
Server(Prover/Signer)-Aided Verification of
Identity Proofs and Signatures

Chae Hoon Lim and Pi1 Joong Lee

Department of Electrical Engineering
Pohang University of Science and Technology (POSTECH)

Pohang, 790-784, KOREA
E-mail : lchO baekdu. postech. ac. kr ; pjlQcipher . postech. ac. kr

Abstract. Discrete log based identification and signature schemes are
well-suited to identity proof and signature generation, but not suitable
for verification, by smart cards, due to their highly asymmetric compu-
tational load between the prover/signer and the verifier. In this paper,
we present very efficient and practical protocols for fast verification in
these schemes, where the verifier with limited computing power per-
forms its computation fast with the aid of the powerful prover/signer.
The proposed protocols require very small amounts of computation and
communication. The prover/signer only needs to perform a few modular
exponentiations in real-time and the two interacting parties only need
to communicate a few long numbers. Using the proposed prover-aided
verification (PAV) protocol, the verifier can perform the Schnorr-like
idenlification scheme almost as fast as the Guillou-Quisquater scheme.
We generalize the PAV protocol into the signer-aided verification (SAV)
protocol, which can be used for verification of any public function.

1 Introduction

Based on zero-knowledge proof techniques, a lot of identification and digital si-
gnature schemes have been developed [l-61. Among them, Schnorr-like schemes
[4-61 are particularly attractive for use in smar t cards or other environments with
limited computing power, since the prover/signer needs almost no8 fax. real-
t ime computation with preprocessing/precomputation techniques [4,7-91. Howe-
ver, verification requires exponentiation involving a lot, of multiplications, which
is disadvantageous compared t o Fiat-Shamir-like schemes [l-31. This asymmetric
computational load may restrict applications of these schemes, when implemen-
ted on a weak power device such as a smar t card, into environments where only
one-way proofs are sufficient. Thus what is further desired for these schemes

L.C. Guillou and J.-J. Quisquater (Eds.): Advances in Cryptology - EUROCRYPT '95, LNCS 921, pp. 64-78, 1995.
0 Springer-Verlag Berlin Heidelberg 1995

65

would be that proofs in the other way are also efficient for smart card implemen-
tations. This motivated us to develop methods for speeding up the computation
by the verifier in some way or another.

We first considered the applicability of Ihe server-aided approach to secret
computation, first proposed by Matsumoto et al. [lo] and since then widely stu-
died by many researchers [ll-151, to the public verification of identity proofs and
signatures. Arid we found a related work performed by Yen and Laih [16], but
unfortunately their protocol can be easily shown to be insecure. Furthermore,
this kind of protocols seems to need too much amount of communication to be
practical for smart card applications. There are fundamentally different requi-
rements for the server-aided secret computation protocol and the server-aided
public verification protocol. The former has to guarantee the security of the in-
volved secret information, while the latter requires the assurance of the integrity
of computation results returned from the server. This difference of requirements
seems make the latter protocol needlessly complicated and hard to guarantee
the correctness of the required verification.

In this paper we propose efficient protocols for speeding up the verification
of identity proofs and signatures. The key idea is to use the precomputation
based on a fixed base element and then mirror the action of the prover/signer.
In the proposed protocols, we assume that the proving/signing terminal is much
more powerful than the verifying device so that it can perform several cxponen-
tiations in real-time. This situation will commonly arise in a smart card based
system when a powerful terminal proves to a smart card or when signature ve-
rification is performed on a smart card. Thus the resulting protocols may be
called as prover/signer-aided verification (PAV/SAV) protocols since the verifier
performs the required verification fast by borrowing the computing power of the
prover/signer .

Compared to the protocol for server-aided RSA computation, our proposed
protocols are much more efficient and practical since only a few long numbers
need to be exchanged and only a few modular exponentiations need to be per-
formed by the prover/signer. For example, using the proposed prover-aided ve-
rification (PAV) protocol, the verifier can execute the Schnorr-like identification
scheme [4-61 almost as fast as the Guillou-Quisquater scheme [2], only with ex-
change of one long number and without loss of security. This will make Schnorr-
like identification schemes much more attractive for smart card implementations
since now smart cards can also perform the required verification fast. By ge-
neralizing the PAV protocol, we also present a signer-aided verification (SAV)
protocol with which the verifier can check the validity of signatures with any de-
sired convincing probability. For example, if a convincing probability of 1 - 2- t
is acceptable in a real-time protocol, a signature generated by Schnorr’s scheme
can be verified in about 3t multiplications on average. Finally we show that
the proposed techniques can be used for verification of any public function by
presenting a fully generalized version of the server-aided verification protocol.

66

2 Prover-Aided Verification of Identity

Throughout this paper, we will use the following conventions, unless otherwise
stated. Let p and q be two large public primes such that q divides p - 1 and g
be an element of order q in 2,. We denote the bit-length of p (q, resp.) by R (I ,
resp.) (i.e., Ipl = n, Iq1 = I). Let (s , u) be the secret and public key pair of the
prover/signer, where u = g-' mod p with s E 2,. We assume that prccompu-
tation of random powers to the fixed base g is performed in advance and thus
does not take time during the protocol execution.

The computation of a"bY mod p with 121 = 1 and lyl = t is assumed to be
carried out by the square-and-multiply algorithm with a precomputed value of
ab mod p (see [4]). We assume that the most significant bits of the exponents, 1:
and y, are always one for completeness, though their effect on the performance
is negligible. Then the above computation can be completed in 1.51 +0.25(t - 1)
multiplications for 1 > t , and 1.751-0.75 for I = t , on average. Multiplication will
always denote multiplication mod 1) and multiplication mod q will be neglected
when counting the number of multiplications.

2.1 PAV Protocol for Schnorr 's Identification Scheme

The following is the five-move protocol for prover-aided verification in Schnorr's
identification scheme [4]. Here t is a parameter that determines the security level
of the identification scheme, usually lying between 20 and 40.

0) (Preprocessing) The prover picks a random number r E 2, and computes
x = g r mod p . Similarly the verifier computes z = g - K mod p with randomly
chosen li over 2,.

1) The prover sends x to the verifier.
2) The verifier randomly picks an integer e E [0,2') and sends it to the prover.
3) The prover computes and sends y = T + se mod q.
4) The verifier randomly picks an integer k E [0 ,2 t) , computes and sends u =

5) The prover computes w = gu mod p and sends it back to the verifier.
6) Finally the verifier checks if the following equation holds :

(I< + y)k-' mod q .

x = wkve.z mod p (1)

Note that for security the precomputed value z should not be revealed to
the prover at least until the protocol is completed. This must be observed in
every protocol preserited i n this paper. If desired, the computation of k-' mod
q in step 4) may be performed in the preprocessing stage. Steps 1) - 3) exactly
correspond to the original Schnorr scheme whose verification equation equals

x = g y v e mod p . (2)

67

On the other hand, steps 4) - 6) correspond to the protocol in which the verifier
computes gy mody with the aid of the prover. Thus we can see that by borrowing
the prover’s computing power the verifier can reduce the computational load of
I hit exponentiation to that of t hit exponent,iat,ion.

Security : Equation (1) shows that the values of 5, ‘u and e , which are determined
in the first half of the protocol, cannot be modified, without knowledge of k, in
the latter half. On the other hand, the value of u , which is the only data available
to the prover for extracting information on the secret number k, releases no
information on k since even z is not available at this point. As a result, the prover
may guess k but has no way to verify its guess. The above two facts show that
the PAV protocol is unconditionally sound since no information on k is released
in the Shannon-theoretic sense and since without knowing k the dishonest prover
cannot convince the verifier with more than guessing probability.

There may be a slight advantage on the prover’s side. Throughout the whole
protocol, the prover is given two chances of cheating the verifier : either by
guessing e in step 1) as in the original Schnorr scheme or by guessing k in step
5) . The latter guess can be successful independently of the former guess since,
once the former is turned out to be wrong from the response of step 2), the
prover knows how to manipulate w to pass the verification of step 6), of course,
under the assumption that its guess at k is correct. Thus the added steps 4)
and 5) only gives the prover another chance of random guessing. This will be of
little value to the (dishonest,) prover. Consequently, we conclude that the prover-
aided approach to fast verification preserves almost the same security level of
the original scheme.

Efficiency : The verifier can check the verification equation (1) in about, 1.75t +
0.25 multiplications on average. This is almost the same amount of computa-
tion its is required in the GQ scheme. Note that with the original verification
equation (2), about 1.51+ 0.25(t - 1) multiplications are required. For example,
with 1 = 160 and t = 20, the equality of equation (1) can be checked in 35.25
multiplications, while validating equation (2) requires 244.75 multiplicat,ions, on
average. Thus about 210 multiplications can be saved in this case using the
proposed verification protocol.

The above efficiency is obtained only by increasing the number of communi-
cation bits by n+1. The computational complexity imposed on the prover is also
very small, just one exponentiation (1.5(1 - 1) multiplications on average). No
restriction on the computing power of the prover will he necessary due to this
increase of computational amount, since such computation can he carried out
in real-time even on the PC (personal computer). Therefore, in typical smart
card-based systems, we will be able to obtain great computational advantage
using the PAV protocol only with n small incrcasc of communication.

68

2.2

Brickell and McCurley [5] modified the Schnorr scheme in order to enhance
the security at the cost of more computation and communication. The basic
differences are that all exponents are selected and computed modulo p - 1 rather
than modulo q and that q is kept secret from the users (so the modulus p should
be chosen such that p - 1 is hard to factor). The resulting protocol can be proven
to be secure, assuming that p - 1 is hard to factor, and remains as secure as the
Schnorr scheme even if p - 1 is factored.

The PAV protocol for the Brickell-McCurley (BM) scheme is the same as
that for the Schnorr scheme, except that all arithmetics on exponents should be
done modulo p - 1. Thus the performance improvement by the PAV protocol is
much more drastic in this scheme. For example, with n = 512 and t = 20, the
original verification requires 772.75 multiplications on average, while the prover-
aided verification still requires 35.25 multiplications. This amounts to more than
a twenty four-fold improvement. Since main disadvantage of the BM scheme can
be eliminated with the PAV protocol, the BM scheme may be preferred to the
Schnorr scheme in view of security.

We finally would like to mention that the PAV protocol does not affect the
provable security of the original scheme since no additional information on the
secret key of the prover is involved in the prover-aided verification part. Note
that a thrcc-move identification scheme is said to be sccurc (in the sense of Feige-
Fiat-Shamir [17]) if the protocol execution releases no useful information on the
prover’s secret.

PAV Protocol for Brickell-McCurley’s Scheme

2.3 PAV Protocol for Okamoto’s Scheme

Okamoto [6] has proposed another modification of Schnorr’s scheme with the
feature of provable security. Since it is somewhat different from the Schnorr
scheme in basic construction, we describe his scheme together with the proposed
verification protocol. Let p and q be as before and g1 and g2 be elements of order
q in Z,. The public key of the prover in the Okainotoschenie is zi = y;J’g;s2 mod
p , where s1 and sz in 2, are his secret keys. The PAV protocol for Okamoto’s
scheme is as follows.

0) (Preprocessing) The prover randomly picks r1, rz E 2, and computes 2 =
g;‘gia mod p . Similarly the verifier computes t = g;K1gq1‘2 mod p with
K l , X Z E 2,.

1) The prover sends 1: to the verifier.
2) The verifier randomly picks an integer e E [0,2‘) and sends it to the prover.
3) The prover computes y1 = rl + s l e mod q and yz = rg + sze mod q and

4) The verifier randomly picks k E [0, a‘) , computcs u1 = (K l + y1)k-l mod q
sends them to the verifier.

and u2 = (K 2 + y2)k-l mod q I and sends them back to the prover.

69

Mu1 P
Orig V

Comm

Mu1 P
PAV V

Comm

5) The prover computes w = g;"'g;' mod p and sends it to the verifier.
6) Finally the verifier checks if the following equation holds :

x = w k v e t mod p (3)

Though the Okamoto scheme is somewhat different from the Schnorr scheme,
we can see that the performance of the PAV protocol remains almost the same.
Compare the above equation (3) with the original verification equation :

Schnorr Brickell et al. Okamoto

almost 0 almost 0 almost 0
1.51 + 0.25(t - 1) 1.5n + 0.25(t - 1) 1.751 + 0.125t + 2.37

2 n + l + t 3n + t 2n + 21 + t
1.5(1- 1) 1.5(n - 1) 1.751 + 0.25

1.75t $0.25 1.75t + 0.25 1.75t + 0.25
312 + 21 + t 5n + t 3n+41+1

x = gyl qi' ve mod p (4)

The only difference is that in the above the verifier computes gy1g$2 mod p
as w k z mod p with the aid of the prover. Note that it is unnecessary to use
different values of k to compute 211 and u2 due to the involvement of distinct
random secrets, Iil and K 2 , of 1 bit size (In any case, knowing one small random
secret will be sufficient to cheat the verifier).

Table 1 below summarizes the performance of three identification schemes
and their PAV versions. The certificate for the public key 'u is not taken into
account when counting the number of communication bits and the computational
amounts for preprocessing are also excluded. The number of multiplications is
counted for the average case. Finally, note that wc are using the parameters n , 1
and .t as n = lpl,I = IqI and t = le l = lkl, respectively.

Table 1. Performance of PAV protocols for three identification schemes

Finally we note that the proposed PAV protocol can also be adapted for iden-
tification schemes with composite moduli. For example, in Girault's modification
of the Schnorr scheme based on composite discrete logarithms [18], the order of
the based element y is made public and thus the PAV protocol for Schnorr's
scheme can be applied directly. On the other hand, in the similar protocol using
the self-certified public key [19], the based element g has a maximal order modulo
a composite and the signature component y is not reduced modulo any number.
Thus it is not feasible to compute multiplicative inverses of exponents. For this
scheme, the verifier may first raise both sides of the verification equation to the
k-th power and then apply the PAV protocol (or it may use the protocol to be
presented in section 3). Of course, the performance will be somewhat degraded
in this case.

70

3 Signer-Aided Verification of Signatures

There exists the same asymmetry of computational load in digital signature
schemes derived from identification schemes based on the discrete logarithm
problem. Thus thcse signatures are easy to generate but hard to verify with
smart cards. This section is devoted to developing an efficient protocol for signer-
aided verification of signatures. Of course, the role of the powerful server need
not be assumed by the signer itself in this case. Since typical application of this
protocol will be signature verification on the smart card, the server may be a
powerful terminal with which the smart card interacts.

We only explain the proposed SAV protocol with Schnorr’s signature scheme,
but it can be used for verification of other signature schemes based on the dis-
crete logarithm problem as well (e.g., see [20-231 for generalized ElGamal-type
signature schemes and their message recovery variants). In fact, the proposed
technique can be applied to server-aided verification of any public function, as
will be illustrated in the nest section.

3.1

For the moment, let us suppose that the signer’s public key v = g-’ mod p is
globally known and frequently used (this m a y be the case if we have to frequerilly
verify signatures of some central authorities). ‘I’hen we can adapt the PAV proto-
col into the SAV (signer-aidcd verification) protocol as follows, where h denotes
a one-way hash function producing raiidomly and uniforinly c-bit digests (see
below).

SAV Protocol for Schnorr’s Signature Scheme

(Preprocessing) The verifier computes z = g W K 1 v - K z mod p with [(I, l (2 E

The signer sends the signature {z, y, m} to the verifier, where 2 = g‘ mod p
and y = T + se mod y with e = h (z , m).
The verifier computes e = h (z , m) Then it randomly picks an integer k E
(0,2‘], computes u1 = (A’l+ y)k- l mod q and u2 = (K z + e)k-’ mod q , and
sends them to the signer.
The signer computes and sends u1 = gU1vu2 mod p .
The verifier then checks if 2 = w k z mod p holds. If the check succeeds, the
verifier accepts and stores { e , y} as a valid signature for message 771.

We first want to note h i t the length of hash-values used in any signature

2, .

schemes should be at least 128 bits, contrary to the minimal length of 64 or
72 bits that many researchers (e.g., see [1,2,4]) suggested. This is because the
signer can find two different messages with the same signature using the birthday
paradox if short hash-values are used. If such a thing is feasible, then the signer
may deny later the signature of one rncssage by presenting the other message
with the same signature. ‘l’his situation i s essentially the same, as far as the

71

legality of signature is concerned, as the case where an outside attacker finds
two different messages with the same hash-value, obtains a signature for the
message favorable to the signer and then claims that the signer signed the other
message favorable to himself.

A slight modification may achieve the same effect that can be obtained by
the use of longer hash-values without increasing the computational load of the
verifier, but this does not matter in the current SAV protocol. From now on, we
will assume that hash-values are randomly distributed over Z, (i.e., c = I = 1q1)
as in the DSS [24].

The above SAV protocol achieves a security level of 2 - t . The signer cannot
use in step 3) a value of v different from the one publicly known or sent in step
l), due to its involvement in the computation of 2. Other security considerations
are the same as in the PAV protocol. Thus, a fake signature can be made to be
accepted only when the guess of k is correct. If a false acceptance with probability
of can be tolerated in a real-time protocol, then the signature can be verified
in 29.5 mult~iplications on average. However, this protocol seems not practical in
general, since the precomputation using the signer's public key is not possible in
most cases. Thus the above SAV protocol needs to be augmented by somewhat
different technique.

The problem we are faced with is to compute the part w e mod p of the
verification equation z = gyve modp with the aid of the signer, where the signer's
public key v is assumed to vary in every run of the protocol. Our solution is to
blind the public key ti by raising to thc k-th power and then multiplying by a
random power of g , i.e., form u = g K v k mod p (fr' E Zq, k E (0 , 'L']), so that the
signer, no matter how powerful it is, cannot deduce k from u (and thus cannot
modify v) with more than the guessing probability of 2 - t . For this, the verifier
must compute v k mod p before beginning the signer-aided verification, which
increases the verifier's computational load almost twice compared to the above
case. The following is the final SAV protocol for Schnorr's signature scheme.

0) (Preprocessing) The verifier computes z1 = g-"' modp and z2 = g - K 2 mod

1) The signer sends the signature {z, y, m} to the verifier, where z = g' mod p

2) The verifier randomly picks an integer k E (0 , 2 t] and computes u1 = 212,

p with Iil, K 2 E Z,,

and y = T + s e mod q with e = h (z , rn).

mod p using the signer's public key v. The verifier also computes uz =
(I i 2 + ky + K l e) mod p with e = h (z , m) and sends u1 and 112 to the signer.

3) The signer computes and sends w = u;g"2 mod p.
4) Finally the verifier checks that zk = wz2 mod p . If the equation holds, the

k

verifier accepts and stores {e, y} as a valid signature for message rn.

The above verification is based on the following identity :

72

Mu1 Signer
Verifier

Commun

Note that since the value of e computed as e = h (x , r n) by the verifier is em-
bedded in u ~ , it is of no use for the signer to use a different value of e when
computing w in step 3). The on-line computational load for the verifier is about
3t - 1 multiplications on average. Thus, with a convincing probability of 1 -
the verifier can validate a signature in 59 multiplications on average. This is a
substantial improvement over direct verification requiring about 279.25 multipli-
cations, if a small probability of false acceptance can be tolerated. If more strict
verification is required, we may choose 1 = 30, in which case the signature can
be verified in 89 multiplications with probability of false acceptance of lo-’.

It is interesting to note that the SAV protocol may be viewed as an interactive
proof system for language membership [25], though the proof is trivial, where
the language L consists of a set of valid signatures generated with the Schnorr
scheme, i.e.

Original SAV

almost 0 1.751 - 0.75
1.751 - 0.75

n + 21
3t - 1

4n + 21

L = {(x, y, rn, v) (x = gyve mod p with e = h(z , rn)}. (6)

In the SAV protocol, the verifier with limited computing power wants to be
convinced that a given instance belongs to L. The above discussion shows that
the SAV protocol satisfies the two conditions of an IP system, completeness and
soundness.

The following table shows the performance of the proposed SAV protocol for
Schnorr’s signature scheme. Here we assume that the hash-value e is of 1 bit size.
The message m and the public key certificate are not included in the number of
communication bits.

Table 2. Performance of SAV protocol for Schnorr’s signature scheme

3.2 Batch SAV Protocol for Schnorr’s Scheme

A collection of signatures can be verified more efficiently by processing in a batch.
Naccache et al. [26] presented (interactive and probabilistic) batch verification
protocols for DSA at Eurocrypt’94, together with several other useful techniques
to improve the performance of DSA (but the interactive batch verification pro-
tocol was shown to be insecure [27]).

Let {xi, yi}, for i = 1 , 2 , . . . , N , be Schnorr’s signatures for messages mi
signed by the same signer, where 2; = gr“ mod p and ya = ri + se; mod q

73

Storage
Mult = 20

1 = 30

with ei = h(zi , mi). Then the verifier can check the validity of the signatures by
batch-processing with the equation

3 7 6 9 14 12 30 28 45 60
34.3 39.6 50.5 66.8 61.3 83.0 77.6 104.5 107.4 137.3
51.8 58.4 75.5 99.3 88.8 123.0 106.4 149.5 145.6 184.8

where ki's are random numbers of t-bit size chosen by the verifier. The parameter
t determines the level of confidence for batch verification.

We first explain a method for efficiently evaluating the left-hand side of equa-
tion (6) using the idea from [8] . It can be computed by arranging the N terms of
small powers into a groups consisting of b terms, preparing all products of POS-
sible combinations among b terms in each group and then applying the square-
and-multiply algorithm. We can then show that the required computation can
be completed in q (t - 1)" + t + (a b - b)a - 2 multiplications on average. For
this, we also need a storage for (2' - 1). values.

Table 3 below summarizes, for some selected parameters, the numbers of
multiplications and storage required for the computation of the left-hand side
of equation (6) using this method. From the table, we can see that if the ve-
rifying device is equipped with sufficient storage, a number of signatures can
be verified with great efficiency. Batch verification on the PC may be such a
case. For example, 16 signatures generated by the same signer can be validated
in about 464 multiplications on average, where t = 30 is assumed and 279.25
multiplications for computing the right-hand side of equation (6) are included.

N II 2 I 3 I 4 I 6 8 12

Table 3. Resource requirements for computing the left-hand side of equ. (6)

Now, let us consider the batch verification on the smart card. Since typical
smart cards under current technology do not have much storage, a relatively
small number of signatures can be processed at a time. In this case, the com-
putation of the right-hand side of equation (6) seems a quite heavy load to the
smart card. Thus we may use a batch SAV protocol for this computation. Let
us consider the following protocol.

0) (Preprocessing) The verifier computes z1 = g-K1 mod p and z2 = g - K Z mod

1) The signer sends { zi , yi, mi} (1 5 i 5 N) to the verifier.
p with K1, Ii2 E 2,.

74

2) The verifier first computes ei = h(z i , mi). Then it randomly picks N + 1
integers k i , for i = 0 , 1 , . . . , N , over (0,2'], and then computes u1 = zlvko
mod p and 212,213 as

The verifier then sends u l , 212 and 213 to the signer.
3) The signer computes and sends w = uyZgu3 mod p .
4) Finally the verifier checks if the following equation holds :

N

If it holds, the verifier accepls and stores { e i , yi} as valid signatures for
messages mi for i = 1,2,

The above batch verification is based on the following identity :

N .

Using the above batch SAV protocol, the verifier can compute the right-hand
side of equation (6) in 1.5t - 0.5 multiplications on average if we neglect the
arithmetics mod q . Therefore, we can verify, for example, four signatures in
about 80 multiplications on the smart card, with a convincing probability of
1 - (t = 20), if the smart card ha.s a scratch pad memory for ten values or
so. Note that if different signers are involved, each signer's public key must be
blinded individually and thus the performance will be degraded. But this is also
the case for direct verification.

The batch SAV protocol has one undesirable property, compared to the SAV
protocol of the previous subsection, in the sense that its security is dependent
upon the computing power of the signer. That is, for small N , the signer may
try to find the random secret numbers ki's from the value of u2 by an exhaus-
tive search using the birthday paradox. This is clearly undesirable but seems
inevitable due to the involvement of secret numbers in the exponent of u .

From the equation u 2 k o + C z ~ k;ei = CE1+N,, kie i mod q where we assume
that N is even, ki's can be computed in Llog, L operations with L = 2 1 (1 + N / 2) .
For example, for N = 2 and t = 20, we have L = 240. However, such an attack
can be mounted only after uz is given. Thus it is unlikely that this attack makes
any practical threat to the protocol even for the above minimal parameters,
since it is infeasible to perform 240 operations in a second or so. Other security
considerations are the same as in the SAV protocol.

75

4 Server-Aided Verification of General Functions

We now present a fully generalized version of server-aided verification protocols
which can be used for verification of any public function. Suppose that the
verifier, with the aid of a powerful server, wants to check the equality of the
following general equation defined over a finite group G :

N

i=l

All involved elements are assumed to be public and variable. The following proto-
col allows the verifier to test the equality of the above equation with a convincing
probability of 1 - 2 - t .

0) (Preprocessing) The verifier randomly picks an element g E G' and computes

1) The verifier randomly picks an integer k E (0 ,2t] arid then computes the
zi = g K c with Ki , E G for i = 0, 1, . . . , N .

following values :

N

UO = Z O y ' , U i = Z i Z f (1 5 i 5 N) , UN+1 = K o , 8 - I(iai + I(N+l
i=l

Then the verifier sends (9,216, a(, a} to the server.
2) The server computes and sends the following value :

N

i=l

3) Finally the verifier checks if zN+l = 20 holds.

The above server-aided verification is based on the following identity :

N N
S K ~ + ~ - - SK~P-x,=, KXat+h"+i . (, f o Y k) - P , n(p x">"> (11)

Z = 1

The element g may be globally fixed and, if the group order [GI is known, all the
exponents can be reduced modulo IGI . The protocol achieves a security level
of 2-' since the only way to cheat the verifier is to guess k and manipulate y
and/or 2,. The number of group multiplications required of the verifier is around
(1.5t - 0.5)(N+ 1) on the average. If there are M fixed elements in equation (9),
this quantity can be reduced to (1 3 - 0.5) (N - M + 1).

All the protocols presented so far are special cases of the above protocol.
Note that with t-bit randomizers (blinding factors), signature schemes involving
a fixed base element can be verified in 3t - 1 multiplications while the other
schemes such as Guillou-Quisquater [a] and Ohta-Okamoto [3] can be verified in
about 4.5t - 1.5 multiplications on average. Even for the GQ scheme, this is a

76

considerable improvement over direct verification in case where a moderate level
of confidence is sufficient (e.g., 88.5 vs 223.25 for t = 20 and 128 bit hash-values).

The above server-aided approach to fast verification will be useful for most
public key cryptographic schemes when executed between two parties with asym-
metric computing power. Typical applications may be found in the interactive
protocols between smart cards and terminals. Since the proposed protocol is in-
dependent of the size of exponents and its security level is independent of the
server’s power, the advance of cryptanalytic methods (based either on software
or on hardware) will never adversely affect its performance. Rather, the perfor-
mance may be further improved in case that the size of group order is increased.

5 Summary and Conclusion

We have presented an elegant way to speed up the computation by the verifier
in discrete logarithm-based identification schemes (Schnorr, Brickell-McCurley,
Okamoto, etc.), with the aid of the powerful prover. The proposed prover-aided
verification (PAV) protocol is secure and efficient : Only with a small amount
of additional communication and with almost the same level of security as the
original scheme, the verifier can perform the Schnorr-like identification scheme
almost as fast as the Guillou-Quisquater scheme. In particular, the efficiency of
the proposed protocol is independent of the size of exponents and thus Brickell-
McCurley’s scheme may be preferred to the Schnorr scheme due to its enhan-
ced security. The proposed PAV protocol will make Schnorr-like identification
schemes much more attractive for smart card implementations since now smart
cards can also perform the required verification fast.

By generalizing the PAV protocol, we have also presented a signer-aided
verification (SAV) protocol that can be adapted for verification of any public
function. The proposed SAV protocol is also quite efficient in both computation
and communication. With a convincing probability of 1 - 2- t , the validity of
a signature can be checked in about 3t multiplications on average for discrete
logarithm-based schemes and in about 4.5t multiplications on average for the
GQ scheme. The batch SAV protocol enables more efficient verification of a
collection of signatures.

The proposed server-aided verification protocol will be useful for many public
key cryptographic schernes carried out between users with asymmetric compu-
ting powers. Smart card verification of identity proofs and signatures will be
one of the most attractive application areas of the protocol. Another important
application can be found in designing efficient protocols for authenticated key
exchange between sinart cards and servers (computers) (see [28]).

Finally we would like to mention that if the communication cost is relati-
vely low, we can considerably reduce the computational complexity for the SAV
protocol by adapting the server-aided approach for RSA computation (e.g., see
[29]). Of course, in this case, its security relies on the computing power of the
server as in the batch SAV protocol presented in this paper.

77

References

1. A.Fiat and A.Shamir : ‘How to prove yourself : Practical solution to identifica-
tion and signature problems’, Advurrceu in Cryptology-Crypto ’86, Springer-Verlag,

2 . L.C.Guillou and J. J.Quisquater : ‘A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory’, Advances in
Cryptology-Eurocrypt’88, Springer-Verlag, pp.123-128 (1988).

3. K.Ohta and T.Okamoto : ‘A modification of the Fiat-Shamir scheme’, Advances in
Cryptology- Crypto ‘88, Springer-Verlag, pp.232-243 (1990).

4. C.P.Schnorr : ‘Efficient signature generation by smart cards’, Journal of Cryptology,

5 . E.F.Brickell and K.S.McCurley : ‘An interactive identification scheme based on
discrete logarithm and factoring’, Journal of Cryptology, 5(1), pp.29-39 (1992).

6. T.Okamoto : ‘Provably secure and practical identification schemes and corres-
ponding signature schemes’, Advances an Cryptology-Crypto’9.2, Springer-Verlag,

7. E.F.Brickel1, D.M.Gordon, K.S.McCurley and D.B.Wilson : ‘Fast exponentia-
tion with precomputation’, Advances in Cryptology-Eurocrypt’9.2, Springer-Verlag,

8. C.H.Lim and P. J.Lee : ‘More flexible exponentiation with precomputation’, Ad-
vances in Cryptology-Crypto’94, Springer-Verlag, pp.95-107 (1994).

9. P.de Rooij : ‘Efficient exponentiation using precomputation and vector addition
chains’, In Pre-proceedings of Eurocrypt’94, pp.403-416 (1994).

10. T.Matsumoto, K.I<ato and H.Imai : ‘Speeding up secret computations with inse-
cure auxiliary devices’, Advances in Cryptology- Crypto’88, Springer-Verlag, pp.497-
506 (1990).

11. J.J.Quisquater and M.De Soete : ‘Speeding up smart card RSA computation with
insecure coprocessors’, In Proc. Smart Card 2000, North-IIolland, 191-197 (1991).

12. B.Pfitzmann and M.Waidner : ‘Attacks on protocols for server-aided RSA compu-
tation’, Advances in Cryptology-Eurocrypt ’92, Springer-Verlag, pp.153-162 (1993).

13. T.Matsumoto, H.Imai, C.S.Laih and S.M.Yen : ‘On verifiable implicit asking proto-
cols for RSA computation’, Advances in Cryptology-Auscrypt’92, Springer-Verlag,
pp.296-308 (1993).

14. S.Kawamura and A.Shimbo : ‘Fast server-aided secret computation protocols for
modular exponentiation’, IEEE J . Selected Areas in Commun., 11(5), 778-784
(1993).

15. J.Burns and C. J.Mitchell : ‘Parameter selection for server-aided RSA computation
schemes’, IEEE Trans. Computers, 43(2), 163-174 (1994).

16. S.M.Yen and C.S.Laih : ‘Server-aided honest computation for cryptographic appli-
cations’, Computers Math. Applic., 26(12), pp.61-64 (1993).

17. U.Feige, A.Fiat and A.Shamir : ‘Zero-knowledge proofs of identity’, J . Cryptology,
1(2), pp.77-94 (1988).

18. M.Girault : ‘An identity-based identification scheme based on discrete logarithms
modulo a composite number’, Advances in Cryptology-Eurocrypt’90, Springer-
Verlag, pp.481-486 (1991).

pp. 186- 194 (1988).

4(3), pp.161-174 (1991).

pp.31-53 (1993).

pp.200-207 (1993).

78

19. M.Girault : ‘Self-certificated public keys’, Advances in Eurocrypt’91, Springer-
Verlag, pp.490-497 (1991).

20. K.Nyberg and R.Rueppe1 : ‘Message recovery for signature schemes based on the
discrete logarithm problem’, submitted t o Designs, Codes and Cryptography (also
appears in Pre-proceedings of Eurocrypt’94).

21. P.Horster, H.Petersen and M.Michels : ‘Meta-ElGamal signature schemes’, In
Proceedings of 2nd ACM Conference on Computer and Communication Security
(1994).

22. P.Horster, H.Petersen and M.Michels : ‘Meta message recovery and meta blinded
signature schemes based on the discrete logarithm problem and their applications’,
In Pre-Proceedings of Asiacrypt’94, pp.185-196 (1994).

23. L.Harn and Y.Xu : ‘Design of generalized ElGamal type digital signature schemes
based on discrete logarithm’, Electronics Letters, 30(24), pp.2025-2026 (1994).

24. NIST : ‘Digital signature standard’, FIPS PUB 186 (1994).
25. S.Goldwasser, S.Micali and C.Rackoff : ‘The knowledge complexity of interactive

proof systems’, SIAM J . Cornput., 18(1), pp.186-208 (1989).
26. D.Naccache, D.M’raihi, D.Raphaeli and S.Vaudenay : ‘Can D.S.A. be improved ?

-Complexity trade-offs with the digital signature standard’, In Pre-proceedings of
Eurocrypt ’94 (1994).

27. C.H.Lim and P. J.Lee : ‘Security of interactive DSA batch verification’, Eleclronzcs
Letters, 30(19), pp.1592-1593 (1994).

28. C.II.Lim and P.J.Lee : ‘Fast authenticated key exchange with the aid of the com-
municating partner’, in preparation (available from the authors by e-mad).

29. C.H.Lim and P. J.Lee : ‘Signer-aided probabilistic verification of digital signatures
using random decomposition’, in preparation (available from the authors by e-
mail).

	Introduction
	Prover-Aided Verification of Identity
	PAV Protocol for Schnorr's Identification Scheme
	PAV Protocol for Brickell-McCurley’s Scheme
	PAV Protocol for Okamoto’s Scheme

	Signer-Aided Verification of Signatures
	SAV Protocol for Schnorr’s Signature Scheme
	Batch SAV Protocol for Schnorr’s Scheme

	Server-Aided Verification of General Functions
	Summary and Conclusion
	References

