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Abstract. A theoretical framework for fast correlation attacks on irreg- 
ularly clocked linear feedback shift registers (LFSRs) based on a recently 
established linear statistical weakness of decimated LFSR sequences is 
developed. When the LFSR feedbxk polynomial is not known, methods 
for the statistical weakness detection and the feedback polynomial recon- 
struction are proposed. When the LFSR feedback polynomial is known, 
an iterative procedure for fast LFSR initial state reconstruction given 
an observed keystream sequence is introduced. The procedure is based 
on appropriately defmed parity-check sums and consists in iterative re- 
computation of the posterior probabilities for unknown elements of the 
decimation sequence. A convergence condition in terms of the numbers 
of the parity-check sums needed for successful reconstruction and the re- 
quired polynomial computational complexity indicate that the proposed 
fast correlation attack may be realistic, especially in the constrained 
clocking case. The number of the feedback polynomial multiples of rela- 
tively low weight and not too large degree thus proves to be critical for 
the security of irregularly clocked LFSRs. 

1 Introduction 

Clock-controlled linear feedback shift registers (LFSRs) have become important 
building blocks for keystream generators in stream cipher applications, because 
they are known to produce sequences of long period and high linear complexity, 
see [12], [5], and [17]. They are also immune to fast correlation attacks [13, 19,20, 
181 on additively noised LFSR sequences. They have even been proposed as the 
keystream generators themselves, see [4], [14]. A clock-controlled shift register 
is a LFSR that is irregularly clocked according to a decimation sequence which 
defines the number of symbols to be deleted before the next output symbol is 
produced. The decimation sequence is itself a pseudorandom sequence produced 
by a clock-control generator, for example, by another LFSR, as is proposed in 
[4]. Irregular clocking is called constrained if the number of consecutive deletions 
is limited and unconstrained otherwise, see [9]. The secret key is assumed to 
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control the LFSR initial state, the initial state and the structure of the clock- 
control generator, and, possibly the LFSR feedback polynomial as well. The 
objective is to reconstruct the feedback polynomial and the initial state of the 
clock-controlled LFSR given an observed segment of the keystream sequence. 

When the LFSR feedback polynomial is known, a divide and conquer attack 
on the unknown decimation sequence based on the linear consistency test is 
proposed in [21], where the required length of the observed keystream sequence 
for the attack to be successful is also estimated. A similar attack for multiplexed 
sequences based on the collision test is independently suggested in [l], see also 
[2]. On the other hand, divide and conquer correlation attacks on the LFSR 
initial state are also possible if the observed decimated sequence is sufficiently 
long. Namely, the embedding correlation attack is in [23] and [lo] analyzed for 
the constrained clocking case and in [lo] for the unconstrained clocking case. 
The statistically optimal probabilistic correlation attack in the unconstrained 
clocking case is analyzed in [lo] too. The attacks imply the exhaustive search 
over all possible decimation sequences and over all possible LFSR initial states, 
respectively. Although a divide and conquer effect is achieved, the computational 
complexity remains exponential. 

The first problem to be considered in this paper is the LFSR feedback poly- 
nomial reconstruction given a known segment of the keystream sequence. We 
develop an approach based on a recently found linear statistical weakness of 
irregularly decimated LFSR sequences [ll] . The weakness and the correspond- 
ing correlation coefficients are further analyzed in more detail in Section 2. In 
Section 3, it  is then shown how to detect the statistical weakness when the feed- 
back polynomial is not known, how to reconstruct the feedback polynomial by 
exhaustive search over appropriately defined shrunk polynomials, and how to re- 
construct the feedback polynomial in a fast iterative way. The necessary length 
of the keystream sequence and the computational complexity are estimated in 
all the cases. 

The second problem, dealt with in Section 4, is the fast reconstruction of 
the LFSR initial state based on an observed keystream sequence, assuming that 
the feedback polynomial is known. The linear statistical weakness [ll] is again 
the starting point, and the method that we propose is based on the parity-check 
sums corresponding to the shrunk polynomials of specially defined polynomial 
multiples of the feedback polynomial. The algorithm consists in iterative recom- 
putation of the posterior probabilities for unknown elements of the decimation 
sequence and is conceptually similar to the iterative probabilistic decoding al- 
gorithms used in fast correlation attacks on additively noised LFSR sequences 
[13, 22, 3, 15, 161. Instead of the binary additive noise we deal with the integer 
decimation noise. By using the analogy with the problem considered in [16], we 
give a convergence condition in terms of the numbers of the parity-check sums 
needed for successful reconstruction. This condition along with the required poly- 
nomial computational complexity shows that the proposed fast correlation attack 
may be realistic, particularly in the constrained clocking case. 
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2 Linear Statistical Weakness 

Consider a clock-controlled shift register as a keystream generator consisting of 
a binary linear feedback shift register (LFSR) that is irregularly clocked accord- 
ing to a nonnegative integer decimation sequence which defines the number of 
symbols to be deleted before the next output symbol is produced, see 1121, [5]. It 
is thus assumed that the number of clocks per each outpiit symbol is a positive 
integer. The decimation sequence is itself generated in a pseudorandom manner 
by a clock-control generator, for example, by another LFSR, as is proposed in 
[4]. More precisely, if X 1 {Q}& denot,cs a regularly clocked LFSR sequence 
and D = {dt},"=, a decimation sequence, then the output sequence Y = {gt}go 
is defined as a decimated sequence 

The secret key is assumed to control the LFSR. initial state and the initial state 
and the structure of the clock-control generator. It may in addition be assumed 
that the LFSR feedback polynomial is also defined by the secret key, as in [4]. The 
objective is to reconstruct the initial state of the clock-controlled LFSR given 
an observed segment of the keystream sequence, provided that the feedback 
polynomial is known. If the feedback polynomial is not known, then the first 
objective is to determine this polynomial. 

Since the decimation sequence is not, known, it is reasonable to assume an 
appropriate probabilistic model based on partial or complete knowledge of the 
structure of the clock-control generator. Let thus D be a sequence of independent 
identically distributed nonnegative integer random variables with a probability 
distribution P = { P ( d ) } d E ~  where D is the set of integers with positive proba- 
bility. The deletion rate [lo] is then defined as p = &,d = C d t D d P ( d ) .  The 
unknown LFSR initial state is assumed to be chosen uniformly at random. Let us 
now briefly review and then further analyze in more detail the linear statistical 
weakness of irregularly clocked LFSR sequences pointed out in [ll]. Let the LFSR 
have length T and the feedback polynomial f ( z )  = 1 + CiTl f i z i  = 1 + zzZl z i k ,  
1 5 il < . . . < i ,  = T ,  where W = 2u + 1 is the weight of f(z). Then a shrunk 
polynomial of f (z)  is defined as a polynomial of the form f ( z )  = 1 +C:=, fizz = 
1 + E;=l z i k ,  where 1 5 5 ,  < . . . < ;w = 7: and i k  - i k - 1  5 ik - ik-l,l 5 I; 5 w ,  
with $0 = io = 0. The weight of f(z) is the same as the weight of f (z )  and its 
degree P is not bigger than the degree T .  The degrees are equal if and only if 
f(z) = f ( z ) .  According to the LSCA nielhod [8], it is shown in [Il l  that the 
linear equation 

1 .  

, . , .  

W 

Ic= 1 

holds with probability (1 + c ) / 2  in the decimated sequence for any t 2 P, 
where the corresponding correlation coefficient I: depends on the probability 
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distribution P = { P ( d ) } d E ~ .  For simplicity, consider the geometric distribution 
P(d)  = p d ( l  - p), d 2 0, which corresponds to the case of independent deletions 
with probability p > 0. This is exactly the model to be used for the shrinking 
generator [4] where also p = 1/2. An arbitrary probability distribution P can 
be approximated by the geometric distribution by setting p = p where p is the 
deletion rate. The correlation coefficient [ll] is in this case given by 

where Ak = ik - i k - - l -  1 and A k  = 1, - ik-, - 1, 1 5 k 5 w. Equation (3) has a 
clear combinatorial meaning in terms of the probability of decimation sequences. 
More precisely, the correlation coefficient is equal to the probability of the event 
that the bits satisfying the feedback polynomial in the shift register sequence 
remain undeleted in such a way that they satisfy the shrunk feedback polyno- 
mial in the decimated sequence. It is assumed that the conditional correlation 
coefficient is equal to one when the event occurs and to zero otherwise. 

Consequently, the error sequence { et } produced by applying the feedfor- 
wasd linear transform defined by f^ to the keystream sequence {yt}, et = y~ + xrz1 gt-;, , t 2 ?, is regarded as a sequence of nonbalanced identically dis- 
tributed binary random variables with the correlation coefficient c to the con- 
stant zero variable. The variables are riot independent. In order to detect the 
statistical weakness in the error sequence, one can apply a simple chi-square 
statistical test. For a sequence of length n with 760 zeros and n1 ones, the value 
of the chi-square statistic is given by 

where C = (no - n l ) /n  denotes an estiniale of c. The error sequence can thus 
be distinguished from a purely random binary sequence with error probability 
less than about lo-', if n, which is approximately equal to the length of the 
observed keystream sequence, is equal to 10/C2 or larger. The same holds for the 
amount of computation needed. 

The correlation coefficient depeads on the chosen shrunk polynomial and is 
maximized if 

The maximum value denoted as cf is given by 

The multiplicative terms in ( 6 )  are the central terms of the corresponding bino- 
mial distributions. If 2 5 Azpt 5 Ak - 2, then the kth multiplicative term in (6) 
is by Stirling's formula well approximated as (2741 - - p ) ~ I k ) - l / ~ .  If Aipt is equal 



252 

either to Ak or to Ak - 1, that is, if pAk < 2 - p, then the lcth multiplicative 
term is lower-bounded by (1 - P ) ~ " .  

Let us analyze cf in two extreme cases, when p is relatively large and when p 
is relatively small. The case when p is very close to 1 can be treated analogously, 
but is not of practical interest. Suppose first that none of T / W ,  Ak, p A k ,  and 
(1 - p)Ak  is very small. Then we have 

The smallest magnitude of cf, which is the worst case for cryptanalysis, is then 
obtained when the feedback taps are approximately equidistant and is equal to 

The necessary length of the keystremi sequence and the amount of computation 
needed to detect the weakness are then both upper-bounded by (10/(1 - P ) ~ )  
( 2 7 r p / ( l - p ) ) w ( ( r - w ) / w ) w .  Given w, the larger the values of r andp the smaller 
the correlation coefficient. Given r and p, there exists an optimal value of w that 
minimizes the correlation coefficient. Also, c + 1 when p + 0 and c + 0 when 
p -+ 1. For example, if p = 1/2 as is suggested for the shrinking generator [4], 
then the necessary length becomes 40 (6.28 ( r  - W ) / W ) ~ .  Second, suppose that 
the deletion rate p is relatively small so that pAk < 2 - p for each k .  Then we 
obtain a lower bound 

The minimum length to detect the weakness is then at most 10/(1 - p)'('+l) 

Consequently, one may conclude that the linear statistical weakness is re- 
alistic and may be relatively easy to detect unless both r and 1u are relatively 
largc. If w is large, then instead of f one should use a polynomial multiple of f 
whose weight is relatively low and whose degree is not too large, based on the 
well-known fact that an LFSR sequence generated by f satisfies the linear recur- 
sions determined by all the polynomial multiples of f as well. In any case, the 
necessary length of the keystream sequence for the weakness detection is much 
smaller than 2". The underlying assumption is that the feedback polynomial f 
is known. 

The required length of the observed keystream sequence can be significantly 
reduced by using more than just one different shrunk polynomials of a given 
polynomial f .  The chi-square statistic is then computed on the resulting concate- 
nation of the error sequences as a whole. There are exactly M f  = n;='=, (Ak + 1) 
different shrunk polynomials f of a given polynomial f. The sum of the corre- 
lation coefficients (3) for all the shrunk polynomials of f is readily verified to 
be 

5 10/(1 - Y)'(Tfl). 
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7 (pr-+(l -p) '+l  fi (;I)) = (1 -p)"+' 
k=l 

and is equal to the probability that any w + 1 bits satisfying the linear recursion 
defined by the polynomial f in the regularly clocked LFSR sequence all remain 
in the keystream sequence as undeleted after the decimation. The average cor- 
relation coefficient over all the shrunk polynomials of f is hence (1 - p ) " " / M f .  
However, the total correlation virtually remains the same, up to a multiplicative 
constant close to one, if the summation is carried out only over the shrunk poly- 
nomials close to the optimal one for which the correlation coefficient is equal 
to the maximum value cf. A shrunk polynomial is regarded to be close to the 
optimal one if for each 1 5 k 5 w the absolute difference A k  - hipt is at 
most equal to the standard deviation (27rp(l - p ) A k ) l j 2  of the binomial dis- 
tribution multiplied by a positive constant close to 1. Since the corresponding 
average correlation coefficient Ff is then very close to cf,  there are approximately 
(1 - P ) ~ + ' / C ~  such shrunk polynomials. So, the required length of the keystream 
sequence to detect the weakness is thus reduced to lO/(cf(l - p)"+'), whereas 
the amount of computation remains the same, that is, lO/c?, comparing with 
the single optimal shrunk polynomial case. 

3 Feedback Polynomial Reconstruction 

In this section, it is assumed that the LFSR feedback polynomial f is key- 
dependent and hence unknown, as is proposed in [4]. In order to achieve long 
period and good long-term statistical properties on a period, f is usually cho- 
sen to be primitive or irreducible. However, since f is time-invariant given a 
key, the statistical weakness analyzed in the previous section remains, but the 
amount of computation required to detect the weakness is in general increased. 
Moreover, since the correlation coefficient (3) depends on the assumed shrunk 
polynomial f̂  given f and is maximized if (5) is satisfied, the estimate C, see 
(4), of the correlation coefficient may be used as a statistic to reconstruct the 
feedback polynomial f. We will now consider more closely the following three 
cases: the weakness detection, the feedback polynomial reconstruction, and the 
fast reconstruction of the feedback polynomial. 

In practical applications, the degree T of f  is typically known with relatively 
small uncertainty. The first objective is to find a shrunk polynomial f̂  off that is 
close to an optimal one yielding the maximum value of the correlation coefficient 
(6 ) .  Its degree i; is then close to (1 - p)r  + pw. For example, if p = 1/2, then 
i; N (r + w)/2, which may not be large. For each assumed w,  one should then 
check (:It) possible candidates for an optimal shrunk polynomial. The best 
candidate is the one with the maximum value of the statistic C over all possible 
values of w. The weakness is detected if the chi-square value (4) corresponding 
to this maximum value is significant. Typically, some prior information about w 
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is avdaible, so that the search is not complete. For example, in hardware realiza- 
tions 1u is not large. The required length of the keystream sequence depends on f 
and is increased to lOi/c;, because the optimal shrunk polynomial is described 
by i bits and the necessary length for each bit of uncertainty to be resolved is 
1O/c2f. Since f is not known, instead of c f  one can use a lower bound (8) for 
relatively large p ,  p 2 w/r ,  or a lower bound (9) for small p ,  p < w/r .  The 
obtained maximum value of the estimate i. should be consistent with the chosen 
lower bound. The amount of computation for each of the assumed shrunk poly- 
nomials is proportional to the keystream sequence length. Another possibility is 
to simultaneously check all the shrunk polynomials close to the candidate one, 
which reduces the required keystream sequence length, as is described in the 
previous section. The unknown standard deviation can be estimated by using 
the equidistant taps assumption. 

The second objective is to reconstruct the feedback polynomial f. Once the 
best shrunk polynomial is determined, the most likely feedback polynomial is the 
one that satisfies ( 5 ) .  However, the decision on f based on the estimate C of the 
correlation coefficient (3) is not reliable. Namely, the number of the shrunk poly- 
nomial candidates that are close to the best one with respect to the chi-square 
statistic is generally not small. In this case, there are many close candidates for 
the best feedback polynomial. To distinguish between them, one should then 
use the appropriate polynomial multiples of these polynomials. More precisely, 
for every chosen candidate for f, find a number of polynomial multiples and 
for each of them compute an estimate C of the correlation coefficient by using 
different shrunk polynomials close to the optimal one. The polynomial multiples 
should preferably have relatively low degrees and low weights so as to obtain 
reliable estimates of the correlation coefficients on a keystream sequence of a 
given length. In addition, the polynomial multiples of different Candidates for 
f should be sufficiently different so as to obtain only one or just a few candi- 
dates whose correlation coefficient estimates are consistent with the maximum 
value corresponding to ( 5 ) .  So, in general, the longer the observed keystream 
sequence, the smaller the number of the remaining candidates. However, addi- 
tional precomputation is required to obtain suitable polynomial multiples. For 
a candidate polynomial g ,  this can be done by computing the residues modulo 
g of the polynomials of the form 2'. Note that finding low weight polynomial 
multiples of a feedback polynomial is crucial for the fast correlation attacks on 
the initial state of regularly clocked LFSRs distorted by additive binary noise, 
see [13, 19, 31. 

The third objective is to reconstruct the feedback polynomial f in a fast way, 
by reducing the computational effort needed to find an optimal shrunk polyno- 
mial. The feedback polynomial reconstruction then goes along the same lines as 
in the second approach. First observe that the average value of the correlation 
coefficient (3) over all the shrunk polynomials with fixed A, is maximized if 
( 5 )  holds for lc = i. Instead of the simultaneous search through all the shrunk 
polynomials of a given degree and weight, one can then proceed iteratively by 
reconstructing Ihe values A, one at a time, starting from i = 1, for example. 
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More precisely, the sum of the correlation coefficients (3) for all the shrunk 
polynomials f̂  with fixed Ai is easily seen to he 

The total number of such shrunk polynomials is Mj') = f l k # , ( &  + l), and the 
number of them with the correlation coefficient close to the maximum value, 
given the constraint on A,, is approximately (1 - J I ) ~ / C ~ )  where cp) is defined 
as cf without the ith multiplicative term in ( 6 )  corresponding to A,, that is, 

However, since J is not known, one should consider the average correlation CO- 

efficient over all MF) shrunk polynornids, that is, 

The maximum value is achieved when Ai satisfies (5) and is equal to E y )  = 

cf(1 - P ) ~ / ( M ,  cf ). This value would exactly be equal to c f  if the average 

was taken over the (1 - p)" ' /cy)  shrunk polynomials. Since f is not known, let 
- c denote a lowcr bound on c r ) / ( l  - p)",  for any 1 5 i 5 T U ,  that is given by 
(27rp(l- p)(r - w)/(w - 1)) (w ~ for relatively large p ,  p 2 (w - l) /(r  - I), 
see (8), and by (1 - p)'-" for small p ,  p < (w - l)/(r - l), see (9). A lower 
bound on F : ) ,  for any 1 5 i 5 20, can be obtained similarly. Roughly speaking, 
one may use a lower bound 

The reconstruction procedure for finding an optimal shrunk polynomial is 
iterative and is based on estimating the correlation coefficient (13) on a given 
keystream sequence. For any assumed value of Ai, the number of different shrunk 
polynomials used to compute the average correlation coefficient is l/c. Initially, 
for any possible value of Al ,  one picks at random l/c shrunk polynomials with 
fixed a,, estimates the average correlation coefficient on a given keystream se- 
quence, and finds the best candidate for A, as the value for which the estimate 
is maximal. In the next step, one finds the best candidate for A, in a similar 
way except that the l/c shrunk polynomials are now chosen at random so that 
A, is around the best candidate value obtained in the first step. The procedure 
is then continued iteratively in an analogous way by using the best candidates 
for the values of di from previous iterations to obtain the best estimate in the 
current iteration. After w steps, one then proceeds to recompute the best can- 
&dates obtained in the previous round of w steps and repeats the procedure for 
a number of rounds until no significant iniprovement is observed. It remains to 
determine the required length of the keystream sequence. For a reliable estimate 

(i) ( i )  

= (1 - p)"+l7r ' / ' ( ( r  - l ) / (w  - 1/2))-w+1/2. 
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of the correlation coefficient (13) one needs 20 1 0 g ? / ~ ~  computations, so that 
the necessary length would then be 2 0 ~  log?/2 (the total bit uncertainty of 
w and Ai is here approximated as 2 log?). It is easy to see that in such a way 
no reduction in computation is achieved. However, the maint point to observe 
is that the reliable estimate of the correlation coefficient is not needed. What 
is needed for the convergence of the iterative procedure to an optimal shrunk 
polynomial is just a slight improvement on the unknown value of Ai in each 
iteration step, where the first round is the most critical one. This is to a certain 
extent similar to iterative probabilistic decoding procedures used in fast correla- 
tion attacks [13, 19, 3, 15, 161. Accordingly, the convergence criteria established 
in [3] and [16] lead us to anticipate that the required number of computations 
per each step is then just about l/g) so that the necessary length is then c/E. 
The convergence of iterative probabilistic procedures is discussed in more detail 
in the next section. 

4 Initial State Reconstruction 

In this section, it is assumed that the LFSR feedback polynomial f of degree r 
is known, and the objective is a fast reconstruction of the unknown LFSR initial 
state and the unknown decimation sequence, given an observed segment of the 
keystream/decimated sequence. The problem is known to be very difficult, see 
[9]. A divide and conquer attack on the unknown decimation sequence based on 
the linear consistency test [21] proves to be successful if the observed decimated 
sequence is sufficiently long, also see the collision test [I, 21. On the ohher hand, 
divide and conquer correlation attacks on the LFSR initial state are also possible 
if the observed decimated sequence is sufficiently long. Namely, the embedding 
correlation attack is analyzed in [23] and [lo] for the constrained clocking case 
and in [lo] for the unconstrained clocking case, whereas the statistically optimal 
probabilistic correlation attack in the unconstrained clocking case is analyzed 
in [lo]. The attacks imply the exhaustive search over all possible decimation 
sequences and over all possible LFSR initial states, respectively. Despite a di- 
vide and conquer effect, the computational complexity remains exponential. Our 
ultimate goal is to examine whether fast correlation attacks are possible, with 
linear or polynomial complexity. 

The starting point is the linear statistical weakness of the decimated LFSR 
sequences based on shrunk feedback polynomials discussed in Section 2. Our 
aim is to reconstruct the decimation sequence { d t }  one term at a time based 
on appropriate locally applied shrunk polynomials. Note that the decimation 
sequence is synchronous with the decimated sequence {yt} and that dt is the 
number of bits to be deleted before the bit yt is produced. Alternatively, the 
regularly clocked LFSR sequence can be obtained from the decimated sequence 
by inserting dt bits before yt) for all observed t. The decimation sequence need 
not be reconstructed completely: essentially only slightly more than T consec- 
utive terms at any point in time are required to be known to determine the 
LFSR initial state uniquely or almost uniquely. Of course, the known decirna- 
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tion sequence can then be used for an attack on the secret key specifying the 
clock-control generator. Moreover, if the clock-control generator is an easy to 
reconstruct scheme, for example, another LFSR, then the decimation sequence 
reconstruction may incorporate the structure of the clock-control generator 
well. 

In the assumed probabilistic model, the decimation sequence is regarded as 
a sequence of independent identically distributed nonnegative integer random 
variables with a probability distribution P = { P ( d ) } d E ~ .  The prior informa- 
tion about 4 is thus determined by the assumed probability distribution. For 
a statistical decision on the individual term dt ,  some local statistic that would 
necessarily involve the two consecutive terms yt-1 and yt is needed. The statistic 
should convey information about the value of dt ,  so that the posterior probability 
of 4 becomes significantly different from the prior one. As in the fast correlation 
attacks on additively noised LFSR sequences, where the decision is being made 
on the individual terms of the binary noise sequence, the local information is 
extracted from the parity-check sums corresponding to the polynomial multiples 
of the feedback polynomial. They represent the codewords of the dual code of 
the linear code formed by the truncated LFSR sequences, see [3]. In this case, 
however, the parity-check sums are defined by the shrunk polynomials of the 
appropriate polynomial multiples of the feedback polynomial. 

Let h ( z )  = 1 + ELT'=, zjk, 1 5 j ,  < . . . < j ,  = m, denote a polynomial 
multiple of degree rn and weight 0 = w + 1, and let h(z)  = 1 + Cz=, z j k ,  
1 5 31 < . . . < & = ~ h ,  denote a shrunk polynomial of h(z ) .  Let T ~ C  = ' j k - j k -  1 - 1 
and ?k = - jkp1  - 1, 1 5 k 5 w ,  where jo = j0 = 0. The main idea is to find 
and use the polynomial multiples h ( z )  such that 7i = d, for some 1 5 i 5 w, 
to check whether dt = d,  d E D. For each such h ( z )  only the different shrunk 
polynomials i ( z )  such that .ii = 0 are then used. The parity-check sum involving 
the consecutive terms yyt-1 and yt corresponds to h ( z )  in an obvious way. Each 
h(z )  may be multiply used to check the same value d, for all those i such that 
7i = d. Let thus Xed denote a set of the polynomial multiples for checking the 
value d.  For each polynomial h(z )  in '& for which 7i = d, we choose a set of 
shrunk polynomials h(z )  such that 7i = 0 and whose correlation coefficients 
are close to the maximum value p d ( l  - p)cr' where cr)  is obtained from the 
maximum value ch by deleting the ith multiplicative term corresponding to 7i, 
see (12). There are approximately (1 - p)"/c:) such polynomials altogether, 
with the total conditional correlation coefficient (1 - p)" ,  see (ll), and with 
the average conditional correlation coefficient close to cr), where the assumed 
condition is that dt = d. This is a very important point: although the conditional 
correlation coefficient associated with individual shrunk polynomials is small, the 
total conditional correlation coefficient may not be small because the number 
of the shrunk polynomials that are close to optimal is large for each feedback 
polynomial multiple h(z ) .  

The shrunk polynomials of different h(z )  in 7& may coincide. The condi- 
tional correlation coefficient c(k)  for a given polynomial k ( z )  is then defined as 
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the sum of the individual conditional correlation coefficients associated with all 
the polynomials from for which h is close to an optimal shrunk polynomial. In 
this case, each shrunk polynomial is used only once. The conditional correlation 
coefficient c(h) given h(z)  is given by the same expression as c t ) ,  see (12), except 
that tk is substituted for tTt. Since the shrunk polynomials used are close to 
optimal, c!) may be a good approximation for c (k )  given h ( z )  which can be fur- 
ther simplified in a way described in Section 2, see (7) and (9). This is especially 
the case if 4 is very close to ?Tt, If not, one can also use the normal or Poisson 
approximations to the binomial distribution. The underlying assumption is that 
the probability distribution P is geomctric. Similar expressions can also be ob- 
tained for the case of constrained irregular clocking. Let %!d denote a set of the 
so-obtained different shrunk polynomials of the polynomials in Xd. A basic re- 
quirement is that the pairwise intersections between the sets R d ,  for different d,  
should be insignificant, so that by discarding just a few shrunk polynomials one 
could obtain distinct sets % d .  This in fact means that the correlation coefficients 
cf) should not be close for polynomials h ( z )  in different 3cd. More importantly, 
one should also check that for each polynomial in Xd, the correlation coefficient 
c t )  is not close to the correlation coefficient cf,) for any possible feedback poly- 
nomial multiple h‘(z) that can be used to check any other possible value of d. 
Preliminary experiments have shown that this is possible to achieve if the set 
of possible values of d is V = ( 0 , l )  which corresponds to constrained irregular 
clocking. In any case, finding the appropriate shrunk polynomials can be done in 
precomputation time if the feedback polynomial is known. The obtained shrunk 
polynomials are called the parity-check polynomials. 

We proceed now by describing and analyzing an iterative statistical deci- 
sion procedure based on the parity-check sums computed by using the assumed 
parity-check polynomials. The statistically optimal decision rule for individual 
random variables dt is based on the posterior probabilities. Let gt(d) denote the 
posterior probability that 4 = d given a set of the parity-check sums defined by 
the parity-check polynomials in f i d .  Let c( i )  be a conditional correlation coeffi- 
cient associated with a parity-check polynomial h, where the assumed condition 
is that dt = d.  The basic assumption, justified by the choice of the parity-check 
polynomials, is that the conditional correlation coefficient is zero or very close 
to zero when 4 # d. Then by assuming that the observations determined by the 
individual parity-check sums are independent, it is not difficult to see that 

where s (h )  is the binary value of the parity-check sum defined by the parity- 
check polynomial h, and the index t is omitted for simplicity. The posterior 
probability ratio (the odds) of the event 4 = d is thus increased or decreased de- 
pending on the individual observations. The expression is similar to the one that 
is obtained for fast correlation attacks on additively noised LFSR sequences [16]. 



259 

The iterative statistical decision procedure that we now propose is in fact con- 
ceptually similar to the iterative probabilistic decoding procedures proposed for 
the fast correlation attacks in [13, 22, 3, 15, 161. The main idea for the iterative 
procedure is to use the posterior probabilities obtained by (14) in the previous 
step as the prior probabilities for the current iteration step. Of course, since 
the independence assumption for different d is not quite accurate, the posterior 
probabilities calculated by (14) should be normalized after each step. For this it- 
erative procedure to work, we need an expression for the conditional correlation 
coefficient c ( i )  in tho case when the probability distribution P = {P(d)} , jEn  is 
time-dependent, because the expression (3) only holds for identically distributed 
variables with the geometric distribution. I1 is assumed that the decimation ran- 
dom variables dt are independent. The general expression is not included here 
for simplicity. The computational effort may be large, but most of it can be done 
in precomputation time allowing a certain degree of numerical a.pproximation. 
However, the amount of computation can be drastically reduced by using vari- 
ous simplifications, which may even improve the effectiveness of the attack. For 
example, it is reasonable to approximate the updated probability distribution 
of the decimation sequence by a different geometric distribution for each multi- 
plicative term in (3) with the corresponding estimate of the delet,ion rate. Thus 
we get 

where the probabilities p k ,  0 5 k 5 w ,  k # i, are computed as the appropriate av- 
erage values based on the updated probability distribution. Another interesting 
approach is to identify the terms dl for which the posterior (updated) probability 
distribution is most different from the prior one, and then to use these posterior 
probability distributions as they are, without averaging, or even to make ‘hard’ 
decisions on these terms by using the maximum posterior probability decision 
rule. Other tricks may also be possible. The const,rained clocking case, in which 
the set 2) of the possible values of d is upper-bounded or limited, can be treated 

The iterative procedure is successful if it converges to a sequence close to the 
decimation sequence that has actually produced the given keystream sequence. 
The main question is whether the required number of the parity-check polyno- 
mials is realistic or not in view of the additional constraints imposed on the 
choice of these polynomials. As is also the case with the fast correlation attacks 
[13, 22, 3, 15, 161, the exact mathematical derivation of the conditions for suc- 
cess of the new attack does not seem to be tractable. However, we now show 
that a simplified analysis [16] can be adapted to deal with the new attack. The 
main result of the analysis in [l6] is to show that the fast correlation attack on 
additively noised LFSR sequences is successful if the odds improvement  in the 
first iteration step is ‘significant’in the most favourable case when all the parity- 
check sums are d i f e r e n t  f r o m  zero. Here, the most favourable case is when the 

~alogously.  
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parity-check sums are all equal to zero. The odds improvement is then given by 

n (1 +.(A)) N 1 + c .(A) = 1 + c (1 - p ) "  (16) 
i E A d  h € H d  

because the correlation coefficients are very small. If we heuristically assume 
that the significant initial improvement is 2, then we obtain a nice convergence 
condition 

w 

where Nd+,  denotes the number of the feedback polynomial multiples of weight 
w + 1 in 3td. The condition should be satisfied for all the values of d in D whose 
probability is not very close to zero. This condition applies in general, where 
p is the deletion rate of the decimation sequence. If it were not for the con- 
strained choice of the feedback polynomial multiples, this condition would be 
less restrictive than the corresponding condition [16] for additively noised LFSR. 

( 4 sequences. Note that for each polynomial h in R d ,  there are about (1 - p)"'/ch 
parity-check polynomials in &, where c t )  is determined by (12). Therefore, the 
computational complexity to obtain the required parity-check sums correspond- 
ing to a polynomial h of weight w + 1 and degree m is for relatively large p ,  
p 2 (w - l ) / (m - l), upper-bounded by (27rp(l -p)(rn - w ) / ( w  - l))('-1)'2, see 
Section 3. This is feasible even if m is large provided that w is relatively small. In 
the constrained clocking case where 2, = (0, l}, the condition (17) seems to be 
very realistic. In general, the chances for success of the proposed fast correlation 
attack appear to be greater in the constrained clocking case than in the uncon- 
strained one. From the cryptographic standpoint, it turns out that the number 
of the feedback polynomial multiples of relatively low weight and not too large 
degree should be relatively small with respect to (17). This is in accordance with 
a vague anticipation given in [4]. 

After the convergence process is completed or at any iteration step when the 
odds are significant, one can make 'hard' decisions on the values of 4 for some t .  
If the uncertainty reduction regarding the decimation sequence is large, one may 
then check the remaining needed values by exhaustive search, either by applying 
the linear consistency tesl [21] or by applying the embedding algorithm [23, lo]. 
In view of [21], one has to determine slightly more than r consecutive terms of 
the decimation sequence at any point in time, where T is the degree of the LFSR 
feedback polynomial. The LFSR state at, some time t is then determined uniquely 
by solving the appropriate linear equations. The time t is not known if all the 
initial terms of the decimation sequence ace not known. They can be det'ermined 
by applying the embedding or the Levenshtein-like distance algorithms [23, 101. 

5 Conclusion 

A theory of fast correlation attacks on irregularly clocked LFSRs based on a 
recently determined linear statistical weakness of decimated LFSR sequences is 
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developed. The weakness and the corresponding correlation coefficients are an- 
alyzed in more detail. When the LFSR feedback polynomial is not known, the 
statistical weakness detection and the feedback polynomial reconstruction are 
discussed and an iterative algorithm for fast feedback polynomial reconstruction 
is proposed. When the LFSR feedback polynomial is known, an iterative pro- 
cedure for fast LFSR initial state reconstruction given an observed keystream 
sequence is introduced. The procedure is based on specially defined parity-check 
sums corresponding to the shrunk polynomials of appropriate feedback polyno- 
mial multiples, and consists in iterative recomputation of the posterior probabili- 
ties for unknown elements of the decimation sequence. By using the analogy with 
the well-known fast correlation attacks on additively noised LFSR sequences, a 
convergence condition which determines the numbers of the parity-check sums 
required for successful reconstruction is derived. This condition and the cor- 
responding polynomial computational complexity show that the proposed fast 
correlation attack may be realistic, especially in the constrained clocking case. 
Extensive computer simulations are needed to support the theory and to specify 
the technical details. 
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