c}
G(f(x))_{2^{e}} \rightarrow G F(2)^{\infty} \\
\alpha=\alpha_{0}+\alpha_{1} 2+\ldots+\alpha_{e-1} 2^{e-1} \mapsto \varphi\left(\alpha_{0}, \ldots, \alpha_{e-1}\right)
\end{array}\right.
$$

is injective, then $\varphi\left(x_{0}, \ldots, x_{e-1}\right)$ contains x_{e-1} clearly, i.e., $\varphi\left(x_{0}, \ldots, x_{e-2}, 0\right) \neq$ $\varphi\left(x_{0}, \ldots, x_{e-2}, 1\right)$.

Definition: Let $B=\left\{x_{0}^{i_{0}} x_{1}^{i_{1}} \ldots x_{e-1}^{i_{e-1}}-i_{k}=0\right.$ or $\left.1, k=0,1, \ldots, e-1\right\}$ be the set of all single terms of Boolean functions of e variables, define the order in B as follows:

$$
x_{0}^{i_{0}} x_{1}^{i_{1}} \ldots x_{e-1}^{i_{e-1}}>x_{0}^{j_{0}} x_{1}^{j_{1}} \ldots x_{e-1}^{j_{e-1}}
$$

provided that

$$
i_{0}+i_{1} \cdot 2+\ldots+i_{e-1} \cdot 2^{e-1}>j_{0}+j_{1} \cdot 2+\ldots+j_{e-1} \cdot 2^{e-1}
$$

Lemma 2 [10] Let $f(x)$ be a strongly primitive polynomial of degree n over $Z /\left(2^{e}\right), e \geq 3, \varphi\left(x_{0}, x_{1}, \ldots, x_{e-1}\right)$ is a Boolean function of e variables and $\varphi\left(x_{0}, x_{1}, \ldots, x_{e-1}\right) \neq 0$ and 1. Let $x_{k_{0}} x_{k_{1}} \ldots x_{k_{t-1}}$ be the term of the maximal order in $\varphi\left(x_{0}, x_{1}, \ldots, x_{e-1}\right)$ and the product $x_{0} x_{1}$ of x_{0} and x_{1} is not a divisor of $x_{k_{0}} x_{k_{1}} \ldots x_{k_{t-1}}$, where $1 \leq t \leq e-1,0 \leq k_{0}<k_{1}<\ldots<k_{t-1} \leq e-1$. Then for $\alpha, \beta \in S(f(x))_{2^{e}}, \varphi\left(\alpha_{0}, \ldots, \alpha_{e-1}\right)=\varphi\left(\beta_{0}, \ldots, \beta_{e-1}\right)$ implies $\alpha_{0}=\beta_{0}$.

Lemma 3 [10] Let $f(x)$ be a primitive polynomial of degree n over $Z /\left(2^{e}\right)$, $e \geq 3, \alpha, \beta \in G(f(x))_{2^{e}}$ and $\alpha_{0}=\beta_{0}$, then, for $3 \leq k \leq e-1$, over $G F(2)$

$$
\left(x^{2^{k-2} T}-1\right)\left(\alpha_{k}+\beta_{k}\right)=\left(\alpha_{k-1}+\beta_{k-1}\right) h_{2}(x) \alpha_{0}+h_{2}(x)\left(\alpha_{1}+\beta_{1}\right)
$$

and

$$
\left(x^{T}-1\right)\left(\alpha_{2}+\beta_{2}\right)=\left(\alpha_{1}+\beta_{1}\right) h_{1}(x) \alpha_{0}+h_{1}(x)\left(\alpha_{1}+\beta_{1}\right)
$$

Lemma 4 [10] Let $f(x)$ be a primitive polynomial of degree n over $Z /\left(2^{e}\right)$, $e \geq 3, \alpha, \beta \in G(f(x))_{2^{e}}$ and $\alpha_{0}=\beta_{0} \neq \mathbf{0}$. If $\left(\alpha_{1}+\beta_{1}\right) h_{1}(x) \alpha_{0} h_{2}(x) \alpha_{0}=$ $h_{1}(x)\left(\alpha_{1}+\beta_{1}\right) h_{2}(x) \alpha_{0}$ over $G F(2)$, then $\alpha_{1}=\beta_{1}$

Theorem 6 Let $f(x)$ be a strongly primitive polynomial of degree n over $Z /\left(2^{e}\right)$, $e \geq 3, \varphi\left(x_{0}, \ldots, x_{e-1}\right)=x_{e-1}+\eta\left(x_{0}, \ldots, x_{e-2}\right)$ is a Boolean function of e variables, for $\alpha, \beta \in S(f(x))_{2^{e}}$, if

$$
\begin{equation*}
\left(\varphi\left(\alpha_{0}, \ldots, \alpha_{\epsilon-1}\right)+\varphi\left(\beta_{0}, \ldots, \beta_{\epsilon-1}\right)\right) h_{2}(x) \alpha_{0}=\mathbf{0} \tag{7}
\end{equation*}
$$

then $\alpha=\beta$.
Proof First we show $\alpha_{0}=\beta_{0}$. Set $T=2^{n}-1$. $x^{2^{e-2} T}-1$ acts on (7), then $\left(h_{2}(x) \alpha_{0}+h_{2}(x) \beta_{0}\right) h_{2}(x) \alpha_{0}=\mathbf{0}$ since $\left(x^{2^{e-2} T}-1\right) \alpha_{e-1}=h_{2}(x) \alpha_{0},\left(x^{2^{e-2} T}-\right.$ 1) $\beta_{e-1}=h_{2}(x) \beta_{0}$ and the periods of $\eta\left(\alpha_{0}, \ldots, \alpha_{e-2}\right)$ and $\eta\left(\beta_{0}, \ldots, \beta_{e-2}\right)$ divide $2^{e-2} T$. So $h_{2}(x)\left(\alpha_{0}+\beta_{0}\right) h_{2}(x) \alpha_{0}=\mathbf{0}$ which implies $\alpha_{0}+\beta_{0}=\mathbf{0}$ since $\alpha_{0}+\beta_{0}$ is $\mathbf{0}$ or an ML-sequence. Thus $\alpha_{0}=\beta_{0}$.

If $e=3$, then $\varphi\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)+\varphi\left(\beta_{0}, \beta_{1}, \beta_{2}\right)=\alpha_{2}+\beta_{2}+\eta\left(\alpha_{0}, \alpha_{1}\right)+\eta\left(\beta_{0}, \beta_{1}\right)$. The period of $\alpha_{1}+\beta_{1}$ divides T since $\alpha_{0}=\beta_{0}$. So the period of $\eta\left(\alpha_{0}, \alpha_{1}\right)+$ $\eta\left(\beta_{0}, \beta_{1}\right)$ divides T. Thus the period of $\left(\eta\left(\alpha_{0}, \alpha_{1}\right)+\eta\left(\beta_{0}, \beta_{1}\right)\right) h_{2}(x) \alpha_{0}$ divides T. $x^{T}-1$ acts on

$$
\begin{equation*}
\left(\alpha_{2}+\beta_{2}+\eta\left(\alpha_{0}, \alpha_{1}\right)+\eta\left(\beta_{0}, \beta_{1}\right)\right) h_{2}(x) \alpha_{0}=\mathbf{0} \tag{8}
\end{equation*}
$$

then $\mathbf{0}=\left(x^{T}-1\right)\left(\left(\alpha_{2}+\beta_{2}\right) h_{2}(x) \alpha_{0}\right)=\left(x^{T}-1\right)\left(\alpha_{2}+\beta_{2}\right) h_{2}(x) \alpha_{0}$. And by lemma 3, we have

$$
\left(\alpha_{1}+\beta_{1}\right) h_{1}(x) \alpha_{0} h_{2}(x) \alpha_{0}=h_{1}(x)\left(\alpha_{1}+\beta_{1}\right) h_{2}(x) \alpha_{0}
$$

Thus $\alpha_{1}=\beta_{1}$ by lemma 4. So $\left(\alpha_{2}+\beta_{2}\right) h_{2}(x) \alpha_{0}=\mathbf{0}$ by (8). $\alpha_{2}+\beta_{2}$ is $\mathbf{0}$ or an $M L$-sequence since $\alpha_{1}=\beta_{1}$ and $\alpha_{0}=\beta_{0}$. Therefore $\alpha_{2}=\beta_{2}$ because the product of two $M L$-sequences over $G F(2)$ is not $\mathbf{0}$.

If $e>3$, set

$$
\begin{aligned}
\eta_{e-2}\left(x_{0}, \ldots, x_{e-2}\right) & =\eta\left(x_{0}, \ldots, x_{e-2}\right) \\
& =x_{e-2} \eta_{e-3}\left(x_{0}, \ldots, x_{e-3}\right)+\mu_{e-3}\left(x_{0}, \ldots, x_{e-3}\right)
\end{aligned}
$$

and in general, we set

$$
\eta_{k}\left(x_{0}, \ldots, x_{k}\right)=x_{k} \eta_{k-1}\left(x_{0}, \ldots, x_{k-1}\right)+\mu_{k-1}\left(x_{0}, \ldots, x_{k-1}\right)
$$

$k=e-2, e-3, \ldots, 2 . x^{2^{e-3} T}-1$ acts on (7), we have

$$
\begin{aligned}
& \left(x^{2^{e-3} T}-1\right)\left(\alpha_{e-1}+\beta_{e-1}+\alpha_{e-2} \eta_{e-3}\left(\alpha_{0}, \ldots, \alpha_{e-3}\right)\right. \\
+\quad & \left.\beta_{e-2} \eta_{e-3}\left(\beta_{0}, \ldots, \beta_{e-3}\right)\right) h_{2}(x) \alpha_{0}=\mathbf{0}
\end{aligned}
$$

that is

$$
\left(x^{2^{e-3} T}-1\right)\left(\alpha_{e-1}+\beta_{e-1}+\eta_{e-3}\left(\alpha_{0}, \ldots, \alpha_{e-3}\right)+\eta_{e-3}\left(\beta_{0}, \ldots, \beta_{e-3}\right)\right) h_{2}(x) \alpha_{0}=\mathbf{0}
$$

By lemma 3,

$$
\begin{aligned}
& \left(\left(\alpha_{e-2}+\beta_{e-2}\right) h_{2}(x) \alpha_{0}+h_{2}(x)\left(\alpha_{1}+\beta_{1}\right)\right. \\
+\quad & \left.\eta_{e-3}\left(\alpha_{0}, \ldots, \alpha_{e-3}\right)+\eta_{e-3}\left(\beta_{0}, \ldots, \beta_{e-3}\right)\right) h_{2}(x) \alpha_{0}=\mathbf{0}
\end{aligned}
$$

that is

$$
\begin{align*}
& \left(\left(\alpha_{e-2}+\beta_{e-2}+\eta_{e-3}\left(\alpha_{0}, \ldots, \alpha_{e-3}\right)+\eta_{e-3}\left(\beta_{0}, \ldots, \beta_{e-3}\right)\right) h_{2}(x) \alpha_{0}\right. \\
= & h_{2}(x)\left(\alpha_{1}+\beta_{1}\right) h_{2}(x) \alpha_{0} \tag{9}
\end{align*}
$$

If $e>4, x^{2^{e-4} T}-1$ acts on (9) continuously, and so on, then we get

$$
\begin{align*}
& \left(\left(\alpha_{k}+\beta_{k}+\eta_{k-1}\left(\alpha_{0}, \ldots, \alpha_{k-1}\right)+\eta_{k-1}\left(\beta_{0}, \ldots, \beta_{k-1}\right)\right) h_{2}(x) \alpha_{0}\right. \\
= & h_{2}(x)\left(\alpha_{1}+\beta_{1}\right) h_{2}(x) \alpha_{0} \tag{10}
\end{align*}
$$

where $k=e-2, e-3, \ldots, 2$. Finally, $x^{T}-1$ acts on

$$
\left(\left(\alpha_{2}+\beta_{2}+\eta_{1}\left(\alpha_{0}, \alpha_{1}\right)+\eta_{1}\left(\beta_{0}, \beta_{1}\right)\right) h_{2}(x) \alpha_{0}=h_{2}(x)\left(\alpha_{1}+\beta_{1}\right) h_{2}(x) \alpha_{0}\right.
$$

and we get $\left(\alpha_{1}+\beta_{1}\right) h_{1}(x) \alpha_{0} h_{2}(x) \alpha_{0}=h_{1}(x)\left(\alpha_{1}+\beta_{1}\right) h_{2}(x) \alpha_{0}$. So $\alpha_{1}=\beta_{1}$ by lemma 4 and $\alpha_{k}=\beta_{k}$ by (10), $k=2,3, \ldots e-2$. Lastly, $\alpha_{e-1}=\beta_{e-1}$ by (7). Therefore $\alpha=\beta$.

Corollary 2 Let $f(x)$ be a strongly primitive polynomial of degree n over $Z /\left(2^{e}\right)$, $e \geq 3, \varphi\left(x_{0}, \ldots, x_{e-1}\right)=x_{e-1}+\eta\left(x_{0}, \ldots, x_{e-2}\right)$ is a Boolean function of e variables, then for $\alpha, \beta \in S(f(x))_{2^{e}}, \alpha=\beta$ if and only if $\varphi\left(\alpha_{0}, \ldots, \alpha_{e-1}\right)=$ $\varphi\left(\beta_{0}, \ldots, \beta_{e-1}\right)$

Theorem 7 Let $f(x)$ be a strongly primitive polynomial of degree n over $Z /\left(2^{e}\right)$, $e \geq 3, \varphi\left(x_{0}, x_{1}, \ldots, x_{e-1}\right)$ is a Boolean function of e variables containing x_{e-1}, and $x_{k_{0}} x_{k_{1}} \ldots x_{k_{t-1}}$ is the term of the maximal order in $\varphi\left(x_{0}, x_{1}, \ldots, x_{e-1}\right)$. If $x_{k_{0}} x_{k_{1}} \ldots x_{k_{t-1}}$ is not divided by x_{0} and x_{1}, i.e. $k_{0} \geq 2$, then the compression mapping

$$
\varphi:\left\{\begin{array}{c}
S(f(x))_{2^{e}} \rightarrow G F(2)^{\infty} \\
\alpha=\alpha_{0}+\alpha_{1} 2+\ldots+\alpha_{e-1} 2^{e-1} \stackrel{ }{\mapsto} \varphi\left(\alpha_{0}, \ldots, \alpha_{e-1}\right)
\end{array}\right.
$$

is injective, i.e., for $\alpha, \beta \in S(f(x))_{2^{e}}$, then $\alpha=\beta$ if and only if $\varphi\left(\alpha_{0}, \ldots, \alpha_{e-1}\right)=$ $\varphi\left(\beta_{0}, \ldots, \beta_{e-1}\right)$.
Proof If $t=1$, the result follows immediately from corollary 2. Assume $t>1$ in the following.

Let $\alpha, \beta \in S(f(x))_{2^{e}}$ and $\varphi\left(\alpha_{0}, \ldots, \alpha_{e-1}\right)=\varphi\left(\beta_{0}, \ldots, \beta_{e-1}\right)$, then $\alpha_{0}=\beta_{0}$ by lemma 2.
$\varphi\left(x_{0}, x_{1}, \ldots, x_{e-1}\right)$ contains x_{e-1}, that is, $k_{t-1}=e-1$, so let

$$
\begin{equation*}
\varphi\left(x_{0}, \ldots, x_{e-1}\right)=x_{e-1} \eta\left(x_{0}, \ldots, x_{e-2}\right)+\lambda\left(x_{0}, \ldots, x_{e-2}\right) \tag{11}
\end{equation*}
$$

where $\eta\left(x_{0}, \ldots, x_{e-2}\right) \neq 0$. The term of maximal order in $\eta\left(x_{0}, \ldots, x_{e-2}\right)$ is $x_{k_{0}} x_{k_{1}} \ldots x_{k_{t-2}}$. Thus we set $\eta_{k_{t-2}}\left(x_{0}, \ldots, x_{k_{t-2}}\right)=\eta\left(x_{0}, \ldots, x_{e-2}\right)$ and

$$
\eta_{k_{t-2}}\left(x_{0}, \ldots, x_{k_{t-2}}\right)=x_{k_{t-2}} \eta_{k_{t-3}}\left(x_{0}, \ldots, x_{k_{t-3}}\right)+\mu_{k_{t-2}-1}\left(x_{0}, \ldots, x_{k_{t-2}-1}\right)
$$

In general, we set

$$
\begin{equation*}
\eta_{k_{s}}\left(x_{0}, \ldots, x_{k_{s}}\right)=x_{k_{s}} \eta_{k_{s-1}}\left(x_{0}, \ldots, x_{k_{s-1}}\right)+\mu_{k_{s}-1}\left(x_{0}, \ldots, x_{k_{s}-1}\right) \tag{12}
\end{equation*}
$$

where $s=t-2, t-1, \ldots, 2,1$, and

$$
\begin{equation*}
\eta_{k_{0}}\left(x_{0}, \ldots, x_{k_{0}}\right)=x_{k_{0}}+\mu_{k_{0}-1}\left(x_{0}, \ldots, x_{k_{0}-1}\right) \tag{13}
\end{equation*}
$$

Set $g_{i}(x)=\prod_{k}\left(x^{2^{k-1} T}-1\right)$, where k takes over $k_{i}, k_{i+1}, \ldots, k_{t-1}$ and $i=$ $1,2, \ldots, t-1 . g_{1}(x)$ acts on $\varphi\left(\alpha_{0}, \ldots, \alpha_{e-1}\right)=\varphi\left(\beta_{0}, \ldots, \beta_{e-1}\right)$, then, by (11), (12) and (13), we get

$$
\left(\alpha_{k_{0}}+\beta_{k_{0}}+\mu_{k_{0}-1}\left(\alpha_{0}, \ldots, \alpha_{k_{0}-1}\right)+\mu_{k_{0}-1}\left(\beta_{0}, \ldots, \beta_{k_{0}-1}\right)\right) h_{2}(x) \alpha_{0}=\mathbf{0}
$$

So $\alpha=\beta\left(\bmod 2^{k_{0}+1}\right)$ by theorem 6.
(i) If $t=2$, then

$$
\begin{aligned}
& \alpha_{e-1} \eta_{k_{0}}\left(\alpha_{0}, \ldots, \alpha_{k_{0}}\right)+\beta_{e-1} \eta_{k_{0}}\left(\beta_{0}, \ldots, \beta_{k_{0}}\right) \\
+\quad & \lambda\left(\alpha_{0}, \ldots, \alpha_{e-2}\right)+\lambda\left(\beta_{0}, \ldots, \beta_{e-2}\right)=\mathbf{0}
\end{aligned}
$$

that is

$$
\begin{equation*}
\left(\alpha_{e-1}+\beta_{e-1}\right) \eta_{k_{0}}\left(\alpha_{0}, \ldots, \alpha_{k_{0}}\right)+\lambda\left(\alpha_{0}, \ldots, \alpha_{e-2}\right)+\lambda\left(\beta_{0}, \ldots, \beta_{e-2}\right)=\mathbf{0} \tag{14}
\end{equation*}
$$

By lemma 3

$$
\begin{aligned}
\left(x^{2^{e-3} T}-1\right)\left(\alpha_{e-1}+\beta_{e-1}\right) & =\left(\alpha_{e-2}+\beta_{e-2}\right) h_{2}(x) \alpha_{0}+h_{2}(x)\left(\alpha_{1}+\beta_{1}\right) \\
& =\left(\alpha_{e-2}+\beta_{e-2}\right) h_{2}(x) \alpha_{0}
\end{aligned}
$$

$x^{2^{e-3} T}-1$ acts on (14) if $e-3>k_{0}$, then by the period of $\eta_{k_{0}}\left(\alpha_{0}, \ldots, \alpha_{k_{0}}\right)$ dividing $2^{e-3} T$,

$$
\begin{aligned}
& \left(\alpha_{e-2}+\beta_{e-2}\right) h_{2}(x) \alpha_{0} \eta_{k_{0}}\left(\alpha_{0}, \ldots, \alpha_{k_{0}}\right) \\
+\quad & \left(\lambda_{e-3}\left(\alpha_{0}, \ldots, \alpha_{e-3}\right)+\lambda_{e-3}\left(\beta_{0}, \ldots, \beta_{e-3}\right)\right) h_{2}(x)=\mathbf{0}
\end{aligned}
$$

that is

$$
\begin{align*}
& \left(\left(\alpha_{e-2}+\beta_{e-2}\right) \eta_{k_{0}}\left(\alpha_{0}, \ldots, \alpha_{k_{0}}\right)\right. \\
+\quad & \left.\lambda_{e-3}\left(\alpha_{0}, \ldots, \alpha_{e-3}\right)+\lambda_{e-3}\left(\beta_{0}, \ldots, \beta_{e-3}\right)\right) h_{2}(x)=\mathbf{0} \tag{15}
\end{align*}
$$

where $\lambda_{e-3}\left(x_{0}, \ldots, x_{e-3}\right)$ is determined by

$$
\begin{aligned}
& \lambda_{e-2}\left(x_{0}, \ldots, x_{e-2}\right)=\lambda\left(x_{0}, \ldots, x_{e-2}\right) \\
= & x_{e-2} \lambda_{e-3}\left(x_{0}, \ldots, x_{e-3}\right)+\sigma_{e-3}\left(x_{0}, \ldots, x_{e-2}\right)
\end{aligned}
$$

$x^{2^{e-4}}-1$ acts on (15) continuously if $e-4 \geq k_{0}$. In general we have
$\left(\left(\alpha_{k}+\beta_{k}\right) \eta_{k_{0}}\left(\alpha_{0}, \ldots, \alpha_{k_{0}}\right)+\lambda_{k-1}\left(\alpha_{0}, \ldots, \alpha_{k-1}\right)+\lambda_{k-1}\left(\beta_{0}, \ldots, \beta_{k-1}\right)\right) h_{2}(x)=\mathbf{0}$
where $k=e-2, \ldots, k_{0}+2, k_{0}+1$. $\lambda_{k_{0}}\left(\alpha_{0}, \ldots, \alpha_{k_{0}}\right)=\lambda_{k_{0}}\left(\beta_{0}, \ldots, \beta_{k_{0}}\right)$ since $\alpha=\beta\left(\bmod 2^{k_{0}+1}\right)$.

By the case $k=k_{0}+1$ in (16), we have

$$
\begin{equation*}
\left(\alpha_{k_{0}+1}+\beta_{k_{0}+1}\right) \lambda_{k_{0}}\left(\alpha_{0}, \ldots, \alpha_{k_{0}}\right) h_{2}(x) \alpha_{0}=\mathbf{0} \tag{17}
\end{equation*}
$$

Since $\left(\alpha_{k_{0}+1}+\beta_{k_{0}+1}\right)$ is $\mathbf{0}$ or an ML-sequence over $G F(2)$ and $k_{0} \geq 2$, if $x^{2^{k-1} T}-1$ acts on (17), where $k=k_{0}$, then

$$
\begin{equation*}
\left[\left(x^{2^{k-1} T}-1\right) \eta_{k_{0}}\left(\alpha_{0}, \ldots, \alpha_{k_{0}}\right)\right]\left(\alpha_{k_{0}+1}+\beta_{k_{0}+1}\right) h_{2}(x) \alpha_{0}=\mathbf{0} \tag{18}
\end{equation*}
$$

By $\eta_{k_{0}}\left(\alpha_{0}, \ldots, \alpha_{k_{0}}\right)=x_{k_{0}}+\mu_{k_{0}-1}\left(\alpha_{0}, \ldots, \alpha_{k_{0}-1}\right)$, (18) implies

$$
\left(\alpha_{k_{0}+1}+\beta_{k_{0}+1}\right) h_{2}(x) \alpha_{0}=\mathbf{0}
$$

So $\alpha_{k_{0}+1}=\beta_{k_{0}+1}$. And by (16), we obtain $\alpha_{k}=\beta_{k}, k=k_{0}+1, \ldots, e-2$. Finally, $\alpha_{e-1}=\beta_{e-1}$ by (14).
(ii) If $t=3, g_{2}(x)$ acts on $\varphi\left(\alpha_{0}, \ldots, \alpha_{e-1}\right)=\varphi\left(\beta_{0}, \ldots, \beta_{e-1}\right)$, then

$$
\left(\alpha_{k_{1}} \eta_{k_{0}}\left(\alpha_{0}, \ldots, \alpha_{k_{0}}\right)+\beta_{k_{1}} \eta_{k_{0}}\left(\beta_{0}, \ldots, \beta_{k_{0}}\right)\right) h_{2}(x) \alpha_{0}=\mathbf{0}
$$

that is

$$
\begin{equation*}
\left(\alpha_{k_{1}}+\beta_{k_{1}}\right) \eta_{k_{0}}\left(\alpha_{0}, \ldots, \alpha_{k_{0}}\right) h_{2}(x) \alpha_{0}=\mathbf{0} \tag{19}
\end{equation*}
$$

As in case $(i), r_{k}(x)=\prod_{i=k}^{k_{1}-1}\left(x^{2^{i-1}} T-1\right)$ acts on (19), then we obtain

$$
\begin{equation*}
\left(\alpha_{k}+\beta_{k}\right) \eta_{k_{0}}\left(\alpha_{0}, \ldots, \alpha_{k_{0}}\right) h_{2}(x) \alpha_{0}=\mathbf{0} \tag{20}
\end{equation*}
$$

$k=k_{1}-1, \ldots, k_{0}+2, k_{0}+1$. So $\left(\alpha_{k_{0}+1}+\beta_{k_{0}+1}\right) \eta_{k_{0}}\left(\alpha_{0}, \ldots, \alpha_{k_{0}}\right) h_{2}(x) \alpha_{0}=\mathbf{0}$. By the process of proof in (i), we have $\alpha_{k_{0}+1}=\beta_{k_{0}+1}$. Thus $\alpha_{j}=\beta_{j}, j=$ $k_{0}+2, \ldots, k_{1}$, by (19) and (20).

Finally, as $r_{k}(x)$ acts on (19), $s_{k}(x)=\prod_{i=k}^{e-2}\left(x^{2^{i-1} T}-1\right)$ acts on,

$$
\left(\alpha_{e-1}+\beta_{\epsilon-1}\right) \eta_{k_{1}}\left(\alpha_{0}, \ldots, \alpha_{k_{1}}\right)+\lambda\left(\alpha_{0}, \ldots, \alpha_{e-2}\right)+\lambda\left(\beta_{0}, \ldots, \beta_{e-2}\right)=\mathbf{0}
$$

Similarly, we get $\alpha_{j}=\beta_{j}, j=k_{1}+1, \ldots, e-1$. Therefore $\alpha=\beta$.

References

[1] M.Q.Huang, Analysis and Cryptologic Evaluation of Primitive Sequences over an Integer Residue Ring, Doctoral Dissertation of Graduate School of USTC, Academia Sinica. 1988.
[2] Z.D.Dai, M.Q.Huang, A Criterion for Primitiveness of Polynomials over $Z /\left(2^{d}\right)$, Chinese Science Bulletin, Vol.36,No.11,June 1991.pp.892-895.
[3] Z.D.Dai and M.Q.Huang, Linear Complexity and the Minimal Polynomials of Linear Recurring Sequences Over $Z /(m)$, System Science and Mathematical Science, Vol.4,No.1,Feb.1991. pp.51-54.
[4] Z.D.Dai, Beth T., Gollman D, Lower Bounds for the Linear Complexity of Sequences over Residue Rings, Advances in Cryptology-EUROCRYPT'90, Spring-Verlag LNCS 473 (1991), Editor: I.B. Damgard. pp.189-195.
[5] Z.D.Dai, Binary Sequences Derived from ML-Sequences over Rings I:Periods and Minimal Polynomials, J. Cryptology, Vol 5, No4, 1992, pp.193-207.
[6] M.Q.Huang, Z.D.Dai, Projective Maps of Linear Recurring Sequences with Maximal p-adic Periods, Fibonacci Quart 30(1992), No.2, pp.139-143.
[7] K.C.Zeng, Z.D.Dai and M.Q.Huang, Injectiveness of Mappings from Ring Sequences to Their Sequences of Significant Bits, Symposium on Problems of Cryptology, State Key Laboratory of Information Security, Beijing, China, 1995,pp.132-141.
[8] W.F.Qi, J.J.Zhou, Distribution of 0 and 1 in Highst Level of Primitive Sequences over $Z /\left(2^{e}\right)$, Science in China, Series A, 40(6),1997,606-611.
[9] W.F.Qi, J.J.Zhou, Distribution of 0 and 1 in Highst Level of Primitive Sequences over $Z /\left(2^{e}\right)$ (II), Chinese Science Bulletin, 43(8), 1998, 633-635.
[10] W.F.Qi, Compressing Maps of Primitive Sequences over $Z /\left(2^{e}\right)$ and Analysis of Their Derivative Sequences, Doctoral Dissertation of ZhengZhou Information Engineering Institute, 1997.

[^0]: *This work was supported by Chinese Natural Science Foundation (69773015 and 19771088).

