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Abstract. Discrete log based identification and signature schemes are 
well-suited to identity proof and signature generation, but not suitable 
for verification, by smart cards, due to their highly asymmetric compu- 
tational load between the prover/signer and the verifier. In this paper, 
we present very efficient and practical protocols for fast verification in 
these schemes, where the verifier with limited computing power per- 
forms its computation fast with the aid of the powerful prover/signer. 
The proposed protocols require very small amounts of computation and 
communication. The prover/signer only needs to perform a few modular 
exponentiations in real-time and the two interacting parties only need 
to communicate a few long numbers. Using the proposed prover-aided 
verification (PAV) protocol, the verifier can perform the Schnorr-like 
idenlification scheme almost as fast as the Guillou-Quisquater scheme. 
We generalize the PAV protocol into the signer-aided verification (SAV) 
protocol, which can be used for verification of any public function. 

1 Introduction 

Based on zero-knowledge proof techniques, a lot of identification and  digital si- 
gnature schemes have been developed [l-61. Among them,  Schnorr-like schemes 
[4-61 are particularly attractive for use in smar t  cards or other environments with 
limited computing power, since the prover/signer needs almost no8 fax. real- 
t ime computation with preprocessing/precomputation techniques [4,7-91. Howe- 
ver, verification requires exponentiation involving a lot, of multiplications, which 
is disadvantageous compared t o  Fiat-Shamir-like schemes [l-31. This asymmetric 
computational load may restrict applications of these schemes, when implemen- 
ted on  a weak power device such as a smar t  card, into environments where only 
one-way proofs are sufficient. Thus what is further desired for these schemes 
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would be that proofs in the other way are also efficient for smart card implemen- 
tations. This motivated us to  develop methods for speeding up the computation 
by the verifier in some way or another. 

We first considered the applicability of Ihe server-aided approach to secret 
computation, first proposed by Matsumoto et al. [lo] and since then widely stu- 
died by  many researchers [ll-151, to  the public verification of identity proofs and 
signatures. Arid we found a related work performed by Yen and Laih [16], but 
unfortunately their protocol can be easily shown to be insecure. Furthermore, 
this kind of protocols seems to need too much amount of communication to  be 
practical for smart card applications. There are fundamentally different requi- 
rements for the server-aided secret computation protocol and the server-aided 
public verification protocol. The former has to guarantee the security of the in- 
volved secret information, while the latter requires the assurance of the integrity 
of computation results returned from the server. This difference of requirements 
seems make the latter protocol needlessly complicated and hard to  guarantee 
the correctness of the required verification. 

In this paper we propose efficient protocols for speeding up the verification 
of identity proofs and signatures. The key idea is to use the precomputation 
based on a fixed base element and then mirror the action of the prover/signer. 
In the proposed protocols, we assume that the proving/signing terminal is much 
more powerful than the verifying device so that  it can perform several cxponen- 
tiations in real-time. This situation will commonly arise in a smart card based 
system when a powerful terminal proves to a smart card or when signature ve- 
rification is performed on a smart card. Thus the resulting protocols may be 
called as prover/signer-aided verification (PAV/SAV) protocols since the verifier 
performs the required verification fast by borrowing the computing power of the 
prover/signer . 

Compared to the protocol for server-aided RSA computation, our proposed 
protocols are much more efficient and practical since only a few long numbers 
need to  be exchanged and only a few modular exponentiations need to  be per- 
formed by the prover/signer. For example, using the proposed prover-aided ve- 
rification (PAV) protocol, the verifier can execute the Schnorr-like identification 
scheme [4-61 almost as fast as the Guillou-Quisquater scheme [2], only with ex- 
change of one long number and without loss of security. This will make Schnorr- 
like identification schemes much more attractive for smart card implementations 
since now smart cards can also perform the required verification fast. By ge- 
neralizing the PAV protocol, we also present a signer-aided verification (SAV) 
protocol with which the verifier can check the validity of signatures with any de- 
sired convincing probability. For example, if a convincing probability of 1 - 2- t  
is acceptable in a real-time protocol, a signature generated by Schnorr’s scheme 
can be verified in about 3t multiplications on average. Finally we show that 
the proposed techniques can be used for verification of any public function by 
presenting a fully generalized version of the server-aided verification protocol. 
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2 Prover-Aided Verification of Identity 

Throughout this paper, we will use the following conventions, unless otherwise 
stated. Let p and q be two large public primes such that q divides p - 1 and g 
be an element of order q in 2,. We denote the bit-length of p (q,  resp.) by R ( I ,  
resp.) (i.e., Ipl = n,  Iq1 = I). Let ( s ,  u) be the secret and public key pair of the 
prover/signer, where u = g-' mod p with s E 2,. We assume that prccompu- 
tation of random powers to the fixed base g is performed in advance and thus 
does not take time during the protocol execution. 

The computation of a"bY mod p with 121 = 1 and lyl = t is assumed to be 
carried out by the square-and-multiply algorithm with a precomputed value of 
ab mod p (see [4]). We assume that the most significant bits of the exponents, 1: 
and y, are always one for completeness, though their effect on the performance 
is negligible. Then the above computation can be completed in 1.51 +0.25(t  - 1) 
multiplications for 1 > t ,  and 1.751-0.75 for I = t ,  on average. Multiplication will 
always denote multiplication mod 1) and multiplication mod q will be neglected 
when counting the number of multiplications. 

2.1 PAV Protocol  for Schnorr 's  Identification Scheme 

The following is the five-move protocol for prover-aided verification in Schnorr's 
identification scheme [4]. Here t is a parameter that determines the security level 
of the identification scheme, usually lying between 20 and 40. 

0) (Preprocessing) The prover picks a random number r E 2, and computes 
x = g r  mod p .  Similarly the verifier computes z = g - K  mod p with randomly 
chosen li over 2,. 

1) The prover sends x to the verifier. 
2 )  The verifier randomly picks an integer e E [0,2') and sends it to the prover. 
3) The prover computes and sends y = T + se mod q.  
4) The verifier randomly picks an integer k E [0 ,2 t ) ,  computes and sends u = 

5 )  The prover computes w = gu mod p and sends it back to the verifier. 
6) Finally the verifier checks if the following equation holds : 

(I< + y)k-' mod q .  

x = wkve.z mod p (1) 

Note that for security the precomputed value z should not be revealed to 
the prover at  least until the protocol is completed. This must be observed in 
every protocol preserited i n  this paper. If desired, the computation of k-' mod 
q in step 4) may be performed in the preprocessing stage. Steps 1) - 3) exactly 
correspond to the original Schnorr scheme whose verification equation equals 

x = g y v e  mod p .  (2) 
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On the other hand, steps 4) - 6) correspond to the protocol in which the verifier 
computes gy mody with the aid of the prover. Thus we can see that by borrowing 
the prover’s computing power the verifier can reduce the computational load of 
I hit exponentiation to  that of t hit exponent,iat,ion. 

Security : Equation (1) shows that the values of 5,  ‘u and e ,  which are determined 
in the first half of the protocol, cannot be modified, without knowledge of k, in 
the latter half. On the other hand, the value of u ,  which is the only data available 
to the prover for extracting information on the secret number k, releases no 
information on k since even z is not available at  this point. As a result, the prover 
may guess k but has no way to verify its guess. The above two facts show that 
the PAV protocol is unconditionally sound since no information on k is released 
in the Shannon-theoretic sense and since without knowing k the dishonest prover 
cannot convince the verifier with more than guessing probability. 

There may be a slight advantage on the prover’s side. Throughout the whole 
protocol, the prover is given two chances of cheating the verifier : either by 
guessing e in step 1) as in the original Schnorr scheme or by guessing k in step 
5 ) .  The latter guess can be successful independently of the former guess since, 
once the former is turned out to be wrong from the response of step 2), the 
prover knows how to manipulate w to pass the verification of step 6), of course, 
under the assumption that its guess at k is correct. Thus the added steps 4) 
and 5) only gives the prover another chance of random guessing. This will be of 
little value to the (dishonest,) prover. Consequently, we conclude that the prover- 
aided approach to fast verification preserves almost the same security level of 
the original scheme. 

Efficiency : The verifier can check the verification equation (1) in about, 1.75t + 
0.25 multiplications on average. This is almost the same amount of computa- 
tion its is required in the GQ scheme. Note that with the original verification 
equation (2), about 1.51+ 0.25(t - 1) multiplications are required. For example, 
with 1 = 160 and t = 20, the equality of equation (1) can be checked in 35.25 
multiplications, while validating equation (2) requires 244.75 multiplicat,ions, on 
average. Thus about 210 multiplications can be saved in this case using the 
proposed verification protocol. 

The above efficiency is obtained only by increasing the number of communi- 
cation bits by n+1. The computational complexity imposed on the prover is also 
very small, just one exponentiation (1.5(1 - 1) multiplications on average). No 
restriction on the computing power of the prover will he necessary due to  this 
increase of computational amount, since such computation can he carried out 
in real-time even on the PC (personal computer). Therefore, in typical smart 
card-based systems, we will be able to obtain great computational advantage 
using the PAV protocol only with n small incrcasc of communication. 
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2.2 

Brickell and McCurley [5] modified the Schnorr scheme in order to enhance 
the security at  the cost of more computation and communication. The basic 
differences are that all exponents are selected and computed modulo p - 1 rather 
than modulo q and that q is kept secret from the users (so the modulus p should 
be chosen such that p -  1 is hard to factor). The resulting protocol can be proven 
to be secure, assuming that p - 1 is hard to factor, and remains as secure as the 
Schnorr scheme even if p - 1 is factored. 

The PAV protocol for the Brickell-McCurley (BM) scheme is the same as 
that for the Schnorr scheme, except that all arithmetics on exponents should be 
done modulo p - 1. Thus the performance improvement by the PAV protocol is 
much more drastic in this scheme. For example, with n = 512 and t = 20, the 
original verification requires 772.75 multiplications on average, while the prover- 
aided verification still requires 35.25 multiplications. This amounts to more than 
a twenty four-fold improvement. Since main disadvantage of the BM scheme can 
be eliminated with the PAV protocol, the BM scheme may be preferred to  the 
Schnorr scheme in view of security. 

We finally would like to mention that the PAV protocol does not affect the 
provable security of the original scheme since no additional information on the 
secret key of the prover is involved in the prover-aided verification part. Note 
that a thrcc-move identification scheme is said to be sccurc (in the sense of Feige- 
Fiat-Shamir [17]) if the protocol execution releases no useful information on the 
prover’s secret. 

PAV Protocol for Brickell-McCurley’s Scheme 

2.3 PAV Protocol for Okamoto’s Scheme 

Okamoto [6] has proposed another modification of Schnorr’s scheme with the 
feature of provable security. Since it is somewhat different from the Schnorr 
scheme in basic construction, we describe his scheme together with the proposed 
verification protocol. Let p and q be as before and g1 and g2 be elements of order 
q in Z,. The public key of the prover in the Okainotoschenie is zi = y;J’g;s2 mod 
p ,  where s1 and sz in 2, are his secret keys. The PAV protocol for Okamoto’s 
scheme is as follows. 

0) (Preprocessing) The prover randomly picks r1, rz E 2, and computes 2 = 
g;‘gia mod p .  Similarly the verifier computes t = g;K1gq1‘2 mod p with 
K l ,  X Z  E 2,. 

1) The prover sends 1: to the verifier. 
2) The verifier randomly picks an integer e E [0,2‘) and sends it to  the prover. 
3) The prover computes y1 = rl + s l e  mod q and yz = rg + sze mod q and 

4) The verifier randomly picks k E [0, a‘ ) ,  computcs u1 = ( K l  + y1)k-l mod q 
sends them to the verifier. 

and u2 = ( K 2  + y2)k-l mod q I  and sends them back to the prover. 
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5) The prover computes w = g;"'g;' mod p and sends it to  the verifier. 
6) Finally the verifier checks if the following equation holds : 

x = w k v e t  mod p (3) 

Though the Okamoto scheme is somewhat different from the Schnorr scheme, 
we can see that the performance of the PAV protocol remains almost the same. 
Compare the above equation (3) with the original verification equation : 

Schnorr Brickell et al. Okamoto 

almost 0 almost 0 almost 0 
1.51 + 0.25(t - 1) 1.5n + 0.25(t - 1) 1.751 + 0.125t + 2.37 

2 n + l + t  3n + t 2n + 21 + t 
1.5(1- 1) 1.5(n - 1) 1.751 + 0.25 

1.75t $0.25 1.75t + 0.25 1.75t + 0.25 
312 + 21 + t  5n + t 3n+41+1  

x = gyl qi' ve mod p (4) 

The only difference is that in the above the verifier computes gy1g$2 mod p 
as w k z  mod p with the aid of the prover. Note that it is unnecessary to  use 
different values of k to compute 211 and u2 due to the involvement of distinct 
random secrets, Iil and K 2 ,  of 1 bit size (In any case, knowing one small random 
secret will be sufficient to  cheat the verifier). 

Table 1 below summarizes the performance of three identification schemes 
and their PAV versions. The certificate for the public key 'u is not taken into 
account when counting the number of communication bits and the computational 
amounts for preprocessing are also excluded. The number of multiplications is 
counted for the average case. Finally, note that wc are using the parameters n ,  1 
and .t as n = lpl,I = IqI and t = le l  = lkl, respectively. 

Table 1. Performance of PAV protocols for three identification schemes 

Finally we note that the proposed PAV protocol can also be adapted for iden- 
tification schemes with composite moduli. For example, in Girault's modification 
of the Schnorr scheme based on composite discrete logarithms [18], the order of 
the based element y is made public and thus the PAV protocol for Schnorr's 
scheme can be applied directly. On the other hand, in the similar protocol using 
the self-certified public key [19], the based element g has a maximal order modulo 
a composite and the signature component y is not reduced modulo any number. 
Thus it is not feasible to compute multiplicative inverses of exponents. For this 
scheme, the verifier may first raise both sides of the verification equation to the 
k-th power and then apply the PAV protocol (or it may use the protocol to be 
presented in section 3). Of course, the performance will be somewhat degraded 
in this case. 
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3 Signer-Aided Verification of Signatures 

There exists the same asymmetry of computational load in digital signature 
schemes derived from identification schemes based on the discrete logarithm 
problem. Thus thcse signatures are easy to generate but hard to verify with 
smart cards. This section is devoted to  developing an efficient protocol for signer- 
aided verification of signatures. Of course, the role of the powerful server need 
not be assumed by the signer itself in this case. Since typical application of this 
protocol will be signature verification on the smart card, the server may be a 
powerful terminal with which the smart card interacts. 

We only explain the proposed SAV protocol with Schnorr’s signature scheme, 
but it can be used for verification of other signature schemes based on the dis- 
crete logarithm problem as well (e.g., see [20-231 for generalized ElGamal-type 
signature schemes and their message recovery variants). In fact, the proposed 
technique can be applied to  server-aided verification of any public function, as 
will be illustrated in the nest section. 

3.1 

For the moment, let us suppose that the signer’s public key v = g-’ mod p is 
globally known and frequently used (this m a y  be the case if we have to frequerilly 
verify signatures of some central authorities). ‘I’hen we can adapt the PAV proto- 
col into the SAV (signer-aidcd verification) protocol as follows, where h denotes 
a one-way hash function producing raiidomly and uniforinly c-bit digests (see 
below). 

SAV Protocol for Schnorr’s Signature Scheme 

(Preprocessing) The verifier computes z = g W K 1  v - K z  mod p with [(I, l ( 2  E 

The signer sends the signature {z, y, m} to  the verifier, where 2 = g‘ mod p 
and y = T + se mod y with e = h ( z ,  m).  
The verifier computes e = h ( z , m )  Then it randomly picks an integer k E 
(0,2‘], computes u1 = (A’l+ y)k- l  mod q and u2 = ( K z  + e)k-’ mod q ,  and 
sends them to  the signer. 
The signer computes and sends u1 = gU1vu2 mod p .  
The verifier then checks if 2 = w k z  mod p holds. If the check succeeds, the 
verifier accepts and stores { e ,  y} as a valid signature for message 771. 

We first want to note h i t  the length of hash-values used in any signature 

2, . 

schemes should be at least 128 bits, contrary to  the minimal length of 64 or 
72 bits that many researchers (e.g., see [1,2,4]) suggested. This is because the 
signer can find two different messages with the same signature using the birthday 
paradox if short hash-values are used. If such a thing is feasible, then the signer 
may deny later the signature of one rncssage by presenting the other message 
with the same signature. ‘l’his situation i s  essentially the same, as far as the 
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legality of signature is concerned, as the case where an outside attacker finds 
two different messages with the same hash-value, obtains a signature for the 
message favorable to the signer and then claims that the signer signed the other 
message favorable to himself. 

A slight modification may achieve the same effect that can be obtained by 
the use of longer hash-values without increasing the computational load of the 
verifier, but this does not matter in the current SAV protocol. From now on, we 
will assume that hash-values are randomly distributed over Z,  (i.e., c = I = 1q1) 
as in the DSS [24]. 

The above SAV protocol achieves a security level of 2 - t .  The signer cannot 
use in step 3) a value of v different from the one publicly known or sent in step 
l), due to its involvement in the computation of 2. Other security considerations 
are the same as in the PAV protocol. Thus, a fake signature can be made to  be 
accepted only when the guess of k is correct. If a false acceptance with probability 
of can be tolerated in a real-time protocol, then the signature can be verified 
in 29.5 mult~iplications on average. However, this protocol seems not practical in 
general, since the precomputation using the signer's public key is not possible in 
most cases. Thus the above SAV protocol needs to  be augmented by somewhat 
different technique. 

The problem we are faced with is to compute the part w e  mod p of the 
verification equation z = gyve modp with the aid of the signer, where the signer's 
public key v is assumed to vary in every run of the protocol. Our solution is to  
blind the public key ti by raising to thc k-th power and then multiplying by a 
random power of g ,  i.e., form u = g K v k  mod p ( fr' E Zq,  k E ( 0 ,  'L']), so that the 
signer, no matter how powerful it is, cannot deduce k from u (and thus cannot 
modify v) with more than the guessing probability of 2 - t .  For this, the verifier 
must compute v k  mod p before beginning the signer-aided verification, which 
increases the verifier's computational load almost twice compared to the above 
case. The following is the final SAV protocol for Schnorr's signature scheme. 

0) (Preprocessing) The verifier computes z1 = g-"' modp and z2 = g - K 2  mod 

1) The signer sends the signature {z, y,  m} to  the verifier, where z = g' mod p 

2)  The verifier randomly picks an integer k E ( 0 , 2 t ]  and computes u1 = 212, 

p with Iil, K 2  E Z,, 

and y = T + s e  mod q with e = h ( z ,  rn). 

mod p using the signer's public key v. The verifier also computes uz = 
( I i 2  + ky + K l e )  mod p with e = h ( z ,  m) and sends u1 and 112 to the signer. 

3) The signer computes and sends w = u;g"2 mod p. 
4) Finally the verifier checks that zk  = wz2 mod p .  If the equation holds, the 

k 

verifier accepts and stores {e, y} as a valid signature for message rn. 

The above verification is based on the following identity : 
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Mu1 Signer 
Verifier 

Commun 

Note that since the value of e computed as e = h ( x , r n )  by the verifier is em- 
bedded in u ~ ,  it is of no use for the signer to use a different value of e when 
computing w in step 3). The on-line computational load for the verifier is about 
3t - 1 multiplications on average. Thus, with a convincing probability of 1 - 
the verifier can validate a signature in 59 multiplications on average. This is a 
substantial improvement over direct verification requiring about 279.25 multipli- 
cations, if a small probability of false acceptance can be tolerated. If more strict 
verification is required, we may choose 1 = 30, in which case the signature can 
be verified in 89 multiplications with probability of false acceptance of lo-’. 

It is interesting to  note that the SAV protocol may be viewed as an interactive 
proof system for language membership [25], though the proof is trivial, where 
the language L consists of a set of valid signatures generated with the Schnorr 
scheme, i.e. 

Original SAV 

almost 0 1.751 - 0.75 
1.751 - 0.75 

n + 21 
3t - 1 

4n + 21 

L = {(x, y, rn, v ) ( x  = gyve  mod p with e = h(z ,  rn)}. (6) 

In the SAV protocol, the verifier with limited computing power wants to be 
convinced that a given instance belongs to  L.  The above discussion shows that 
the SAV protocol satisfies the two conditions of an IP system, completeness and 
soundness. 

The following table shows the performance of the proposed SAV protocol for 
Schnorr’s signature scheme. Here we assume that the hash-value e is of 1 bit size. 
The message m and the public key certificate are not included in the number of 
communication bits. 

Table 2. Performance of SAV protocol for Schnorr’s signature scheme 

3.2 Batch SAV Protocol  for Schnorr’s Scheme 

A collection of signatures can be verified more efficiently by processing in a batch. 
Naccache et al. [26] presented (interactive and probabilistic) batch verification 
protocols for DSA at Eurocrypt’94, together with several other useful techniques 
to  improve the performance of DSA (but the interactive batch verification pro- 
tocol was shown to be insecure [27]). 

Let {xi, yi}, for i = 1 , 2 ,  . . . , N ,  be Schnorr’s signatures for messages mi 
signed by the same signer, where 2; = gr“ mod p and ya = ri + se; mod q 
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Storage 
Mult  = 20 

1 = 30 

with ei = h(zi ,  mi). Then the verifier can check the validity of the signatures by 
batch-processing with the equation 

3 7 6 9 14 12 30 28 45 60 
34.3 39.6 50.5 66.8 61.3 83.0 77.6 104.5 107.4 137.3 
51.8 58.4 75.5 99.3 88.8 123.0 106.4 149.5 145.6 184.8 

where ki's are random numbers of t-bit size chosen by the verifier. The parameter 
t determines the level of confidence for batch verification. 

We first explain a method for efficiently evaluating the left-hand side of equa- 
tion (6) using the idea from [8 ] .  It can be computed by arranging the N terms of 
small powers into a groups consisting of b terms, preparing all products of POS- 
sible combinations among b terms in each group and then applying the square- 
and-multiply algorithm. We can then show that the required computation can 
be completed in q ( t  - 1)" + t + ( a b  - b)a - 2 multiplications on average. For 
this, we also need a storage for (2' - 1). values. 

Table 3 below summarizes, for some selected parameters, the numbers of 
multiplications and storage required for the computation of the left-hand side 
of equation (6) using this method. From the table, we can see that if the ve- 
rifying device is equipped with sufficient storage, a number of signatures can 
be verified with great efficiency. Batch verification on the PC may be such a 
case. For example, 16 signatures generated by the same signer can be validated 
in about 464 multiplications on average, where t = 30 is assumed and 279.25 
multiplications for computing the right-hand side of equation (6) are included. 

N II 2 I 3  I 4  I 6 8 12 

Table 3. Resource requirements for computing the left-hand side of equ. (6) 

Now, let us consider the batch verification on the smart card. Since typical 
smart cards under current technology do not have much storage, a relatively 
small number of signatures can be processed at  a time. In this case, the com- 
putation of the right-hand side of equation (6) seems a quite heavy load to the 
smart card. Thus we may use a batch SAV protocol for this computation. Let 
us consider the following protocol. 

0) (Preprocessing) The verifier computes z1 = g-K1 mod p and z2 = g - K Z  mod 

1) The signer sends { zi , yi, mi} (1 5 i 5 N )  to the verifier. 
p with K1, Ii2 E 2,. 
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2) The verifier first computes ei = h(z i ,  mi). Then it randomly picks N + 1 
integers k i ,  for i = 0 , 1 , .  . . , N ,  over (0,2'], and then computes u1 = zlvko 
mod p and 212,213 as 

The verifier then sends u l ,  212 and 213 to  the signer. 
3) The signer computes and sends w = uyZgu3 mod p .  
4) Finally the verifier checks if the following equation holds : 

N 

If it holds, the verifier accepls and stores { e i ,  yi} as valid signatures for 
messages mi for i = 1,2, 

The above batch verification is based on the following identity : 

N .  

Using the above batch SAV protocol, the verifier can compute the right-hand 
side of equation (6) in 1.5t - 0.5 multiplications on average if we neglect the 
arithmetics mod q .  Therefore, we can verify, for example, four signatures in 
about 80 multiplications on the smart card, with a convincing probability of 
1 - (t = 20), if the smart card ha.s a scratch pad memory for ten values or 
so. Note that if different signers are involved, each signer's public key must be 
blinded individually and thus the performance will be degraded. But this is also 
the case for direct verification. 

The batch SAV protocol has one undesirable property, compared to the SAV 
protocol of the previous subsection, in the sense that its security is dependent 
upon the computing power of the signer. That is, for small N ,  the signer may 
try to  find the random secret numbers ki's from the value of u2 by an exhaus- 
tive search using the birthday paradox. This is clearly undesirable but seems 
inevitable due to the involvement of secret numbers in the exponent of u .  

From the equation u 2 k o + C z ~  k;ei = CE1+N,, kie i  mod q where we assume 
that N is even, ki's can be computed in Llog, L operations with L = 2 1 ( 1 + N / 2 ) .  
For example, for N = 2 and t = 20, we have L = 240. However, such an attack 
can be mounted only after uz is given. Thus it is unlikely that this attack makes 
any practical threat to  the protocol even for the above minimal parameters, 
since it is infeasible to perform 240 operations in a second or so. Other security 
considerations are the same as in the SAV protocol. 
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4 Server-Aided Verification of General Functions 

We now present a fully generalized version of server-aided verification protocols 
which can be used for verification of any public function. Suppose that the 
verifier, with the aid of a powerful server, wants to check the equality of the 
following general equation defined over a finite group G : 

N 

i=l  

All involved elements are assumed to be public and variable. The following proto- 
col allows the verifier to test the equality of the above equation with a convincing 
probability of 1 - 2 - t .  

0) (Preprocessing) The verifier randomly picks an element g E G' and computes 

1) The verifier randomly picks an integer k E (0 ,2t]  arid then computes the 
zi = g K c  with Ki , E G for i = 0,  1, . . . , N . 

following values : 

N 

UO = Z O y ' ,  U i  = Z i Z f  (1 5 i 5 N ) ,  UN+1 = K o , 8  - I(iai + I(N+l 
i=l  

Then the verifier sends (9,216, a( ,  a} to the server. 
2) The server computes and sends the following value : 

N 

i=l  

3) Finally the verifier checks if zN+l = 20 holds. 

The above server-aided verification is based on the following identity : 

N N 
S K ~ + ~  - - SK~P-x,=, KXat+h"+i . ( , f o Y k ) - P  , n(p x">"> (11) 

Z = 1  

The element g may be globally fixed and, if the group order [GI is known, all the 
exponents can be reduced modulo IGI . The protocol achieves a security level 
of 2-' since the only way to cheat the verifier is to guess k and manipulate y 
and/or 2,. The number of group multiplications required of the verifier is around 
(1.5t - 0.5)(N+ 1 )  on the average. If there are M fixed elements in equation (9), 
this quantity can be reduced to ( 1 3  - 0.5) (N - M + 1). 

All the protocols presented so far are special cases of the above protocol. 
Note that with t-bit randomizers (blinding factors), signature schemes involving 
a fixed base element can be verified in 3t - 1 multiplications while the other 
schemes such as Guillou-Quisquater [a] and Ohta-Okamoto [3] can be verified in 
about 4.5t - 1.5 multiplications on average. Even for the GQ scheme, this is a 
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considerable improvement over direct verification in case where a moderate level 
of confidence is sufficient (e.g., 88.5 vs 223.25 for t = 20 and 128 bit hash-values). 

The above server-aided approach to fast verification will be useful for most 
public key cryptographic schemes when executed between two parties with asym- 
metric computing power. Typical applications may be found in the interactive 
protocols between smart cards and terminals. Since the proposed protocol is in- 
dependent of the size of exponents and its security level is independent of the 
server’s power, the advance of cryptanalytic methods (based either on software 
or on hardware) will never adversely affect its performance. Rather, the perfor- 
mance may be further improved in case that the size of group order is increased. 

5 Summary and Conclusion 

We have presented an elegant way to speed up the computation by the verifier 
in discrete logarithm-based identification schemes (Schnorr, Brickell-McCurley, 
Okamoto, etc.), with the aid of the powerful prover. The proposed prover-aided 
verification (PAV) protocol is secure and efficient : Only with a small amount 
of additional communication and with almost the same level of security as the 
original scheme, the verifier can perform the Schnorr-like identification scheme 
almost as fast as the Guillou-Quisquater scheme. In particular, the efficiency of 
the proposed protocol is independent of the size of exponents and thus Brickell- 
McCurley’s scheme may be preferred to the Schnorr scheme due to  its enhan- 
ced security. The proposed PAV protocol will make Schnorr-like identification 
schemes much more attractive for smart card implementations since now smart 
cards can also perform the required verification fast. 

By generalizing the PAV protocol, we have also presented a signer-aided 
verification (SAV) protocol that can be adapted for verification of any public 
function. The proposed SAV protocol is also quite efficient in both computation 
and communication. With a convincing probability of 1 - 2- t  , the validity of 
a signature can be checked in about 3t multiplications on average for discrete 
logarithm-based schemes and in about 4.5t multiplications on average for the 
GQ scheme. The batch SAV protocol enables more efficient verification of a 
collection of signatures. 

The proposed server-aided verification protocol will be useful for many public 
key cryptographic schernes carried out between users with asymmetric compu- 
ting powers. Smart card verification of identity proofs and signatures will be 
one of the most attractive application areas of the protocol. Another important 
application can be found in designing efficient protocols for authenticated key 
exchange between sinart cards and servers (computers) (see [28]). 

Finally we would like to mention that if the communication cost is relati- 
vely low, we can considerably reduce the computational complexity for the SAV 
protocol by adapting the server-aided approach for RSA computation (e.g., see 
[29]). Of course, in this case, its security relies on the computing power of the 
server as in the batch SAV protocol presented in this paper. 
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