
A Block Lanczos Algorithm for Finding
Dependencies over GF(2)

Peter L. Montgomery

780 Las Colindas Road, San Rafael, CA 94903-2346 USA.
Work performed at Centrum voor Wiskunde en Informatica, Amsterdam.

Abstract. Some integer factorization algorithms require several vectors
in the null space of a sparse m x n matrix over the field GF(2). We modify
the Lanczos algorithm to produce a sequence of orthogonal subspaces of
GF(2)", each having dimension almost N, where N is the computer word
size, by applying the given matrix and its transpose to N binary vectors
at once. The resulting algorithm takes about n / (N - 0.76) iterations. It
was applied t o matrices larger than lo6 x lo6 during the factorizations
of 105-digit and 119-digit numbers via the general number field sieve.

1 Introduction

Some integer factorization algorithms require several nonzero vectors x E GF(2)"
such that BX = 0, where B is a given rn x n matrix over the field GF(2), usually
very sparse and with m < n. These include the (obsolete) continued fraction
method [9, p. 3811, quadratic sieve (QS) [13, 141, arid number field sieve [3, 111.
For example, when factoring an integer M, the QS method finds congruences

m ...

a; u p , " (mod M) (1 5 j 5 n)
a= 1

Here the p i are primes (or -1) and the bij are exponents, mostly zero. QS then
tries to find S g { 1, 2, . - - , n} such that both sides of n,,, a: z njES flzl p:*'
(mod M) are perfect squares. The left product is automatically a square, but
the right product is a square only if all exponents are even, i.e., if CjEs bjj G 0
(mod 2) for 1 _< i 5 m. This is equivalent to Bx G 0 (mod 2), where B = (bij),
x = (zj), and where xj = 1 if j E S and xi = 0 if j $ S.

Traditionally one has solved Bx = 0 over GF(2) by a variation of Gaussian
elimination [9, p. 4251, requiring about rnn bits. When B is sparse, one can first
apply structured Gaussian elimination [lo, $51, replacing B by a dense matrix
with about one third as many rows and columns. A gigabyte does not hold a,
dense lo5 x lo5 matrix, whereas we want to solve systems with n around lo6.

LaMacchia and Odlyzko [lo] implement variants to the Lanczos and conju-
gate gradient methods, as previously suggested by Odlyzko et al. [7, 121. These
methods repeatedly apply a symmetric n x n matrix to a vector. They store
only a few temporary vectors and the original matrix, thus relieving the storage
problem if the matrix is sparse. The methods were developed for use on real

L.C. Guillou and J.-J. Quisquater (Eds.): Advances in Cryptology - EUROCRYPT '95, LNCS 921, pp. 106-120, 1995.
0 Spnnger-Verlag Berlin Heidelberg 1995

107

matrices, but work over other fields unless one encounters a vector orthogonal to
itself. To avoid self-orthogonal vectors, they work in an extension field of GF(2)
rather than GF(2) itself.

Wiedemann [15] proposes another iterative algorithm. His algorithm applies a
(not necessarily symmetric) n x n matrix B to a vector approximately 2n times,
and constructs the minimal polynomial of B. Using this minimal polynomial,
one can find vectors in the null space of B, if B is singular. The method likewise
requires storage only for the matrix B and for a few temporary vectors.

The Lanczos, conjugate gradient, and Wiedemann algorithms all apply the
given matrix (or its transpose) to O(n) vectors. On a binary computer with
N bits per word, one can apply a matrix to N independent vectors over GF(2)
at once, using the machine's bitwise operators. We would like to reduce the
iteration count from O(n) to O(n/N), by accomplishing N times as much work
per iteration. Even if we do N times as many operations per iteration after
applying the matrix, the total cost of applying the matrix will drop N-fold.

Our variation of Lanczos achieves this objective by decomposing GF(2)" into
several subspaces of dimension almost N which are pairwise orthogonal with
respect to the symmetric n x n matrix A = B B. The resulting algorithm takes
about n / (N - 0.76) iterations. Each iteration applies the matrices B and BT to
an n x N matrix and does a few supplementary operations (i.e., inner products
of two n x N matrices, multiplication of an n x N matrix by an N x N matrix,
multiplication and inversion of N x N matrices).

Don Coppersmith published a block Wiedemann algorithm [6] which needs
about 3n/N applications of B. The present work was inspired by a comment [6,
p. 3341 that Coppersmith had previously found a block Lanczos algorithm, but
before this author had seen [5]. When N 2 16, the present algorithm and [5]
each need about 2/3 as many sparse mat,rix operations as [S], even if B is not
symmetric. This algorithm constructs the orthogonal vectors differently than [5]
and needs about 40% as many supplementary operations as [5].

Except for Gaussian elimination, these algorithms are probabilistic. They
make random choices, and may fail for some of these choices. I have tried the
proposed method on about 50 matrices, and have not experienced failure.

The methods herein work Over other finite fields if one can do independent
field operations in parallel, analogous to the bitwise operators for GF(2).

T

2 Notations

Throughout this paper, A denotes a symmetric n x n matrix over a field K . TWO
vectors v , w f K" are said to be A-orthogonal if vTAw = 0. If V and W are
subspaces (or subsets) of K" , then we define the block operations

V + W = { v + w : v E V and w E W } ,

VTW= {vTw: v E V and w E W } .
A V = { A v : v E V } ,

108

Two subspaces V and W of K" are said to be A-orthogonal if vTAw = 0 for
all v f V and w f W ; this is equivalent to VTAW = (0).

If V is an n1 x nz matrix, then (V) denotes the subspace of Knl generated
by the column vectors of V.

If W is a subspace of K", then O(W) represents a vector in W or a matrix
with column vectors in W. It satisfies O(y) + O(W) = O(V + W). If M is
a matrix of suitable size, then we can replace O(W)M by O(W), but cannot
similarly simplify MO(W).

We denote the number of bits per computer word by N.
The E x E identity matrix is denoted by Ik.

3 Standard Lanczos

Suppose A is a symmetric positive definite n x n matrix over the field K = R.
If b E R", then the standard Lanczos algorithm solves Ax = b by iterating

w: x w j j = O 3

until w, = 0. Using induction on max(i, j) (and the symmetry of A), we verify

(2) T wj Awj = 0 (i # j) .

If i > n, then the vectors WO, w1, e m . , wi are linearly dependent. Suppose
'&, ujwj = 0 where ui # 0. Pre-multiply by wi A to find aiwi Awi = 0. By
positive definiteness, wj = 0. Let m denote the first value of i such that Wi = 0.

T T

Define
m-1 T

(3)

Then Ax-b E (Awo, Awl, ..., Aw,-l, b) C_ (WO, wl, . . . , wm-l) by (1). BY
T T T construction, wj Ax = w j b for 0 5 j 5 m - 1. Hence (Ax - b) (Ax - b) = 0

and Ax = b.
Formula (1) a.ppears to require adding suitable multiples of all earlier wj

when computing wi. However, the terms vanish when j < i - 2, since

wj b x = c w j .
j=o w j Awj

T 2 T W . A wi-1 = (Awj) Awi-1 3 m

by (1) and (2). Hence (I) simplifies to

109

The Lanczos algorithm requires a t most n iterations. Each iteration of (5)
applies A to one vector wi-1. The computations

(Awi-2) T (Awi-1)

Wi-2 (Awl-2) T and ci,+2 = (Awl- 1)T(AWi - 1)
T Cj.j-1 =

Wl-l(Awi-1)
can be done with three inner products if we assume (by induction) that wi-1,
wl-2, Awj-1, Awi-2, and ~ T ~ A w i - 2 are known. Another inner product is

entries per row or column, then the cost per iteration is O(dn) to multiply by
A and O(n) for the other vector arithmetic. The total time is O(dn2) + O(n2) .

The storage requirement is nominal: O(1) temporary vectors of length n, plus
the matrix A itself.

used for wi T b while updating the partial sum of x in (3). If A averages d nonzero

4

The Lanczos iterations (l), (3), and (5) use only rational arithmetic operations
(no square roots or transcendental functions). If there is no round-off error, then
the final vector x is an exact solution, not an approximation. As Odlyzko et al.
[7] [lo, $31 [I21 observe, this makes Lanczos usable in other algebraic domains,
although the method was discovered by numerical analysts.

Let A be a symmetric n x n matrix over a field K . Assume that wj # 0 for
0 5 i < m and that w, = 0. When K = R and A is positive definite, the
Lanczos vectors {w;}~;' satisfy

Lanczos over Other Algebraic Domains

wTAw, # 0 (O I i < m) ,
j) , (6) T wj Aw; = 0

AW E W , where W = (WO, w1, - - . , wm-l) .

If b E W and x is defined by (3), then we claim (6) implies Ax = b, without
further assumptions about the field K (the proof in 53 assumes K = R). As
before, WT(Ax - b) = (0) by construction of x. Also

WTA(Ax - b) = (A W) T (A ~ - b) & WT(Ax - b) = (0) .
We know that Ax - b E W , say Ax - b = Czi' ciwi. Pre-multiply by wi T A to
conclude ci = 0 since wi T Aw; is assumed nonzero. Since i is arbitrary, Ax = b.

When K # lR, if w, is computed by (1) or (5), then the requirement
wTAwi # 0 if w, # 0 in (6) may fail. If IKI >> n, then we may be able to
tolerate this risk (7, lo], esp. if we can rerun our problem with slightly different
data whenever it fails.

We want to apply Lanczos to the field GF(2), over which about half of all
vectors are A-orthogonal to themselves, and need to vary our methods. The
field GF(2) has its advantages, since one can apply the matrix A to N different
vectors in GF(2)" a t once, using bitwise operators. We generalize (6) to allow
a sequence of subspaces in place of the vectors {wi}, and adapt the Lanczos
iteration (1) to the new framework.

110

5 Sequences of Orthogonal Subspaces

Let A be a symmetric matrix over a field K . Block Lanczos algorithms [8, Chap-
ter 71 modify (6) to produce a sequence of subspaces (W;};;' of K" which are

quirement that no nonzero vector in W, be A-orthogonal to all of W;.
pairwise A-orthogonal. The condition wi T Awi # 0 in (6) is replaced by a re-

Definitionl. A subspace W C K" is said to be A-invertible if it has a basis
W of column vectors such that W AW is invertible. T

The property of being A-invertible is independent of the choice of basis,
since any two bases for W are related by an invertible transformation.

If W is A-invertible, then any u E Kn can be uniqucly written as v + w
where w E W and W Av = (0). Indeed, if the columns of W are a basis for W ,
then w = W (WTAW)-l WTAu.

T

The generalization of (6) to subspaces is

Wi is A-invertible ,
WTAWi = (0) (i # j) , (7)

A W S W , where W=W0+W1+...+Wm-1 .

Assume (7). Given b E W , we can construct an x E W such that AX = b.
Let x = IT=;' wj, where w j E Wj is chosen so that Awj - b is orthogonal to
all of Wj. If the columns of Wj form a basis for Wj, then

m-1

x = Wj(WFAWj)-'WFb (8)
j = o

generalizes (3).
Fix N > 0. At step i, we will have an n x N matrix V, which is A-orthogonal

to all earlier Wj. The initial Vo is arbitrary. We select Wi using as many
columns of V, as we can, subject to the requirement that W; be A-invertible.
More precisely, we try to replace the Lanczos iterations (1) by

w;= v;s; ,
1

(9)
rr V;+l = AW;S, + Vi - C WjCi+l,j (i 2 0) ,

j = O
wi = (Wl) .

T Stop iterating if Vi AV, = 0 , say for i = m.

Here S ; is an N x N; projection matrix chosen so that W, AW; is invertible
while making N; 5 N as large as possible. The matrix S ; should be zero except
for exactly one 1 per column and a t most one 1 per row. These ensure that
Sl Si = IN^ and that SiSi is a submatrix of I N reflecting the vectors selected

T

T T

111

T
from V;. For example, if N = 3, then Si = (x y) selects the second and

third columns of V; for inclusion in W,.
Formula (9) for Vi+l tries to generalize (1) while ensuring Wj AVi+l = (0)

for j 5 i if the earlier Wj exhibit the desired A-orthogonality. We use
T

(10)
ci+l,j = (wj T AW,)-~W,TA(AW,ST + vi) .

The terms V, - WiCi+l,z in (9) select any columns of Vi not used in W i ; those
columns are known to be A-orthogonal to Wo through Wi-1, and the choice
of Ci+l,i adjusts them so they are A -orthogonal to W, as well. Without the V,
term, rank(Vi+l) would be bounded by rank(AW,Si) 5 rank(V,), and would
soon drop to zero.

T

Theorem2. Equataorts (9) and (10) imply (7) if V, = 0. Furthermore,

PROOF. The selection of S, ensures Wi = (Wi) is A-invertible. The equa-
tion Wj AVi = 0 implies Wj AW; = 0 since Wi = ViSi. It also implies

T W; AWj = 0 since A is symmetric.
We prove (11) by induction on i. Let 0 5 k < m and assume (11) holds for

0 5 j < i < k. This assumption is vacuously true when k = 0. If 0 5 j 5 k, then

T T

by induction and the choice (10) of C k + l , j .

A corollary to (11) is W ~ T A W ~ = (0 1 if i # j.
Post-multiply the defining equation (9) for Vi+l by Si:

j = O
i

= AW, + W, - C WjCi+l,jS; .
j = O

112

By hypothesis, V, = 0 = O(W) . By backwards induction and (12), AW; =
0

T h e subspaces Wi generated by (9) have dimension at most N . This is im-
O (W) and V, = U (W) for 0 5 a 5 m - 1. Hence AW E W.

mediate from (9) since Wi = (ViSi) and V, is a n n x N matrix.

6 Simplifying the Block Lanczos Recurrence

In standard Lanczos, we simplified (1) t o (5). The computation of wi from
Awi-1 requires adjustments only by scalar multiples of wi-1 and wi-2, not by
wj for j 5 i - 3.

We would like t o similarly optimize the computation of Vi+l in (9), using
the invariant (11). We have some freedom in the choice of Si since (Vi) may
have multiple bases.

If j < i , then the term Wj AV; in (10) vanishes by (11). We attempt t o
simplify Wj T z A W;, using (9), (ll), and the methods of (4):

T

If sj+i = IN (so that Vj+l = Wj+l) and if j < i - 1, then (13) vanishes since
T

In other cases equation (13) does not similarly simplify. We may be unable
to force Ci+l,j = 0 for j = i - 2, but do want to force Ci+l,j = 0 for j 5 i - 3.
Then the recurrence (9) will simplify to

Wj+iAW; = 0.

'I' V;+l = AWiS, + Vi - WiCj+i,, - Wi-iC,+l,i-1 - W,-zCi+l,i-2 (i 2 2).
(14)

Although (14) has more terms than (5), the time per iteration and the temporary
storage requirements will remain acceptable using (14). Equation (14) remains
valid for a = 0 and i = 1 if we define Vj = 0 and Wj = 0 for j < 0.

To achieve (14), we require that (13) vanish whenever j 5 i - 3. Tha t is,
we require Vj+l to be A-orthogonal to Wj+3 through W,. We achieve this
by requiring that all vectors in Vj+l be used either in Wj+l or in Wj+2. More
precisely, we require

(Vj+l) E. wo + w1 + . . . + wj+z (j 2 -1) . (15)

Assuming (15), we try to simplify the matrix equation (14). Denote

113

Each WFV is asymmetric N x N matrix. Eliminate all references to W; = ViSi:

T
T T T

Vi+l= AViSiS; + V; - V;SiCi+l,i - Vi-1Si-lCi+l,;-1 - Vi-2S;-2Ci+l,i-2
= AViS;Si + V, - V;WFvV; A(AV,SiS; + V;)

T 2 T T 2 T - Vi-lWplVi-lA ViS,Si - V,-2WT2Vi-,A ViS;Si .
(17)

T T 2 F4uation (17) appears to require four inner products: Vi AV;, Vi A Vi,
Vi-,A Vi, and Vi-,A2Vi. We can express the latter two inner products in
terms of the first two, using (lo), (ll), (12), and (14):

T 2 T

T T 2 Si-lV;-lA V, = (AW;-l)TAV, = (ViSi-1 + O(W0 +. - - + W ~ - I)) ~ AVi
T T =S;-lVj AV, ,

S,-2Vi-2A T T 2 Vi = (AW;-2)TAVi = (Vi-lS,-2 + O(W0 +. . . + W ~ - Z)) ~ AV;
T T = Si-2Vi-l AV;

T AWj-1Sj-I + Vi-1

- Wi-lCj,i-l + O(Wi-2 + Wi-3)

+ Vi-1

T T

Hence (17) simplifies to

7 Finding Dependencies over GF(2)

Let B be an nl x n2 matrix over the field K = GF(2), where n1 < 122. Then there
exist a t least n 2 - n1 linearly independent vectors x E K n 2 such that BX = 0.
Some integer factorization algorithms [9, pp. 380ff.][111 require finding several
(perhaps ten) such x. In practice, the matrix B is large but very sparse.

114

The Lanczos algorithm requires that the matrix be symmetric. We let n = n2
and A = B B. This A is symmetric, and any solution of Bx = 0 will satisfy
AX = 0 (although the converse need not be true if the rank of A is less than nl) .

Let N denote the computer word size, typically 32 or 64. Select a random
n x N matrix Y over GF(2), compute AY, and attempt t o find an n x N matrix
X such that AX = AY. If we succeed, then the column vectors of X-Y will be
random vectors in the null space of A. If the rank of A is a t least r ank(B) -N+l ,
then one can combine columns of X - Y to find vectors in the null space of B.

After selecting Y, we initialize VO = AY and proceed through the Lanczos
iterations (18) until some V, AVi = 0, say for i = m. Compute

T

T

m-1 rn-1

X = Wi (WTAWi)-’ WFV, = ViW$VTVo . (20)
i=O i = O

Denote W = Wo +.. . + WmPl and W, = (Vnt). Then W , is A-orthogonal
to itself and to W . By construction, AX - Vo E W + W,. If V, = 0, then

Often the algorithm terminates with V,AV, = 0 but V, # 0. We argue
heuristically that AW, C Wm. The matrix V, is A-orthogonal not only t o
itself but t o Wj for j < m by (11). In practice, this V, has small rank (perhaps
two). All Vj and Wj are contained in the Krylov subspace

AX = Vo = AY.
T

If N is large (say N 2 16), then the final V, typically has precisely those
vectors in V which are A-orthogonal to all of V , including themselves. See $8 for
comments about the size of this subspace if A is random (which B B definitely
is not). If this assumption about V is correct, then V is the direct sum of W and of
(V,) =W,.HenceAW,,,~AY~V=W+W,.Supposew~+w~+...+w, E
AW,, where each wJ E W,. We claim that w, = 0 for 0 5 j < m. We check
that

fr

W, T AWJ = (WO + WI + ... + W,)~A’N,I C (AWm)TAWJ

= w,TA(Aw,) c W:A(W + w,) = 10) .

Since wJ E W, and W, is A-invertible for j < m, this shows that wJ = 0.
If this heuristic argument about V is correct, then the images A(X- Y) and

AV, are both in W,. The total rank of X - Y and V, is a t most 2N. Using
Gaussian elimination, one can take linear combinations of X-Y and V, t o find
vectors in the null space of A = B B. The same construction can be used t o find
vectors in the null space of B. More precisely, let Z denote the n x 2N matrix
formed by concatenating the columns of X - Y and V,. Compute BZ, and
find a matrix U (at most 2N x 2 N) whose columns span the null space of BZ.
Then output a basis for ZU. In practice, one does not compute U explicitly, but
applies the same colirmn operations to Z and BZ.

T

115

8 Selecting Si and W;

Recurrence (9) does not specify how to select S; and W; = V,Si, except that

T - W i AW, must be invertible;
- rank(W;) should be as large as possible;
- Any column of Vi-1 which was not used in Wi-1 must be used now (15).

Let Q be a symmetric N x N matrix over a field K . Let r = rank(Q).
We claim that if we select any T linearly independent columns of Q, then the
symmetric r x T submatrix of Q with the same row indices is invertible. After

renumbering the rows and columns, we may write Q = [::: :::I. Here QI1 is

the symmetric T x T matrix which we claim is invertible, Q22 is symmetric, and
m

Qzl = Q:2. The assumption that the first T columns generate all of Q means

that there exists an T x (N - T) matrix T such that [ti:] = [Zit] T. This

translates into QI2 = QllT and Q22 = QzlT = Q12T T = T T Ql1T. Hence

implying rank(Qll) = rank(Q) = T .

Consequently all maximal A-invertible subspaces of (V;) have dimension
rank(Vi AV;). The selection of W; can first include anything required by (15),
namely V i (1 ~ - S , - l S i - ,) . If the corresponding columns of V, AVi are lin-
early dependent but the columns in Vi are independent, thcn the algorithm
fails. Otherwise choose a spanning set of columns for V i AVi while trying to
include the required columns, and choose S, accordingly. Figure 1 summarizes
my procedure. Afterwards I check whether all nonzero columns of V;+1 were
chosen in Si and/or Si-1.

The pseudocode asserts that some M[Ck, c j] or M[Ck, cj + N] is nonzero,
where k >_ j . At all times, if MI denotes the left half of M and M2 denotes
its right half, then M1 = M2T since only row operations are performed. We
attempt to get I N on the left of M, but occasionally zero an entire row. Let
S = (c1, . a ' , cj-l} \ S denote the rows of M which have been zeroed. We
consider three sets of vectors in GF(2)n:

T
T T

T

-

T Dependency vectors Vk for k E 3. These satisfy T Vk = T v ~ = 0. The
k-th element of Vk is 1; the index of any other nonzero element of V k is in s.
Row k of M and column k of Mz are zero.
Rows cj to CN of M2. These rows are linearly independent, since the initial
Mz = IN had full rank.
Columns k of T, for E g S (same a.s row vectors, since T is symmetric).
Column k of M2T matches that in I N .

116

T Cmt. Inputs: T = V, AV and Si-1 , where A (and hence T) is symmetric.
T T - I T Crnt. Outputs: Set S for diagonal of S;Si , and W p = Si (S, TS;) S ; .

Construct an N x 2 N block matrix M, with T on the left and IN on the right.
Cmt. Algorithm performs row operations on M . It may zero an entire row.
Number columns of T as c1, c2, - - . , CN, with columns in S;-1 coming last.
Initialize S = 0.
d o j = 1 t o N

Cmt. S has the columns selected from Vi for W;.

do k = j to N while (M[cj, cj] = 0)
if (M[c~ , c j] # 0)

end while
if (M[cj, cj] # 0) then

Exchange rows c; and ck of M.

Crnt. Use column cj of Vi in Wi.
s = s u { c ; }
Divide row c j of M by M[cj, cj].
Add multiples of row cj to other rows of M, to zero rest of column Cj.

Cmt. Column c j of T is linear combination of earlier ones. Skip it.
do k = j to N while (M[cj, cj + N] = 0)

end do
assert (M[cj, cj + N] # 0)
Add multiples of row cj to other rows, to zero rest of column cj + N .
Zero row cj of M.

Cmt. A no-op over GF(2).

else Cmt. No pivot element found in column cj.

if (M (c ~ , cj + N] # 0) Exchange rows cj and ck of M .

Cmt. Will be zero for rest of algorithm.
end if
Cmt. Column c j will remain unchanged for the duration of the algorithm.

end do
Copy right half of M into W y .

Fig. 1. Pseudocode for selecting Si and W,

Sets 1 and 2 have a total of 131 + (N - j + 1) = N - IS\ linearly independent
vectors. The IS1 independent vectors in Set 3 are orthogonal to all vectors in
Sets 1 and 2, and therefore span the orthogonal complement.

If (MzT)[ck, c j] = 0 for all k 2 j , then column cj of T is orthogonal to
everything in Sets 1 and 2. This column must be a linear combination of vectors
in Set 3. Let the dependency vector for T be v = vc.. By symmetry, this v is
orthogonal to all of Set 3 and must be a linear combination of vectors in Sets 1
and 2. Since element c j of v is nonzero, some vector in Set 1 or Set 2 must be
nonzero there. This translates into Mz[ck, cj] # 0 for some k 2 j , as required.

117

8.1 Rank of W,

Let ~ N (X) be the generating function for the corank of a random N x N matrix
over the field GF(p). That is, the coefficient of X" in f ~ (x) is the probability
that the matrix has rank exactly N - m. If q = l/p, then

f0V) = 1 7

f , (X) = l - q + q X , (22)
fN(X) = (1 - q + q N X) f N - l (X) -k (q - qN)fN-z(X) (N >_ 2) -

Equation (22) is derived by checking which elements in the first row of the
random matrix are zero, using the methods of 121. It implies the recurrence
f ~ (p X) = f ~ (x) + (1 - q N) X f N - l (X) for N 2 1. As N --+ 00, f N + f where
f(pX) = (1 + X)f(X). The solution is

X + X 2 + x3 +...) f(x) = cq ('+ 3 (p - l)(p2 - 1) (p - l)(p2 - l)(p3 - 1)

Here cp = (1 - q) (l - q3)(1 - g 5) - - - to force f(1) = 1.
The expected rank ErN = N - &(l) satisfies

Ero = 0 ,
E r l = l - q ,

Ernr = (1 - q) (l + Ernr-1) + qNErN-l + (q - q N) (2 + ErN--1)
= (1 + q - 2 q N) + (1 - q + qN)Er,v-l + (q - qN)Erjv--2 (N 2 2) .

(23)
When p = 2 and q = 1/2, equation (23) implies ErN 2 N - 1 + 2 - N for

N 2 0. For large K , approximate numerical values are c2 FZ 0.419422418 and

We conjecture that the average number of iterations needed is about n/ErN
for large N and n, subject to N << n << Z N 2 / ' . The experimental data in Table 1
of $10 support this conjecture.

ErN fi: N - 0.764499780.

9 Cost of Block Lanczos
Each iteration computes AV,, V,, T AV,, and Vj T 2 A Vj = (AVi)TAVj from Vj.

After choosing S,, it computes W'"" in (16). It updates the partial sums of X-Y
using (20), and computes Vi+l using (18) and (19).

Equation (20) appears to require one inner product per Vj VO and one mul-
tiplication of the n x N matrix V, by a N x N matrix. Henk Boender [l]
observes that most of these inner product computations can be exchanged for
some N x N matrix computations. Equation (15) implies (VO) WO + WI; if
i 2 2 , then VTAV, = 0 by (11). By (18),

T

T

118

T ‘r T The inner products V, Vo, Vi-lVo, and Vi_,V0 are known by induction.
With this improvement, the cost of (16), (18), (19), and (20) is (for i > 2):

T - One application of A = B B to V, to compute AVi.
- Two inner products of pairs of n x N matrices to compute the N x N matrices

Vi AV, and V, A Vi. (We assume that V,-lAVi-l and Vi-,A Vi-1 are
known by induction.)

T T 2 T T 2

- Selection of S i subject to (15) and the computation of W y , as in $8.
- A few N x N matrix operations to compute Di+l, Ei+l, and Fi+l in (19).
- Four multiplications of n x N matrices by N x N matrices and four additions

of n x N matrices when computing V,+l and the new partial sum of X - Y.
T T (The post-multiplication by SiSi in (18) is easy since SiSi is diagonal with

zeros and ones. When K = GF(2), it can be done via bitwise ANDs.)

The conjectured iteration count is n/ErN = O (n / N) if the initial VO is random.
If the matrix B averages d nonzero entries per column, then each multiplica-

tion by A takes time O(dn). An U (N n) algorithm for inner products over GF(2)
circularly shifts the first argument by b bits, and uses n ANDs and n - 1 XORS
to construct N bits of the inner product; this step is repeated for 0 5 b 5 N - 1.
The multiplications of an n x N matrix by an N x N matrix can similarly be
done with O (N n) operations on N-bit words.

The net time is O(dn) + O (N n) per iteration and U (d n 2 / N) + O(n2) for the
algorithm. Gaussian elimination takes time O(n3). Block Lanczos is asymptoti-
cally superior (in time and space) to Gaussian elimination if d << n and remains
competitive with Gaussian elimination if d = O(n).

Coppersmith [6, pp. 342-3431 shows how to compute the inner products and
the products of n x N by N x N matrices more efficiently.

When Si-1 = IN (so that Wi-1 = Vi-l), the formula for Fi+l simplifies to
zero and the term V,-2F,+l can be omitted from (18).

Storage requirements are low. Other than the matrix A itself, the algorithm
needs only V,+l, Vi, Vi-1, Vi-2, AV,, the partial sums of X - Y, and some
N X N matrices. The same storage can be used for AVi and Vi+l. The implemen-
tation may need storage for the intermediate vector BV; during the cornputation
of AVi = B (BV;), but this can be avoided if B is stored by rows. At the end,
the algorithm needs storage for V,, BV,, X - Y, and B(X - Y).

T

10 Experimental Results

In June, 1994, we applied the algorithm to an 828,077 x 833,017 matrix with
26,886,496 nonzero entries as part of the record factorization of the 162-digit
number (12151 - 1)/11 via the special number field sieve. The program was run
on one processor of a Cray C90 a t the Academic Computing Center Amsterdam
(SARA), with N = 64. The algorithm terminated after 3.4 hours with m =
13,098 and dim(W) = 828,075.

119

dim(W;)
6

18
59
60
61
62
63
64

Total
C dim(Wi)

Two days later we applied the algorithm to a 1,284,719 x 1,294,861 matrix
with 38,928,220 nonzero entries as part of the factorization of a lobdig i t cofactor
of 3367 - 1 via the general number field sieve (GNFS). The program terminated
after 7.3 hours with m = 20,319 and dim(W) = 1,284,712.

The program sizes were about 330 Mb and 480 Mb, respectively, compared
to the machine’s 2147 Mb. For Gaussian elimination, on a dense matrix with one
third as many rows and columns, the sizes would be 9 Gb and 22 Gb.

Table 1 has the observed dimensions of No through Nm-l. The “probabil-
ity” column is based on the coefficients of fs4(X). The low values (6 and 18)
for dim(W;) occurred at the end, specifically when i = m - 1 and the Krylov
subspace (21) had been exhausted.

Predicted 828,077 x 833,017 1,284,719 x 1,294,861
probability Frequency Percent Frequency Percent

.00000 0 0.000 1 0.005

.00000 1 0.008 0 0.000

.00004 1 0.008 0 0.000

.00133 15 0.115 32 0.157

.01997 290 2.214 431 2.121

.13981 1854 14.155 2946 14.499

.41942 5508 42.052 8333 41 -01 1

.41942 5429 41.449 8576 42.207
13,098 20,319

828,075 1,284,712

Table 1. Dimensions of W; for two big systems

Scott Contini and Arjen Imistra implemented the algorithm on Bellcore’s
MasPar 16K-1 with 1GK processors [4]. The MasPar took 2.5 CPU days to find
151 column dependencies of a 1,472,607 x 1,475,898 matrix with 79,661,432
nonzero entries, after ignoring its 102 densest rows. These dependencies were
later combined to get 49 true dependencies and to factor the 119-digit cofactor
of the partition number ~(13171) via GNFS. Memory requirements were 24 Kb
per node, or 390 Mb total. They estimate that Gaussian elimination would have
required two CPU weeks and 15 Gb, after reducing the problem to a dense
362,397 x 362,597 system.

Don Coppersmith [5, $121 reports R need to preprocess the data to eliminate
singletons, which are rows containing a single nonzero element. One normally
does such preprocessing, since the corresponding column cannot be in a depen-
dency. We have not experienced his difficulty when we omit this step, but lack
a theoretical explanation for why the problem does not occur in our variation.

120

11 Acknowledgements

This work was supported by Stieltjes Insti tute for Mathematics, Leiden and by
Centrum voor Wiskunde en Informatica, Amsterdam. The CPU time on the
Cray C90 was provided by the Dutch National Computing Facilities Foundation
NCF, with financial support from the Netherlands Organization for Scientific
Research NWO. Thanks to Scott Contini of Bellcore for his constructive cam-
ments on a n earlier version of this manuscript.

References

1. Henk Boender, Private communication, 1994.
2. Richard P. Brent and Brendan D. McKay, On determinants of random symmetric

matrices over Z,, Ars Combinatoria 26A (1988), 57-64.
3. J.P. Buhler, H.W. Lenstra, Jr., and Carl Pomerance, Factoring integers with the

number field sieve, The Development of the Number Field Sieve (Berlin) (A.K.
Lenstra and H.W. Lenstra, Jr., eds.), Lecture Notes in Mathematics, vol. 1554,
Springer-Verlag, Berlin, 1993, pp. 50-94.

4. Scott Contini and Arjen K. Lenstra, Implementation of blocked Lanczos and Wiede-
mann algorithms, In preparation, 1995.

5. Don Coppersmith, Solving linear equations over GF(2): Block Lanczos algorithm,
Linear Algebra and its Applications 192 (1993), 33-60.

6. -, Solving homogeneous linear equations over GF(2) via block Wiedemann
algorithm, Mathematics of Computation 62 (1994), no. 205, 333-350.

7. Don Coppersmith, Andrew M. Odlyako, and Richard Schroeppel, Discrete loga-
rithms in GF(p), Algorithmica 1 (1986), 1-15.

8. Jane K. Cullum and Ralph A. Willoughby, Lanczos algorithms for large symmetric
eigenvalue computations. Vol. I Theory, Birkhauser, Boston, 1985.

9. Donald E. Knuth, Seminumerical algorithms, The Art of Computer Programming,
vol. 2, Addison-Wesley, Reading, MA, 2nd ed., 1981.

10. B.A. LaMacchia and A.M. Odlyzko, Solving large sparse systems over finite fields,
Advances in Cryptology, CRYPT0 '90 (A.J. Menezes and S.A. Vanstone, eds.),
Lecture Notes in Computer Science, vol. 537, Springer-Verlag, pp. 109-133.

11. A.K. Lenstra, H.W. Lenstra, Jr., M.S. Manasse, and J.M. Pollard, The factoriza-
tion o f t h e ninth Fermat number, Mathematics of Computation 61 (1993), no. 203,

12. A.M. Odlyzko, Discrete logarithms an finite fields and their cryptographic signif-
icance, Advances in Cryptology: Proceedings of EUROCRYPT 84 (New York)
(T. Beth, N. Cot, and I. Ingemarsson, eds.), Lecture Notes in Computer Science,
vol. 209, Springer-Verlag, pp. 224-314.

13. Carl Pomerance, The quadratic sieve factoring algorithm, Advances in Cryp-
tology, Proceedings of EUROCRYPT 84 (New York) (T. Beth, N. Cot, and
I. Ingemarsson, eds.), Lecture Notes in Computer Science, vol. 209, Springer-
Verlag, pp. 169-182.

14. Robert D. Silverman, The multiple polynomial quadratic sieve, Mathematics of
Computation 48 (1987), no. 177, 329-339.

15. Douglas H. Wiedemann, Solving sparse linear equations over finite fields, IEEE
Trans. Inform. Theory 32 (1986), no. 1, 54-62.

319-349.

	Introduction
	Notations
	Standard Lanczos
	Lanczos over Other Algebraic Domains
	Sequences of Orthogonal Subspaces
	Simplifying the Block Lanczos Recurrence
	Finding Dependencies over GF(2)
	Selecting Si and Wi

	Rank of Wi

	Cost of Block Lanczos
	Experimental Results
	Acknowledgements
	References

