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Abstract. We show that Toeplitz matrices generated by sequences drawn 
from small biased distributions provide hashing schemes applicable to se- 
cure message authentication. This work extends our previous results from 
Crypto’94 [4] where an authentication scheme based on Toeplitz matrices 
generated by linear feedback shift registers was presented. 
Our new results have as special case the LFSR-based construction but ex- 
tend to a much wider and general family of sequences, including several 
simple and efficient constructions with close to optimal security. Examples 
of the new constructions include Toeplitz matrices generated by the Le- 
gendre symbols of consecutive integers modulo a prime (of size significantly 
shorter than required by public-key modular arithmetic) as well as other 
algebraic constructions. The interest of these schemes extends beyond the 
proposed cryptographic applications to other uses of universal hashing (in- 
cluding other cryptographic applications). 

1 Introduction 

In Crypta ’94, we introduced [4] a new scheme for hash functions suitable for message 
authentication in the symmetric key model. T h e  scheme uses a linear feedback shift 
register sequence for the  generation of a Boolean Toeplitz mat r ix  that i n  t u r n  is used 
to hash t h e  message using matrix-vector multiplication. When combined with a one- 
t ime pad encryption of the  hash value this schemes gives (provable) unconditional 
security. 

The efficiency and simplicity of tha t  construction makes i t  a t t ract ive conceptu- 
ally as well as for practical use. In this paper we generalize the above scheme SO 
t h a t  i t  can b e  used with a variety of different “weakly random” sequences as an 
alternative to LFSRs. We prove t h a t  any sequence taken from an E-biased distribu- 
lion of sequences can be  used to generate a Toeplitz matr ix  that has all the  security 
properties for authentication that the  original LFSR-based construction had (and 
essentially t h e  same strength of a completely random matrix!). 

E-biased distributions (introduced by Naor a n d  Naor [7]) on bi t  sequences of 
length 1 are characterized by the  property t h a t  for any Boolean vector a # 0 of 
length t! and for a sequence s chosen from that distribution, the  probability of (a, 3) 
(Le., t h e  scalar product modulo 2 of a and s) being 1 deviates f rom 1/2 by at most 
E.  (See Section 2.3 for a formal definition). These sequences prove to b e  useful for 
replacement of t rue randomness in  different applications (see [7]). T h e  advantage 
of these sequences over purely random ones is tha t  they allow for easy generation, 
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simplicity and short description. All these properties translate in our case to  a 
variety of attractive schemes for secure message authentication: simple, efficient, 
requiring short keys and short authentication tags. 

In addition to LFSRs, which are a particular case of c-biased sequences, this 
class of sequences includes several constructions [7, 11 from error correcting codes 
as well as other algebraic sequences; e.g., the sequence of Legendre symbols (or 
quadratic character) of consecutive integers modulo a prime (of size significantly 
shorter than required by public-key modular arithmetic). 

Before stating our main result, we recall that in the setting of message authenti- 
cation, we use Toeplitz matrices to first hash the message and then encrypt the hash 
value using a one-time pad (or stream cipher); the resultant encrypted hash value is 
the authentication tag for the message. Therefore, the communicating parties need 
to share a description of a particular hashing matrix as their shared secret key, and 
need to append to each transmitted message the corresponding authentication tag. 
This implies the need for a family of matrices that can be generated efficiently out 
of a short seed (the secret key), result in short hash values (the authentication tag) 
and still have the required security properties. The schemes we construct in this 
paper out of .c-biased sequences satisfy all these requirements with essentially the 
same security as provided by a completely random matrix (but while the later may 
require millions of random bits to describe the function, the c-biased approach can 
do with keys in the order of 100 bits). 

Next, we state our main theorem in terms of otp-secure hash functions, a notion 
defined in [4] (see Section 2.2 below). Informally, a family of hash functions is 6-otp- 
secure if the probability of an adversary to defeat the authentication is no more than 
6 where a message is authenticated by encrypting its hash value under a one-time 

Main Theorem: L e t  Is be a f a m i l y  of Toeplitz ma t r i ces  corresponding t o  se- 
quences selected f r o m  a n  &-biased distribution 5'. T h e n  the  hashing scheme  tha t  
u ses  multiplication of t h e  message  by the  Toeplitz  m a t r i x  as  t h e  message  hash  is  
($ + E)-otp-seeure, where n is the length of the  hash  output .  

By using constructions of &-biased sequences introduced by Alon et al. [l], we 
get explicit realizations of the above theorem. In particular, we show 6-otp-secure 
constructions where 6 can be as close as desired to the optimal value 2-" (this 
is optimal since the adversary can always guess the n-bit authentication tag with 
probability 2-"). As an example, for any values of n and m, we present schemes that 
authenticate messages of length rn with authentication tags of length n, and have 
security 6 = 2-"+'. The shared key for describing such an authentication function 
is of length 2 . (n+log(n+m))  (i.e., increases only logarithmically with the message 
which is typically much longer than n). These results are presented in Section 4. 

Our proofs use as basic tools a characterization theorem from [4] that  determines 
sufficient (and necessary) conditions for a family of hash functions to be secure for 
message authentication; and Discrete Fourier analysis for proving that &-biased 
sequences induce Toeplitz hashing with the stated properties. 

The interest of our work extends beyond the proposed cryptographic applications 
to other uses of universal hashing (including other cryptographic applications). 

Pad (OtP). 
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Our work extends the work of Krawczyk [4] that  in turn follows the approach 
introduced by Carter and Wegman [lo] of basing message authentication on hash 
functions. The same approach was followed by several authors, e.g., [8, 21. We refer 
to [4] for a more complete survey of the relevant works. 
ORGANIZATION: Section 2 presents the technical background and basic notions used 
throughout the paper. Section 3 presents the proof of the Main Theorem. Section 
4 describes explicit constructions and their properties for message authentication. 

2 Technical Background 

In this section we introduce the main notions used throughout the paper as well as 
the technical background and tools. 

2.1 Toeplitz matrices 

Toeplitz matrices are characterized by having fized diagonals. More precisely, each 
left-to-right diagonal is fixed, i.e., if h - i = 1 - j for any indices 1 5 i, h 5 n, 
1 5 j , l  5 m, then A;j = Ak,l. See Figure 1 for an  example. Notice that an n x m 
Toeplitz matrix is fully described by its first column and first row (i.e., by n+m- 1 
elements). 
Notation: To any given sequence s of n + m - 1 bits we associate an n x m 
Toeplitz m a t r i z  T,, where the elements of s determine the f irs t  column and first  TOW 

of Tdl and therefore the whole matriz .  W e  m a p  the f irst  n elements  of s i n to  the 
first column of T, starting from the bottom (i.e., T,(n, 1) = sl,.. ., Ts(l, 1) = s,) 
and t h e n  the last m bits of s into the first row of T, (i.e., T,(l, 1) = sn ,T , (1 ,2)  = 
s n + l r . .  . , Ts(l, m) = sn+,,,-l), See Figure 1. W e  say that s generates T,. 

Fig. 1. The 4 x 8 Toeplitz matrix TLIOOIIO~OOI 

Toeplitz matrices of dimension n x m can be used to hash messages of length rn 
by multiplying the message (seen as a column vector) by the matrix. The resultant 
hash value has length n. It is well-known that the family of Toeplitz matrices T, with 
s chosen at random constitutes a strongly universal2 family of hash functions (see 
[S]). One of the main results in [4] is to show that when the sequence s is generated 
out of only n random bits using a random irreducible LFSR, the resultant family 
is still almost universal (or &-balanced in the terminology of (41 - see Section 2.2 
below). This is especially important when, as it is the case in practice, n << rn. Here 
we show that this result extends to any family of sequences s which are &-biased 
distributed. Explicit constructions are presented in Section 4. 
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2.2 e-balanced hashing and authentication 
Following the approach initiated by Carter and Wegman [lo] (and developed by 
several authors - e.g., [8, 2, 41) we study the message authentication model in 
which the communicating parties share a specific hash function h k ,  chosen out of 
a family of hash functions H, and use this particular function hk to authenticate 
multiple messages. The function hk is described by a (secret) key k shared by the 
parties. Each message to be authenticated is first hashed using h k  and the resultant 
hash value encrypted by xor-ing it with a secret one-time pad known only to the 
legitimate parties. We use m to denote the length of the message M ,  and n for the 
length of the resultant hash value h k ( M ) .  Notice that all the functions described here 
can work, in principle, with arbitrary and variable length messages (typically, the 
security of the authentication degrades logarithmically with the length of messages). 
The output length n is the same for all messages and can be thought of as a security 
parameter. 

The task of an adversary A that tries to break the authentication is to inter- 
cept a message M ,  sent between the legitimate parties, together with its legitimate 
authentication tag h k ( M )  @ T and replace it with another message M' (which may 
depend on M and other messages exchanged between the parties in the past ') 
for which A can produce the legal authentication tag h k ( h f ' )  @ T .  Notice that we 
assume that A does not know k or T .  (The above is called a s u b s t i t u t i o n  attack; an  
i m p e r s o n a t i o n  attack where the adversary initiates the sending of a fake message 
without the legitimate parties having a communication between them trivially has 
the minimal probability 2-" to succeed because of the use of one-time pads). 

The following definitions and theorem are from [4]. 

Def in i t i on l .  A family H of hash functions is called c-o tp-secure  if for any message 
M, and for h k  chosen according to the distribution on H, no adversary succeeds in 
the above scenario with probability larger than E .  

Definit ion2. A familyof hash functions H with a probability distribution attached 
to it is called c-balanced if 

VM # 0, Vb,  Probh(h(M) = b)  5 E 

where the probability is taken for h chosen according to the distribution on H .  

The relation between the above two definitions is given by the following theorem. 

Theorem3 [4]. If H i s  a f a m i l y  of l inear  f u n c t i o n s  relat ive  t o  t h e  bi twise  XOR 
operat ion  t h e n  H is &-otp-secure i f  and only  if H is €-balanced.  

Our goal is to prove that the families of functions that we build in this paper 
(i.e., Toeplitz hashing generated by small biased sequences) are secure for use in 
message authentication, namely, they are &-otpsecure for a very small E .  Since 
these functions use (Boolean) matrix multiplication for hashing then they are linear 
relative to XOR, and by virtue of the above theorem our task reduces to prove that 
they are c-balanced for small E .  This proof is presented in Section 3. 

we assume a chosen message attackin which messages exchanged between the legitimate 
parties can be chosen by the adversary 
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2.3 E-biased d is t r ibu t ions  

.c-biased distributions were introduced by Naor and Naor [7] (following the work of 
Vazirani [9]) as a tool for constructing small sample spaces, or more generally as a 
tool for replacement of truly random sequences with more “compact” and easier to 
generate sequences. This approach works in a variety of applications as shown in [7] 
and subsequent works. In this paper we show how c-biased distributions are useful 
for generating efficient and short-key authentication functions. More precisely, we 
prove that Toeplitz matrices generated out of c-biased sequences preserve essentially 
the same properties for hashing and authentication as completely random matrices. 

Def in i t ion4 .  Let S be a distribution on sequences of length e. Let (a ,  s) denote 
the scalar product modulo 2 of CY E (0, l}‘ and s E {O,l}f. Then, 

1. S is said to pass  the linear test (Y with bias E if IProb((a, s) = 1) - $ 1  5 E (the 

2. S is said to be an &-biased distribution if it  passes all linear tests a # 0 with 
probability taken over the choice of s from the distribution S). 

bias E .  

The case E = 0 corresponds to the uniform distribution; therefore, &-biased 
distributions can be viewed as approximations to the uniform distribution. However, 
even for very small c, there may be significant distinctions between c-biased and 
uniform distributions. In the negative side, &-biased distributions can be weakly 
random (such is the case, e.g., of LFSR sequences that are exponentially small 
biased but can be predicted from a very short prefix, or the set of all binary strings 
with Hamming weight divisible by three, proven to  be exponentially small biased 
in [3]). Fortunately, there is a positive side. First there exist some very simple and 
efficient constructions for c-biased sequences. Examples of such constructions, due to 
Alon et al. [l], are presented in Section 4. Second, in some applications these weakly 
random sequences can replace truly random bits with the advantage of simplicity 
and efficiency of generation. The results in this paper are an  example of such an 
application. 

Multiple t e s t s  If S is an  c-biased distribution then by definition S passes all 
(non-zero) linear tests with bias at most E .  Now, let Q ~ , c Y ~ , .  . . , C Y ~  be h elements 
from { O , l } f  and b l ,  bz ,  . . . , bk be k bits. What can we say about the simultaneous 
probability that (crl, s) = b l ,  (az ,  s) = b z ,  .. . , ( c Y ~ ,  s) = b k ?  Notice that if the set of 
a i l s  is linearly independent and s is chosen uniformly from (0, l}‘ then the above 
probability would be 2-k. The following theorem states that  for s drawn from the 
c-biased distribution S this probability is at most 2-k + E .  

Theorem5. Let S be an &-biased distribution on sequences of length e. Let A be a 
k x k‘ matrix of  (full) rank k, and let b be a column vector of length k then 

1 
2 k  

Prob,(A * s = b )  5 - + E 

for s taken from the distribution S. 
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Notice that this is an extension of Definition 4, which corresponds to the partic- 
ular case of 12 = 1. In other words, the power of passing single linear tests extends 
to the power of passing multiple simultaneous tests. 

As we will show in Section 3, the proof of our Main Theorem reduces to the 
above theorem. 

Naor and Naor [7] prove this property using a result by Vazirani [9, 11 that 
connects between €-biased distributions and k-wise independence; here we present 
a direct proof using Discrete Fourier analysis (and get Vazirani's Theorem a 
corollary). We present the proof of Theorem 5 in Section 3.2. 

2.4 Discre te  Fourier Transform 

In this section we bring some minimal technical background and known facts on 
discrete Fourier transform, and its relationship to E-biased distributions,that we use 
in our proof of Theorem 5 

The set of real valued functions defined on the Boolean domain (0, l)', i.e., 
functions f : (0,l) '  ---t R, has an orthonormal basis composed of the following 
functions xu, u c {I,...,.!?}: 

In other words, each real valued function over { O , l } L  can be written as a (unique) 
linear combination of the functions xu. The respective coefficients are denoted by 
f (u), i.e., f = c, f ( a ) x u .  This representation is called the (discrete) Fourier trans- 
form of the function f. 

P r o p e r t y  1 For Boolean f (i.e., f : {0,1}' -+ (0, l}), the coefficients f(u) have 
the following special form: 

f(u) = P r [ f ( z )  = ~ ~ i ~ ~ t i ]  - P r [ f ( z )  # ~ ~ i ~ ~ x i ]  = 2 .  P r [ f ( x )  = @ie,xi] - 1 

where z = (21, x2,. . . , 2') is chosen un$oormly at random. 

We need the following definition and property of the Ll-norm of the function f .  

Definition6. Let f be a function from (0, l ) '  to the real numbers. Define L1( f )  = 

c, Iml- 
Property 2 Let f and g be functions from ( 0 ,  l}' to the real numbers. Then, 
L1(fg) 5 L ( f ) L ( g ) .  

The connection between .c-biased distributions and Fourier transform is given by 
the following Lemma. Notice that probability distributions over the set of strings 
{0,1)' are real valued functions and therefore their Fourier transform is well-defined. 

Lemma 7. Let p be an c-biased probability distribution over (0, 1)'. Then, f O T  every 
subset u c (1.. .!}, ifi(a)l 5 c2-' .  
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The following lemma due to Kushilevitz and Mansour [5] relates c-biased dis- 
tributions and the norm Ll(f) ,  and plays a central role in the proof of our Main 
Theorem. 
Lemma8 [5 ] .  

where E denotes expectation, U i s  the uniform distrtbutaon and p i s  an ~ - 6 i a s e d  
distribution. 

3 Main Result 

This section is devoted to prove the Main Theorem of this paper (see the Introduc- 
tion), namely, that  Toeplitz matrices generated by c-biased sequences constitute a 
family of (2-" + E)-otp-secure hash functions. By Theorem 3, this task reduces to 
proving the following result. 

Theorem 9. Let S be distribution on  sequences of length n+m- 1 bits. Let {Ts}s 6e 
the se t  ofnxm Toeplitz matrices generated b y  the elements s E S. If the distribution 
S is c-biased then the fami l y  {Ts}s with the distribution induced b y  S is a (2-" + c ) -  
balanced f a m i l y  of hash functions. 

3.1 Proof of Theorem 9 

Following the definition of €-balanced hash functions, we need to  show that,  for any 
given vector b of length n and message M # 0 of length m, the probability that 
T, M = b is at most (2-" + E ) .  This probability is taken over the distribution on 
T, induced by choosing s from the c-biased distribution S. 

We start by transforming the representation of the problem. Notice that in a 
Toeplitz matrix each row is shifted (to the right) relative to the previous row, with 
a new element set to the first position of the row. This allows as to "swap" the roles 
of the sequence s and the message M in the following way. 

We generate a new n x (n  + m - 1) matrix AM which is cyclic and is defined by 
its first row containing n - 1 zeros and then the entries of the vector M (viewed now 
as a row vector). Each new row in AM is defined as a cyclic shift from right to left 
relative to the previous row (e.g., the second row of AM contains the vector M but 
this time prepended by n - 2 zeros and appended with one zero). It is easy to see 
that the following relationship, where the sequence s is represented by a.;iz + m - 1 
column vector, holds. (See Figure 2 for an illustration of AM . 3). 
Lemma 10. 

T, . M = b if and only  if AM . s = b . 
Therefore, the proof of Theorem 9 (and then of the Main Theorem) reduces to 

prove that for any M # 0, Prob(AM 1 s = b)  5 2-" + E ,  for s chosen according 
to the distribution S. But due to the special form of AM this is a special case of 
Theorem 5 with Ic = n and P = n -+- m - 1. We conclude the proof of our main result 
by proving Theorem 5. 
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3.2 Proof of Theorem 5 

We start by defining the following function. 

This definition can be specialized to f.,p(s) where Q is a vector of length -! and 
p a bit. 

Lemma11. L l ( f p , @ )  = 1 

Proof. The proof uses Property 1 and the definition of the norm L1. Details are 
omitted. 

Lemma 12. L l ( f A , b )  5 1 

Proof. Using Property 2 and the fact that f A , b  = n:=, fn,,b,, where a l l . .  ., ak are 
the rows of the matrix A and b = ( b l ,  . . . , bk)T, we get 

k 

L l ( f A , b )  5 n Ll(.fcr,,b,) = 1 
i=l 

where the last equality is derived from Lemma 11. 

Now, we can conclude the proof of the theorem. Notice that,  by the definition 
of f A , a ,  for any distribution on the sequences s we have the expectation E ( f ~ , a )  = 
Prob(A .  s = b).  For the uniform distribution this gives & ( f A , b )  = Probv(A s = 
b)  = 2-k, where the last equality uses the fact that A has full rank k. Then, using 
Lemma 8 and Lemma 12, we get: 

IProbs(A. s = b )  - 2-kl = I E S ( f A , b )  - &(fA,L)I 5 & .  L l ( f A , b )  5 
That  is, Probs (A .  s = b )  5 2-k + E ,  which proves the theorem. *B 

4 Explicit Constructions 

Our Main Theorem tells us that Toeplitz hashing generated out of E-biased se- 
quences, and combined with a one-time pad, provides a secure message authentica- 
tion scheme in which no adversary can break the system with chance better than 
2-" + E .  (Naturally, if the one-time pad is generated using a pseudorandom gener- 
ator or stream cipher the security of the whole authentication scheme reduces to 
that of the pseudorandom generator.) 

The  advantage of using &-biased sequences (to define the Toeplitz matrices) as 
opposed to purely random bits is that the former can be generated efficiently out of 
a short random seed (typically, in the order of 100 bits while a pure random Toeplitr 
matrix would require millions of random bits in order to hash a few megabits of 



309 

information). In particular, this implies a short shared authentication key for spec- 
ifying a particular matrix. Moreover, the process of generation of the whole matrix 
is efficient and the resultant authentication tags short. Also, let us stress that in 
practical applications there is no need to simultaneously generate or work with the 
whole matrix, but only small portions of it (e.g., one column a t  a time). 

Here we present several examples of explicit constructions of E-biased sequences 
due to Alon et al. [l], with each of these constructions translating, using our results, 
into efficient authentication schemes. The first example is intended to  show how the 
result of [4] about the quality of LFSR-based Toeplitr hashing for authentication 
can be derived as a special case of our results. We use t to denote the length of the 
c-biased sequences in these constructions and r to denote the number of random 
bits required to generate a sequence. In our setting of n x m Toeplitz matrices we 
have l = n + m - 1, and r is the length of the key that determines the specific 
shared matrix. 
LFSR CONSTRUCTION. Sequences are determined by a random seed of length r / 2  
and an irreducible polynomial over GF(2) of degree r / 2 .  The sequence of t! bits is 
generated using an LFSR loaded initially with the above seed and the connections 
corresponding to the irreducible polynomial. 
LEGENDRE SYMBOL CONSTRUCTION. Let p be a fixed prime number of length r. 
The sequences s are generated out of a random number z E (0,. . . , p  - 1). For 
1 5 i 5 l ,  s; is defined as 1 if E + i is a quadratic residue modulo p or 0 otherwise. 
(We note that the prime p is not part of the secret key but a public value). 
SCALAR PRODUCT CONSTRUCTION. Sequences s are determined by two random 
elements z,y E GF(2 ' /2) .  For 1 5 i 5 e, s, is defined as the scalar product (zi,y) 
where ti  is the i-th power of z as an element of GF(2' / ' ) .  

Theorem 13 [l]. The  above three constructions produce E-biased distributions o n  
sequences of length t! with E = &. Each sequence i s  generated out of r initial bits. 

Combining this with our Main Theorem we get the following result. 

Theorem 14. T h e  families of n x m Toeplitz matrices resulting f r o m  each of the 
above three constructions by putting 1 = n + m - 1 consti tute 6-otp-secure hashing 
schemes with 6 = & + and with each ma t r i z  described by a key of length r .  

Notice that for any fixed value of n, one can choose r such that 6 gets as close 
as desired to  the optimal value of 2-". In particular, for r = 2 n  + 2 log(n + m - 1) 
one gets 6 = 2-"+l (notice that r increases only logarithmically with the size of 
messages). By choosing r = 2 n  one gets 6 = *. In particular, for the LFSR 
construction the later parameters coincide exactly with the construction in [4]. 
Interestingly enough, the general bound proved here results in a just slightly larger 
bound than the 4 2 "  bound derived in [4] specifically for the LFSR construction. 

Finally, we remark that additional constructions of &-biased distributions exist, 
some of them based on techniques from error correcting codes. In particular, using 
dual BCH codes. See [7, 11. 
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0 0 0 1 1 1 1 1 1 1 1  
0 0 1 1 1 1 1 1 1 1 0  
0 1 1 1 1 1 1 1 1 0 0  
1 1 1 1 1 1 1 1 0 0 0  l o  

1 
0 

0 
0 

Fig. 2. The product A M .  s corresponding to M = 1’ and s = 11001101001 

Acknowledgments: I thank Oded Goldreich for helpful conversations regarding 
small biased distributions. 

References 

1. Noga Alon, Oded Goldreich, Johan Hastad, and Rene Peralta. Simple constructions 
of almost k-wise independent random variables. In 31th Annual Symposium on Foun- 
datiom of Computer Science, St. Louis, Missouri, pages 544-553, October 1990. 

2. Bierbrauer J . ,  Johansson T., Kabatianskii G., and Smeets, B., “On Families of Hash 
Functions via Geometric Codes and Concatenation”, Crypto ’99 

3. G. Even. Construction of small probability spaces for simulatiort. M.Sc. thesis, Dept. 
of Computer Science, Technion, August 1991. 

4. Krawczyk, H., “LFSR-based Hashing and Authentication”, Advances in  Cryptology 
- CRYPT0 94 Proceedings, Lecture Notes in Computer Science Vol. 839, Springer- 
Verlag, Y. G. Desmedt, ed 1994, pp. 129-139. 

5. E. Kushilevitz and Y. Mansour. “Learning decision trees using the Fourier spectrum”, 
SIAM Journal on Computing 22(6) 1331-1348, December 1993. 

6. Mansour, Y., Nisan, N., and Tiwari, P., “The Computational Complexity of Universal 
Hash Functions”, Theoretical Computer Science, 107(1):121-133, 1993. 

7. Joseph Naor and Moni Naor. Small bias probability spaces: efficient construction and 
applications. SIAM Jour. on Computing, Vol. 22, No. 4, 1993, pp. 838-856. 

8. Stinson, D.R., “Universal hashing and authentication codes”, Proc. of Crypto’91, pp. 

9. Vazirani, U.V., “Randomness, Adversaries and Computation”, Ph.D. Thesis, EECS, 

10. Wegman, M.N., and Carter, J.L., “New Hash Functions and Their Use in Authenti- 

74-85. 

UC Berkeley, 1986. 

cation tmd Set Equality”, JCSS, 2 2 ,  1981, pp. 265-279. 


	Introduction
	Technical Background
	Toeplitz matrices
	E-balanced hashing and authentication
	E-biased distributions
	Discrete Fourier Transform

	Main Result
	Proof of Theorem 9
	Proof of Theorem 5

	Explicit Constructions
	Acknowledgments
	References

