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Abstract. At Crypto’97 Boneh and Franklin proposed a protocol to
efficiently generate shared RSA keys. In the case of two parties, the
drawback of their scheme is the need of an independent third party.
Furthermore, the security is guaranteed only if the three players follow
the protocol. In this paper, we propose a protocol that enables two parties
to evaluate any algebraic expression, including an RSA modulus, along
the same lines as in the Boneh-Franklin protocol. Our solution does not
need the help of a third party and the only assumption we make is
the existence of an oblivious transfer protocol. Furthermore, it remains
robust even if one of the two players deviates from the protocol.

1 Introduction

The general problem of private multi-party computation has motivated many so-
lutions for ten years. In 1986, Yao [26] proved the existence of secure two-party
protocols assuming the computational intractability of factoring large integers.
Goldreich, Micali and Wigderson [16] generalized this result and showed that
trapdoor functions enable to evaluate any function whose inputs are privately
owned by the parties, provided a majority of them is honest. The next year,
Ben-Or, Goldwasser and Wigderson [2] and independently Chaum, Crépeau and
Damg̊ard [8] solved the same problem under an information-theoretic approach.
Then, many papers improved the needed assumptions [18], the theoretical bo-
unds for subclasses of functions [9] or the simplicity and the efficiency of the
methods [13].

The aim of all those papers is to solve any multi-party computation pro-
blem. Accordingly the first step is always the description of the function to be
privately evaluated as a logical circuit or as a polynomial over a finite field. This
enables to reduce the problem to a very small set of elementary protocols, like
the computation of the logical AND of two bits, at the cost of polynomial but
unpractical solutions. Consequently, even if the problem of multi-party compu-
tation is theoretically solved, the design of more specific but also more efficient
protocols appears necessary.

Boneh and Franklin [5] followed this “application oriented” approach to solve
the problem of generating shared RSA keys. More precisely, some parties want to
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jointly generate an RSA modulus N = pq where p and q are prime in such a way
that, at the end of the computation, the parties are convinced that N is indeed
a product of two large primes but none of them knows its factorization. They
use the general protocol of Ben-Or, Goldwasser and Wigderson [2] to prove that
the distributed computation of N by two parties can be efficiently done with the
help of a third party, assuming the three players do not collude and follow the
protocol. They also prove that the test N = pq with p and q two prime numbers
can be efficiently done by two honest parties alone, using a clever probabilistic
algorithm variant of the Miller-Rabin and the Solovay-Strassen ones, under the
assumption that the quadratic residuosity problem is computationally hard to
solve. Finally, they show how two parties can generate shared secret keys, by
themselves for small public exponents and with the help of a third party in the
general case. An experimental evaluation of the performance can be found in
[24]. It shows that a 1024-bit modulus N can be generated in only 10 minutes
with Sparc 20 machines.

Independently Cocks [10,11] has proposed another solution for the same pro-
blem that only involves two honest players but assuming the computational
intractability of a problem weaker than RSA. This protocol is analyzed and
improved in [4].

More recently, Frankel, MacKenzie and Yung [15] have improved the security
of the Boneh-Franklin protocol. Their generation scheme is efficient and robust
even when a minority of parties are malicious. But in the case of only two parties,
both of them have to be honest.

Our Results

For many applications, the protocol of Boneh and Franklin does not provide
an accurate level of security for two reasons. Firstly, it needs an independent
and honest third party. Secondly, the security is guaranteed only if the three
players do not deviate from the protocol. In this paper, we show how two parties
can efficiently generate shared RSA keys even if one of them is dishonest. From
a theoretical point of view, we only assume the existence of oblivious transfer
protocols.

From a practical point of view, our scheme is less efficient than the Boneh-
Franklin protocol based on the Ben-Or, Goldwasser and Wigderson construction
[2] which is itself based on arithmetical computation in finite fields. Anyway our
protocol is much more efficient, especially when we focus on the number of rounds
of communication, than those derived from general techniques.

The paper is organized as follows: we first recall the notion of an ANDOS
protocol. Then we propose an efficient and general protocol for the distributed
evaluation of algebraic expressions by two parties. We prove its security when
the players are honest but also its robustness when one of them is malicious.
Then, we use this protocol to generate shared RSA keys. Finally we compare
the efficiency of our scheme with general 2-party computation protocols. We also
propose in an appendix another solution, much more simple and efficient but less
general, based on the higher residue cryptosystem of Naccache and Stern [19].
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All-or Nothing Disclosure of Secrets Protocols

Oblivious transfer has been introduced in 1981 by Rabin [21] and a specific
version, namely the oblivious transfer of one bit out of two [14], soon emerged
as a very useful cryptographic primitive for many applications [18]. Brassard,
Crépeau and Robert generalized this notion in various natural ways [7] and they
proved the equivalence of those protocols in an information theoretic sense [6].

All-or Nothing Disclosure of Secrets (ANDOS) protocols [7] address the fol-
lowing problem: a merchant has n secret bit-strings and wishes to sell one of
them to a buyer who has the ability to choose which one he wants. There are
two privacy requirements: the merchant does not want the buyer to obtain in-
formation about any other secret and the buyer does not want the merchant to
learn anything about the string he has chosen.

Oblivious transfer, and consequently ANDOS, can be based on various as-
sumptions like the existence of trapdoor functions [16], of noisy channels [12] or
of quantum channels [3]. From a practical point of view, efficient implementation
can be based on the quadratic residuosity problem [7,25] or on the Diffie-Hellman
assumption [1,23].

In this paper we use ANDOS as a cryptographic primitive. In order to for-
malize its properties, let us consider that Alice sells a secret to Bob. Using the
terminology of [17], we define the view of Alice to be everything she sees during
the execution of the protocol. Let V iewA be the random variable whose value
is this view. It depends on the secrets s1, ...sn sold by Alice, on the index iB of
the secret bought by Bob and on the random tape ωA of Alice considered as a
polynomial time Turing machine. We also use the three well-known notions of
indistinguishability of random variables: the perfect one, the statistical one and
the computational one (see [17] for complete definitions). In the paper, we just
talk about indistinguishability without any other precision for simplicity reasons
but all the definitions and proofs hold in the three models and the choice of one
of them only depends on the properties of the underlying ANDOS.

We model the ANDOS protocol as a scheme that enables Alice to sell one
secret out of n to Bob in such a way that:
(Andos1) Alice does not learn anything about the index iB of the secret she has
sold:

∀j ∈ [1, n] V iewA(ωA, s1, ...sn, iB)
is indistinguishable from V iewA(ωA, s1, ...sn, j)

(Andos2) Bob does not learn anything about the other secrets:

∀s′
1, ...s

′
n such that s′

iB
= siB

V iewB(ωB , s1, ...sn, iB)
is indistinguishable from V iewB(ωB , s′

1, ...s
′
n, iB)
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2 Efficient Two-Party Evaluation of Algebraic
Expressions

The General Problem

Let us consider two players, Alice and Bob, modelled as polynomial time Turing
machines, who have private randomly chosen data dA ∈ EA and dB ∈ EB . We
want to design a two-party computation protocol which enables Alice and Bob
to compute a public function f(dA, dB) (whose result is encoded as an integer
value) modulo a prime public modulus P .

This protocol has to meet two main properties. Informally, it must be correct,
i.e. the result of the computation must be f(dA, dB) mod P . It must also be
private, i.e. a party must not be able to learn information about the other’s secret.
The exact meaning of those two properties will be made precise further on. At the
moment, let us stress that we do not develop a general two-party computation
protocol but just an efficient scheme suitable to the generation of shared RSA
keys. Consequently we need weaker notions of privacy and correctness than those
described in more general papers [2,8,16,26].

The Protocol

Let us consider polynomial size sets EA and EB and any prime modulus P . The
following protocol enables Alice and Bob to compute f(dA, dB) mod P without
revealing there private inputs dA ∈ EA and dB ∈ EB :

(1) Alice randomly chooses (αA, βA) ∈ Z
∗
P ×ZP (the coefficients of a secret line).

(2) Alice and Bob perform an ANDOS protocol where Alice sells
{γd}d∈EB

= {αA × f(dA, d) + βA mod P}d∈EB
and Bob buys γdB

= yB .
(3) Bob randomly chooses (αB , βB) ∈ Z

∗
P × ZP .

(4) Alice and Bob perform an ANDOS protocol where Bob sells
{δd}d∈EA

= {αB × f(d, dB) + βB mod P}d∈EA
and Alice buys δdA

= yA.
(5) Alice and Bob broadcast (simultaneously) (αA, βA, yA) and (αB , βB , yB).
(6) They verify αA ∈ Z

∗
P , αB ∈ Z

∗
P and (yB − βA) × αA

−1 = (yA − βB) ×
αB

−1 mod P . If this equality holds, f(dA, dB) = (yA − βB) × αB
−1 mod P ;

we say that the protocol ends successfully. Otherwise, the protocol fails and
the players stop cooperation.

Security Analysis for Honest Players

We first consider that Alice and Bob behave honestly, i.e. follow the protocol.

Theorem 1 (Correctness). If the two players follow the protocol, it always
succeeds and both of them obtain the correct value f(dA, dB) mod P .

Proof. The correctness of the protocol when the two players are honest is obvious
according to the graphical representation of figure 1. ut
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Fig. 1. Graphical representation of the two-party computation protocol

Theorem 2 (Privacy). Given f(dA, dB) mod P and their own private data,
Alice and Bob can each simulate the transcript of the protocol. Consequently
they learn nothing more than the value f(dA, dB) mod P .

Proof. We show how to simulate Alice’s view but the same proof holds for
Bob. The simulator randomly chooses αB ∈ Z

∗
P , βB ∈ ZP , δd ∈ ZP for all

d ∈ EA − {dA}. It computes δdA
= yA = αB × f(dA, dB) + βB mod P and

γd = αA × f(dA, d) + αB mod P for all d ∈ EB (including yB = γdB
). It then

randomly choose d ∈ EB and simulates the buying of the secret γd by Bob. The
property (Andos1) shows that the view of Alice during the simulation is indi-
stinguishable from what she sees when Bob really buys γdB

. It also simulates the
buying of δdA

= yA by Alice. Property (Andos2) proves that the view of Alice
is indistinguishable from her view when the secrets {δd}d∈EA−{dA} are really
computed by Bob. Finally, the simulator reveals αA, βA, yA, αB , βB , yB whose
distribution is the same as in a real interaction between Alice and Bob. ut

Security Analysis when one Player is Malicious

We only consider the situation where Alice is malicious and Bob honest. For the
reverse case, even though the protocol is not symmetrical for the two players,
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the following proofs remain valid because they do not use the order of the steps
(1) to (4).

Let us first recall a useful probabilistic lemma [20]:

Lemma 3. Let A ⊂ X × Y such that Pr {A(x, y)} = ε and, for any α < ε, let
X0 = {a ∈ X/ Pr {A(x, y)/x = a} > ε − α}. Then Pr {x ∈ X0} ≥ α.

Proof. Using the Bayes law, the probability ε = Pr(x,y)∈X×Y {A(x, y)} is equal
to Pr {x ∈ X0} Pr {A(x, y)/x ∈ X0}+Pr {x 6∈ X0} Pr {A(x, y)/x 6∈ X0} and this
is less than Pr {x ∈ X0} +

∑
a6∈X0

Pr {x = a} Pr {A(x, y)/x = a}.
So ε ≤ Pr {x ∈ X0} +

∑
a6∈X0

Pr {x = a} (ε − α). ut
For the analysis of the security of the protocol when Alice is malicious, we

note γ̃d what she sells to Bob during the first ANDOS and ỹA the value she broa-
dcasts at step (5). Such a notation enables to distinguish potentially false values
from those computed according to the protocol. The tuple ({γ̃d}d∈EB

, αA, βA, ỹA)
is simply noted t and ∆ denotes the size of EB . Finally, we often omit the modular
reduction modP for simplicity reasons but all the computation are performed
in ZP .

Definition 4. For fixed values of dA, dB and t, Alice is said to be pseudo-honest
(Ph) if γ̃dB

= αA × f(dA, dB) + βA mod P and ỹA = yA.

Definition 5. For fixed values dA and dB, the predicate successdA,dB
(t, αB , βB)

is true if the protocol ends successfully i.e. if αA 6= 0 and (γ̃dB
− βA) × αA

−1 =
(ỹA − βB) × αB

−1 mod P .

Before proving the correctness of the protocol, let us state a lemma whose
proof comes from elementary algebra arguments and that essentially says that
the intersection of two non-parallel lines is reduced to one point in (ZP )2.

Lemma 6. For fixed values of dA, dB, yA and for a given tuple t, if there exists
two different pairs (α1

B , β1
B) and (α2

B , β2
B) such that yA = α1

B ×f(dA, dB)+β1
B =

α2
B × f(dA, dB) + β2

B and successdA,dB
(t, αi

B , βi
B) for i ∈ {1, 2}, then Alice is

pseudo-honest.

Lemma 7. If Alice has a cheating strategy such that the protocol ends suc-
cessfully with probability ε, she is pseudo-honest with probability greater than
ε − 1

1−P .

Proof. The probability distribution of t = ({γ̃d}d∈EB
, αA, βA, ỹA) a priori de-

pends on dA, dB , αB and βB . Property Andos2 applied to the second ANDOS
(where Alice buys yA = αB × f(dA, dB) + βB mod P to Bob) shows that for
a fixed value yA, the distribution of t does not depend of αB and βB such
that yA = αB × f(dA, dB) + βB mod P . Consequently, this distribution only de-
pends on (dA, dB , yA) = s. Let us note D the distribution of the pairs (αB , βB)
such that yA = αB × f(dA, dB) + βB mod P and T the (non uniform) distri-
bution of tuple t for fixed values of dA, dB and yA. Let ε be the probability
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of success of the protocol according to the cheating strategy of Alice and εs

be this probability for fixed values of dA, dB and yA; ε =
∑

s Pr{s}εs and
εs = Pr(αB ,βB)∈D,t∈T {successdA,dB

(t, αB , βB)}. Let Xsbe the set of the tu-
ples t such that Pr(αB ,βB)∈D {successdA,dB

(t, αB , βB)} > 1
P−1 . Lemma 3, with

α = εs − 1
P−1 , proves that Prt∈T {t ∈ Xs} ≥ εs − 1

P−1 .
For fixed values of dA, dB and yA, there are exactly P −1 pairs (αB , βB) such

that yA = αB × f(dA, dB) + βB mod P and the distribution D of those pairs is
uniform since Bob chooses them randomly. If t belongs to Xs, the probability
Pr(αB ,βB)∈D {successdA,dB

(t, αB , βB)} is greater than 1
P−1 so there exists two

different pairs (α1
B , β1

B) and (α2
B , β2

B) such that yA = αi
B×f(dA, dB)+βi

B mod P
and successdA,dB

(t, αi
B , βi

B) for i ∈ {1, 2}. According to lemma 6, this proves
that Alice is pseudo-honest.

We can now evaluate the probability for Alice to be pseudo-honest:

∑
s

Pr{s} Pr
t∈T

{t ∈ Xs} ≥
∑

s

Pr{s}
(

εs − 1
P − 1

)
= ε − 1

P − 1

ut

Theorem 8 (Correctness). Assume Alice has a cheating strategy such that
the protocol ends successfully with probability ε. If an execution of the protocol is
successful, the probability for the result to be f(dA, dB) is greater than

ε− 1
P −1
ε .

Proof. The probability for Alice to be pseudo-honest conditioned by the know-
ledge that the protocol ends successfully is Pr {success(t, αB , βB)/Alice Ph} ×
Pr {Alice Ph} / Pr {success(t, αB , βB)}.

Lemma 7 proves Pr{Alice is pseudo-honest} ≥ ε − 1
P−1 , by definition the

probability of success is ε and finally Pr{Success/Alice Ph} = 1 because when
Alice is pseudo-honest the protocol is successful so the result of a successful
execution is correct with probability ≥ 1 − 1

ε(P−1) . ut

Dealing with multiparty computation, an important characteristic is how fair
the protocol is. During the shared generation of RSA keys, neither Alice nor Bob
can take advantage to stop the interaction before the normal end because such
keys cannot be used alone. So our protocol is unfair but it does not matter since
our aim is not to design a general multiparty computation scheme but rather to
obtain a scheme with no more properties than those needed for the generation
of shared RSA keys.

Lemma 9. The knowledge of f(dA, dB) mod P enables Alice to simulate the
transcript of successful executions of the protocol.

Proof. We already said in lemma 7 that the probability distribution of t depends
on yA. Furthermore, for randomly chosen (αB , βB) ∈ Z

∗
P × ZP and for any fixed

value of f(dA, dB), the distribution of yA = αB × f(dA, dB) + βB mod P is
uniform.
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Most of the simulation of Alice’s view is the same as in the case of honest
players (theorem 2). For fixed value of f(dA, dB), the view of Alice during the
first ANDOS is simulated by the buying of γ̃d0 for a random value d0. Her
view during the second ANDOS is simulated by the buying of yA = δdA

=
αBf(dA, dB) + βB mod P for randomly chosen αB , βB and δd for d 6= dA. Then
the simulator broadcasts αA, βA, ỹA, αB , βB , yB , where yB = γ̃d for a randomly
chosen d. Finally the simulator is reset until the verification succeeds. ut

Theorem 10 (Privacy). Assume Alice has a cheating strategy such that the
protocol ends successfully with probability ε. After a successful execution of the
protocol, Alice cannot learn more than 1

ε(P−1) log ∆ − ε− 1
P −1
ε log

(
ε − 1

P−1

)
bits

of information about dB in addition to the result f(dA, dB).

Proof. Let νdA,t be the random variable equal to the number of γ̃d correctly
computed by Alice according to the revealed line y = αA.x + βA mod P , i.e.
such that γ̃d = αAf(dA, d) + βA mod P . For fixed dA and t, the probability
for Alice to be pseudo-honest is exactly ν/∆ if she reveals ỹA = yA so the
probability ε′ for Alice to be pseudo-honest is less than

∑
dA,t Pr{dA, t}ν/∆.

Furthermore, if the protocol is successful, she exactly learns that γ̃dB
has been

correctly computed and consequently learns that dB belongs to a set of size ν. In
order to estimate the information Alice learns in addition to the result f(dA, dB),
we evaluate the expected value of log ν in case of success, E(log ν/success) =
1
ε

∑
dA,t Pr{dA, t} ν

∆ log ν. A convexity inequality applied to the function F (x) =
x log x shows that

E(log ν/success) ≥ 1
ε∆

F (ε′∆) ≥ ε − 1
P−1

ε

(
log(ε − 1

P − 1
) + log ∆

)
ut

Furthermore, it is important to notice that, if the final verification fails,
Bob is convinced that Alice has tried to cheat because the protocol is always
successful when the players behave honestly.

Theorem 10 does not prove strict privacy because, with non negligible pro-
bability, a malicious player can obtain a few bits about the other player’s secret
without being caught. But, if we consider Alice and Bob as polynomial time
Turing machines and if the probability of success is non-negligible, Alice does
not learn much more information than what she could have guessed. More pre-
cisely, for example in the case of the generation of an RSA modulus N , if the
knowledge of about − log ε bits of information enables Alice to factorize N in
polynomial time, we can use her to factorize N in polynomial time without any
other information.

When P is large enough, the previous results are simpler:

Theorem 11. Assume Alice has a cheating strategy such that the protocol ends
successfully with probability ε. If 1

P−1 = o(ε), the result of a successful execution
is correct and Alice cannot learn more than − log ε bits of Bob’s secret in addition
to f(dA, dB).



Generation of Shared RSA Keys by Two Parties 19

Special Case of Algebraic Expressions

The protocol has been stated for polynomial size sets EA and EB . When f is an
algebraic expression in ZM and the inputs dA and dB are tuples of elements of
ZM , if M can be factored in small relatively prime factors M =

∏k
i=1 mi, with

k and mi polynomial in the security parameter, the protocol can also be used,
even though M is not polynomial.

Instead of performing the protocol previously described with the large mo-
dulus M , we can use it k times with each modulus mi. Finally, if P > mi, Alice
and Bob obtain f(dA, dB) mod mi for all i and the result f(dA, dB) mod M is
computed with the Chinese remainder theorem. The more M can be factored
in relatively prime factors, the more the protocol is efficient. Consequently, as
much as possible, we use a modulus M equal to the product of the first k prime
numbers. Notice that theorem 10 can be generalized because if Alice learns less
than − log εi bits of information with probability εi at round i, she learns less
than

∑
i − log εi = − log (

∏
i εi) = − log ε with probability

∏
i εi = ε.

3 Computation of Shared RSA Keys

The computation of shared RSA keys by two parties can be efficiently performed
using the protocol of the previous section. The first step consists in computing a
candidate N = (pA +pB)× (qA + qB) and then to test whether N is the product
of two prime numbers. Such a test has be proposed by Boneh and Franklin.
Then, the second part of the generation consists in computing a shared secret
key associated with a public exponent e.

3.1 Computation of the Modulus N

Let n be the size of the modulus we want to generate and EA = EB = [0, 2n/2−1[
2

be the range where Alice and Bob randomly choose their private input dA =
(pA, qA) and dB = (pB , qB). They want to compute f((pA, qA), (pB , qB)) = (pA+
pB) × (qA + qB) = N . We choose M as the smallest product of the first prime
numbers greater than 2n. Consequently, the result of the computation modulo
M is the same as if the computation were done with integers. The function f
is an algebraic expression so that we can use the efficient protocol described in
section 2. This solves the problem of the efficient computation a shared RSA
modulus by only two parties, even if one of them is malicious.

3.2 Trial Division Test

Since Alice and Bob first choose their private data, compute N and, only after-
wards, test that pA + pB and qA + qB are indeed prime numbers, the generation
procedure has to be repeated about n2/4 times in order to obtain an RSA mo-
dulus N . Boneh and Franklin have proposed to perform a trial division test just
after the random choice of pA and pB to check that pA + pB is not divisible
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by a small prime number. This allows a reduction of the number of trials and
consequently of the complexity of the generation.

We can use our protocol again to test if a small prime number p divides
pA + pB , just taking dA = pA mod p, dB = pB mod p, EA = EB = Zp and
f(x, y) = 0 if x + y = 0 mod p and f(x, y) = 1 otherwise. If during one trial
division test the result 1 is obtained, Alice and Bob try again with new values
pA and pB . Consequently, if the test succeeds, Alice only learns that pA + pB 6=
0 mod p, and she would have learned it anyway after the test N = pq.

In addition to the generic cheating strategy analyzed in theorem 10, Alice
can use an input value p̃A different from pA mod p as input. If she does this,
she learns that p̃A + pB 6= 0 mod p, i.e log(p)/p bits of pB . Since Bob cannot
know if she tried to cheat, Alice can make the protocol restart until she learns
as much information as possible. If we note P the set of tested prime numbers,
the information learned by Alice if she is malicious is less than

∑
p∈P log(p)/p

bits. If P is the set of the first ` prime numbers, this leads to a maximal amount
of information less than log(` ln `). As an example, for n = 1024 one can test
the first 200 prime numbers as it is adviced in [24]. With our protocol, Alice can
learn at most 9 bits of information about pB .

3.3 Efficiency Improvement

A more efficient and more secure way to choose secret data that have more chance
to lead to an RSA modulus consists in choosing pA and pB (resp. qA and qB)
such that pA +pB is not divisible by a very small prime number. More precisely,
let M ′ be a product of the first odd prime numbers such that M ′ ≈ 2n/2−1. The
choice of pA and pB by Alice and Bob is performed as follows:

(1) Alice randomly chooses p′
A ∈ Z

∗
M ′ , pA ∈ ZM ′ ,

(2) Bob randomly chooses p′
B ∈ Z

∗
M ′ , ρB ∈ ZM ′ ,

(3) Alice and Bob perform a protocol as described in section 2 with
dA = (p′

A, pA), dB = (p′
B , ρB) and

f((p′
A, pA), (p′

B , ρB)) = p′
A × p′

B − pA − ρB mod M ′,
(4) Bob obtains the value δ and computes pB = δ + ρB mod M ′.

This protocol enables Alice and Bob to privately and efficiently obtain pA

and pB such that none of the first prime numbers divides pA + pB .
Alice could try to cheat using p′

A 6∈ Z
∗
M ′ but the design of the two-party

computation protocol obliges Alice and Bob to input data in Z
∗
M ′ × ZM ′ . Fur-

thermore, the knowledge of pB = p′
A × p′

B − pA mod M ′ does not help Bob to
learn more than pA + pB ∈ Z

∗
M ′ because ∀p′

B ∈ Z
∗
M ′ p′

B × Z
∗
M ′ = Z

∗
M ′ . After

this preliminary step, Bob could use a different pB but this would just reduce
the efficiency of the protocol and cannot be used as a way to cheat. The aim of
this computation is just to help Bob in choosing a reasonable pB .

In conclusion, an efficient strategy to compute a good N consists in generating
pA and pB with this protocol, possibly testing a few more trial divisions, doing
the same with qA and qB , computing N and finally testing if N is actually the
product of two large prime integers.
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It would be interesting to generate an RSA modulus N such that the prime
factors p and q are strong primes. We do not know how to achieve this but we
can test if (p − 1)/2 is divisible by small prime numbers or not. To do this,
we just use the protocol designed for the trial division test, with the function
f(x, y) = 0 if (x + y − 1)/2 = 0 mod p and f(x, y) = 1 otherwise.

3.4 Generation of the Shared Private Keys

When N has been generated and tested, the last step is the choice of a public
exponent e and of a secret one d. More precisely, we want Alice to know dA and
Bob dB such that e × (dA + dB) = 1 mod φ(N).

Let φA be N − pA − qA + 1 and φB be pB + qB . Let M ′′ be the smallest
product of the first prime integers greater than 2e × 2n.

(1) Alice randomly chooses ζA ∈ Ze,
(2) Alice and Bob privately compute (φA + φB)−1 − ζA mod e and only Bob

obtains the result ζB , as in the protocol of section 3.3,
(3) Alice randomly chooses TA ∈ ZM ′′ ,
(4) Alice and Bob privately compute (φA + φB) × (ζA + ζB) + 1 − TA mod M ′′

and only Bob obtains the result TB ,
(5) Alice computes its secret share dA = bTA/ec,
(6) Bob computes its secret share dB = dTB/ee,
(7) Alice and Bob verify that e(dA + dB) = 1 mod φ(N).

In order to verify if dA and dB has been correctly computed, Alice chooses a
random message m and sends c = me×dA mod N to Bob who replies the original
message m to prove that he knows dB . Then Bob verifies in the same way that
Alice owns a correct exponent dA.

This protocol is based on the algorithm Boneh and Franklin used to compute
e−1 mod φ(N). They have noticed that this computation can be done without
reduction modulo φ(N) but just with reductions modulo e. Their algorithm is
the following: first compute ζ = −φ(N)−1 mod e and then take T = ζφ(N) + 1.
Since e divides T , d = T/e verifies ed = 1 mod φ(N).

4 Comparison with General 2-Party Computation
Schemes

We said in the introduction that, from a theoretical point of view, there al-
ready exist general protocols that enable to privately evaluate expressions like
N = (pA + pB) × (qA + qB) in polynomial time [26,16,18,13]. All those schemes
transform 2-party computations into secure evaluation of logical circuits. This
enables to reduce any computation to the combination of a very small set of
elementary protocols, like the computation of the logical AND of two bits, at
the cost of polynomial but unpractical solutions.

If we focus on the multiplication N = (pA + pB) × (qA + qB), with pA, pB ,
qA and qB , four (n/2 − 1)-bit integers, the most practical logical circuit able to
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evaluate N needs O(n2) gates and is depth is O(n). Using the results of [13],
we obtain a protocol that enable to privately compute N with a communication
complexity of O(n2) and with at least O(n) rounds of communication (for a fixed
value of the security parameter).

In order to compare this complexity with our scheme’s, we need to choose
an ANDOS protocol. The one described in [25] has a communication complexity
C(t) = 2α(

√
log t) when one secret out of t is sold and needs a constant number

of rounds of communication (α ≈ 1.1). The global communication complexity
of our scheme is 2

∑k
i=1 C(p2

i ) with 2n ≈ ∏k
i=1 pi and pi the ith prime number.

Consequently, this complexity is about 2
∫ n

2 2α
√

log t/log tdt (see for example [22])
and this expression is about 2n × 2α

√
log n/log n = o(nβ) ∀β > 1. So, asymptoti-

cally, our solution is about O(n) times more efficient than general ones in term
of communication complexity. Furthermore, the k ANDOS can be parallelized so
the resulting protocol as a constant number of rounds of communication while
general solutions need at least O(n) rounds.

¿From a more practical point of view, using the results of [25], we estimate the
communication to 2MB when n = 768 bits. A general solution would clearly be
much less efficient since it would need at least (n/2)2 ≈ 150.000 Rabin oblivious
transfer [21] and a few hundred rounds of communication.

In conclusion, our scheme is much more practical than those derived from
general solutions while it is still based on very general security assumptions.
But the secure computation of a shared RSA keys always seems to need efficient
computers linked by high rate networks. We propose in appendix an alternative
solution, less general since it is based on a specific number theoretical problem
but that enables very efficient computations and transmissions.
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A An Efficient Solution Based on Higher Residues
Cryptosystem

Using a specific number theoretical problem, we can also propose a much more
simple and efficient solution that does not need to perform many rounds of com-
munication. It is based on a trapdoor version of the discrete logarithm problem.
More precisely, Alice chooses parameters for the Naccache Stern cryptosystem
[19] based on higher residues, i.e σ a squarefree odd B-smooth integer greater
than 2n, where B is a small integer, an RSA modulus NA such that σ divides
φ(NA), g an element whose multiplicative order modulo NA is a large multiple
of σ.

The computation of N = (pA + pB) × (qA + qB) can be easily done with the
following protocol that, on secret inputs xA and xB of Alice and Bob make them
obtain yA and yB such that yA + yB = xA × xB mod σ:

– Alice chooses a random x, computes xσgxA mod NA = c and sends it to Bob,
– Bob chooses yB mod σ and x′, computes cxBx′σg−yB mod NA = d and sends

d to Alice,
– Alice decrypts d and obtains yA = xA × xB − yB mod σ.

The security analysis of this protocol is out of the scope of this appendix.
We can just notice that a commitment of pA, pB , qA and qB and a verification
of the correctness of the result have to be added (as in [4]). This can be done
using modular exponentiation and its homomorphic property.
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