
Ripping Coins for a Fair Exchange 

Markus Jakobsson" 

Department of Computer Science and Engineering, 
University of California, San Diego, 

La Jolla, CA 92093 

Abstract.  A fair exchange of payments for goods and services is a barter 
where one of the parties cannot obtain the item desired without handing 
over the item he offered. We introduce the concept of ripping digital 
coins to solve fairness problems in payment transactions. We demonstrate 
how to implement coin ripping for a recently proposed payment scheme 
[9, 81, giving a practical and transparent coin ripping scheme. We then 
give a general solution that can be used in any payment scheme with a 
challenge. We also indicate how fairness can be obtained by building a 
contract into the coin. 

1 Introduction 

Many payments are practically concurrent with the delivery of the purchase; 
when you buy milk in a grocery store you cannot leave with the milk without 
paying, but neither can the store charge you and then not give you your milk. 
In this situation, there should not be any problems with trust since both parties 
are physically present. However, if you call a taxi and ask the driver to pick up 
some goods for you, and then return to deliver them to  you, there could be a 
problem with trust: the taxi driver doesn't want to  go and pick the items up 
without getting paid first (since you will not go with him,) but you don't want 
to pay him in advance risking that he is not honest. Let us say that the taxi 
driver's payment would be $100. Paying him half the amount before he leaves, 
and thc rest upon delivery would not solve the problem. However, if you tear the 
$100 bill in two parts and give the driver one half before he leaves, and the other 
upon delivery, this would solve the problem. Neither you nor the driver will be 
able to  use half a bill, since this will be without value, but when he returns and 
you give him the second half, he can tape the parts together and use the bill. 
If you are concerned that the taxi driver might not return just  on spite, thus 
making you lose $100 although he will nol get it, you can both tear bills and 
give each other halves in order to  keep each other honest. When he returns, you 
will exchange the second halves, and then perform a standard payment. 

Similar issues of trust can arise in many digital cash applications [l, 2,  5,  6, 
7,8,9, 10, 11, 131, since the two parties in the transaction may be geographically 

* Research partly donc at DigiCash, the Netherlands. Email address: 
markus@cs.ucsd.edu 

L.C. Guillou and J.-J. Quisquater (Eds.): Advances in Cryptology - EUROCRYPT '95, LNCS 921, pp. 220-230, 1995. 
0 Springer-Verlag Berlin Heidelberg 1995 



221 

large distances apart, and also because of the inherent problems of proving that 
a payment or delivery did or did not take place. In section 2 and 3 we analyze 
the problem in the context of anonymous electronic cash protocols, and discuss 
the intuition behind our solution based on coin ripping. In section 4, we show 
how t o  rip coins in a newly proposed privacy protecting payment system [9]. In 
section 5 we show how to rip a coin in any challenge based payment scheme. 

A different solution to  achieve a fair exchange is to let the challenge be a (ran- 
domly) hashed contract. This allows the buyer to prove that a certain deposited 
coin was designated for a certain purchase by showing the hash preimage to  the 
challenge. However, it gives a solution with the power balance on the Shop’s side; 
if the Shop does not deliver the item paid for, the buyer will have to  sacrifice 
his anonymity in order to  make a complaint a t  the Bank. We will show how this 
solution works in the Appendix. 

Our coin ripping solution gives the buyer the advantage, and lets an honest 
buyer remain anonymous at all times. If the buyer decides not to  fulfil the 
payment after the ordered item or service is delivered, neither the buyer nor the 
seller will get the coin, and moreover, the seller will not be able to  prove what 
the buyer has done, but only blacklist him for future transactions (assuming the 
seller knows who the buyer is, which often is the case.) Often, though, the seller 
will be the most powerful party of the two and this balance might therefore be 
preferable. If such pranks are a persistent problem, the solution can be modified 
to increase the costs of pranks by requiring rip-spent coin payments in both 
directions. 

2 Our Requirements 

The payment systems we will apply our coin ripping method to  will be assumed 
to have the following properties: 

1 Representations of coins cannot be created without the help of the Bank. 
2 The withdrawer will be able to  prevent the Bank from correlating the with- 

drawn coins to the withdrawer when spent and deposited. In existing schemes, 
withdrawal protocols with this property often use what is called a (‘blind sig- 
nature.” 

3 The receiver of the payment will be able to  verify the correctness of a coin 
without the help of the Bank. 

4 Any party or coalition of parties that  attempts to  spend more coins than 
they have withdrawn (so called (‘over-spending,”) will be detected by the 
Bank, and moreover, the Bank will be able to  calculate the identity of the 
over-spender with an overwhelming probability. 

We will let the payer rap-spend a coin, and add the following requirements 
while keeping the above properties for both rip-spent and fully spent coins. 



222 

5 A rip-spent coin as such is useless for the receiver of the payment, as he will 
not be able to deposit i t ,  i.e., it is infeasible to create a depositable coin from 
any number of rip-spent coins. 

6 The receiver of the payment will be able to verify that a rip-spent coin is of 
the right form. 

7 If a payer cheats the receiver of the payment by not giving him the second 
part of the coin later, the payer is prevented from using the coin in any other 
payments. 

8 The receiver of the payment will be able to verify that the second part of 
the coin fits with the first part, and thereby be convinced that he will be 
able to deposit it. 

A trivial solution is to use a two-spendable coin, i.e., a coin that can be spent 
twice without revealing the identity of its owner [2, 91 and let the payer rip-spend 
a coin by performing one of the two spendings, and fully spend it by spend the 
second. The Bank will only give a person money or credit when both of the two 
corresponding coins are deposited. If the payer decides to cheat the receiver of 
the ripped coin, he will not be able to use the coin for a payment later, as he will 
then have spent the coin for a total of three times, and will thus be identified by 
the Bank as an overspender. This solution does not, however, have the following 
desirable feature that we will require: 

9 A payer may not spend or rip-spend more coins than he has withdrawn, or 
he will be detected and identified. 

(This requirement is a little bit different from requirement 5, as we are referring 
to  fully spent coins in requirement 5, but relate to  rip-spent coins here. For a 
two-spendable coin, the coin owner could instead of correctly spending a coin, 
spend it twice in a rip-spending fashion without getting caught. We want a 
solution such that one coin can only be rip-spent once without detection.) 

Another setback with this trivial solution is that  there will be an added cost 
of letting users rip-spend coins; instead of one-spendable coins, all users, Shops, 
and the Bank will have to store and send two-spendable coins, which have larger 
representations. Two desirable (but not necessary) properties we will require of 
our new coins will be: 

10 Coins that can be ripped will not have a larger representation than normal 
coins. 

11 The Bank can never know whether a coin will be or has been ripped unless 
the payer defaults on a rip-spent coin; in other words, the ripping will be 
transparent to  the Bank. 



223 

3 Intuition 

We will here discuss a sketch of a general solution that has all the listed features 
of the last section. First, we will describe a rather general format for electronic 
cash systems fitting many proposed schemes [I, 2, 5, 7, 8, 9, 101 to  a high degree. 

Bank Signatures: The Bank authenticates coins using a signature function 
pair ( S B a n k ,  V B ~ ~ ~ ) ,  where SBank is the private function used for producing a 
signature, and VBank is the public function used for verification of a signature. 

A Coin: A coin is a pair (x, s), where 2 is a random number known only to the 
withdrawer and s = ( S B ~ , , ~  o g)(z) for some function g. The coin scheme must 
be secure against existential forgery [12], and a signature of a message must not 
be useful in producing a signature of another legal message. The pair (2, s) must 
be chosen by both the withdrawer, Alice, and the Bank in a way that achieves 
blinding, i.e., so that the Bank can not know which message was signed. We 
will in this section disregard many details for the sake of clarity, and avoid the 
discussion of how schemes are made to  be safe against existential forgery and 
how the blinding will be done. 

Spending a Coin: The user spends a coin by engaging in a protocol with the 
Shop that gives the Shop the transcript (c, c, F), where c is a challenge chosen 
by the Shop and 5 and S are functions of x and s, and of c. The triple (Z, c, F) 
is non-forgeable and its correctness can be verified by the Shop. In many im- 
plementations, including this, a one-spendable coin corresponds to  a line whose 
equation in its turn corresponds to  the identity of the withdrawer. For each 
time a coin is spent, the payer has to give a point on this line. Answering two 
challenges for one coin will reveal the equation of the line, and thereby also the 
identity of the over-spender. Answering only one challenge per coin will give no 
Shannon information about the identity of the payer. 

Depositing a Coin: The Shop sends the Bank the triple (55, c, X), and the Bank 
verifies its correctness. The triple is related to the withdrawal session where (2, s) 
was obtained; thus, the Bank is able to  trace coins given two transcripts 

Ripping a Coin: The user can rip-spend a coin by applying a one-way function 
f to  either Z, S ,  or parts of these. The Shop will at the end of the payment 
protocol have received the transcript (z‘, c,Y), where either or 2 is the result 
of applying f to F or S ,  or parts thereof. We will do this so that the Shop can 
still verify the correctness of the triple in order to  be convinced that it is a 
valid coin. However, the Bank will not accept the triple (T’, c ,  2) for credit, as 
i t  will not be of the correct form, and so, the Shop cannot deposit it for credit. 
It is important that the Shop will not be able to produce a valid, depositable 
transcript (F, c , S )  from (TI, c, 3’). The payer completes the payment (gives the 
second part of the coin) by sending the Shop information that allows the Shop to 
calculate the depositable transcript (Z, c, x). Should the payer not do this, then 
the Shop gives the triple (?, c ,  3 )  to  the Bank. This will prevent the payer from 



224 

spending the coin again without being detected, as the identity of the payer will 
be possible to  obtain from two transcripts from the same coin, even though f is 
applied to  the transcript. 

It should be apparent that  our general outline of the payment protocol using 
ripping does not necessarily lose any of the listed properties, but we will certainly 
have to  specify and analyze our solution before it is clear that all the properties 
are indeed retained. We will in the next section give an example of a payment 
protocols, and show specifically how coins in this can be ripped. 

4 

We will show how t o  rip a coin in an abstraction of the protocol by Ferguson [9], 
but the method is applicable to  many other schemes as well. We will make only 
minor changes to the protocols, and our solution will satisfy all the requirements 
listed. In our description, Alice will be the payer and Shop the receiver of the 
payment, and we will use the denotation introduced in the previous section. 

Bank Signatures: The Bank authenticates coins using a signature function pair 
( S B a n k ,  V B a n k j ,  where S B ~ , , ~ ( Z )  = x1Ie modulo a composite N .  Here, e = e1e2, 
where e l  # fl is an odd integer and e2 is a large prime. (In the original protocol, 
[9], e l  = 1 was used.) 

Original Payment Protocol: The following protocol is executed: 

Coin-Ripping for a Specific Protocol 

1. Alice sends Z: to the Shop. 
2. The Shop constructs a challenge c and sends it to  Alice. 
3.  Alice sends the answer 5 to the Shop, who verifies that V B ~ ~ ~ ( Z )  = @ ( S , C )  

for a function 0. 

Rip Coin Payment Protocol: The following protocol is executed to  rip-spend 
the first part of a coin: 

1. Alice sends I to the Shop. 
2. The Shop constructs a challenge c and sends i t  to  Alice. 
3. Alice sends the answer S’ = P1 to  the Shop, who verifies that  V B a n k ( E )  = 

(@(s, c))el. 

Thus, the difference is that instead of giving an eth root as a signature, the 
payer only gives an eZfh root. This way, the Shop does not get a transcript 
that he can deposit in return for money, unless it can calculate e l t h  roots. Alice 
spends the second part of the coin by giving 3 to  the Shop, who verifies that  
this is correct. Should Alice not give the Shop this, then the Shop can give the 
transcript (5, c,?)  to  the Bank, who after verifying that it is a correct transcript 
for a rip-spent coin stores it. Should Alice ever spend the same coin again, then 
the Bank can find out her identity exactly as for a normal over-spending, and 



225 

punish her for over-spending. Note that giving the second part of the rip-spent 
coin does not constitute an over-spending as only one challenge will have been 
responded to. 

Theorem 1: The rip-spending protocol preserves the anonymity of the payer. 

Proof: Assume that there is a strategy for the Shop and the Bank to  collaborate 
in the rip-spending protocol to find out any information about the identity of the 
payer. They can use this strategy to  find the same information in the original coin 
spending protocol as follows: Let (F, c ,S)  denote a fully spent coin. Let (ZI c,s‘) 
be the same coin, but ripped.The Shop can calculate the transcript (F ,c ,Z’ )  
from (F, c ,  S) as f is public. Therefore, if any information about the identity of a 
spender of a rip-spent coin can be found, the same information must be possible 
to  obtain for a fully spent coin. Thus, since the original protocol preserves the 
privacy of the honest user, so must our rip-spending protocol. 0 

Theorem 2: If the payer after withdrawing k coins successfully can spend or 
rip-spend k+ 1 coins without detection, then he could do the same for Ferguson’s 
protocol with S ~ ~ ~ t ( z )  = zl/el m o d N .  

Proof: This holds since the rip-spend protocol is identical to Ferguson’s original 
protocol for S ~ ~ ~ k ( 2 )  = zl/ez mod N ,  and any spent coin (using S ~ ~ ~ k ( q  = 
z1/(e1e2)) can be used to  construct a rip-spent coin (for which SB~,-,~(Z) = z1 e2 .) 
0 

We will now prove that the receiver of a rip-spent coin will not be able to 
cash it unless he can invert a one-way function: 

Theorem 3: The Shop will not be able to construct a cashable coin (2, E ,  i) 
from a rip-spent coin (z ,  c ,  3)  unless he can calculate e l th  roots. 

Proof: Assume that there is a polynomial-time cheating strategy for the Shop, 
allowing it to  construct a coin C, = (5 ,2 ,  i) that  can be deposited from a rip- 
spent coin Cllz = (El c,s‘). Call the algorithm for this A. 

Let Alice spend a coin C1 = (F, c, T) in a Shop. The Shop can produce a 
rip-spent coin Cl/2 = (5, c, s’) from this by applying f to the 5. Let Cl/2 be the 
input to  A and call the output Cl. There are three possibilities: 

- c1 = c1: 
This means that given input C1/2 = (5, c, s‘), where c is chosen according to  
some strategy @(T), A produces an output C1 = (5, c , S ) ,  where T = In 
the original protocol, different exponents are used to encode different coin 
denotations. Thus, being able to produce this kind of transcript C1 from 
C1/2 allows us to change the value of a coin in the original protocol. 

This means that given a correct payment transcript for some coin with one 
challenge answered, we can produce a correct payment transcript for the 

- c  - - 1 - (2,Cl,Zl), Cl = (:Ic2,52), c1 # c2: 



226 

same coin but with another challenge answered. Two such transcripts counts 
as two spendings, and given a one-spendable coin, the Bank could given these 
two calculate the identity of the spender. This contradicts the fact that the 
original protocol which we build our protocol on is privacy preserving, as 
this would give an algorithm for deciding the identity of the spender of a 
coin in that protocol. 

Both C1 and C1 are valid coins. However, since 51 # 5 2 ,  they are two 
coins with distinct secret representations, i.e., two different coins. Since they 
both stem from one withdrawal session, and both will be accepted by the 
Bank as distinct and valid coins, this will allow a coalition of Shops and 
Payers t o  make the Bank accept k + 1 deposited coins after only having 
withdrawn k coins in the original protocol using SBonk(z) = z l / ( e l e a ) .  Since 
coins using S ~ ~ , , k ( x )  = xl/ea can be calculated from such coins, this gives 
us a contradiction if coins cannot be forged in the original protocol. 0 

- c1 = (Tl,Cl,Fl), Cl = (Z2,C2,FZ), Z1 # Zz: 

We have thus proved that the introduction of coin ripping can be made safely 
for the protocol by Ferguson. 

5 The General Solution 

We have in our example assumed the use of RSA-signatures to  authenticate the 
coins. However, we will show how any digital cash scheme where the payment 
protocol is of a certain general form can be modified to  allow ripping. The form 
is a three move protocol with the payer sending a message 1: to  the Shop, who 
responds with a challenge c of some minimal size followed by the payer sending 
a response S to  the challenge c. In this general solution, however, rippability will 
incur a small storage overhead, as well as a minor communication overhead. The 
idea is to  use a special form of challenge jointly set by the payer and the receiver 
of the payment. 

Let (fi, f ~ ,  @) be a triple of functions such that it is hard to  find a collision 
(x i ,zz) ,  (x i ,  x:) such that fi(x1) @ fz(x2) = fl(x;) @ fz(z:). An example of 
such a triple (fl , f 2 ,  @) is 

where p is a prime. This is collision-free if the representation problem is hard; 
this has been shown being as hard as the discrete logarithm problem [3]. 



227 

The participants jointly calculate the challenge, c ,  the following way: 

1. Alice chooses a random number T A  and calculates C A  = ~ I ( T A ) .  She calcu- 
lates a comrnitrrient corn to C A ,  unconditionally safe for the receiver. Alice 
sends corn to  the Shop. 

2. The Shop sets his share of the challenge, cs, as fi(rs) for some r s ,  and sends 
this cs to  Alice. 

3. Alice opens up her commitment. 
4. The Shop verifies the correctness of the commitment corn. The challenge is 

c = CA @ cs. 

The user then rip-spends the coin using this challenge c, spending the coin 
as he usually would. He spends the other half by revealing T A  to  the Shop. In 
order to  deposit the coin, the Shop will have to  give the Bank the spent coin and  
the pair (?-A,  r ~ ) ,  thus proving that the second part of the coin has been spent. 
In order to file a complaint (if Alice did not give the second part of the coin,) 
the Shop just sends the Bank the spent coin. A coin can be spent all in one part 
by letting the Shop set both r A  and r s ,  and construct the challenge the usual 
way from these numbers. 

Theorem 4: The rip-spending protocol preserves the anonymity of the payer. 

This proof is similar to  the proof of Theorem 1. Assume that there is a strategy 
for the Shop and the Bank to collaborate in the rip-spending protocol to  find 
out any information about the identity of the payer. They can use this protocol 
to help them find the same information in the original coin spending protocol 
as follows: The Shop sets the challenge as c = f l ( r ~ )  @ c s ,  where r A  is chosen 
at random and cs is chosen according to the cheating strategy for the rip-spent 
coin. Thus, if the Shop can learn any secret information from a ripped coin, 
it could learn exactly the same kind of information in the original protocol, so 
ripping a coin will leak no information. 0 

Theorem 5: If Alice does not send the second part of the coin then she will be 
prevented from spending this coin later. 

Proof: This holds since two rip-spent coins will correspond to  an over-spent coin 
in the original protocol if the special form of the challenge is not considered, and 
so the Bank will be able to find the identity of the over-spender with overwhelm- 
ing probability. To see that the probability of finding a cheating payer’s identity 
remains the same as in the original protocol, note that Alice cannot influence 
what the final challenge will be, since she cannot find collisions for the commit- 
ment scheme, as we are using a commitment scheme unconditionally safe for the 
receiver. Thus, the probability of finding Alice’s identity is not affected by the 
fact that she sets part of the challenge. 0 



228 

Theorem 6: The Shop will not be able to construct a cashable coin ( g , E , i )  
from a rip-spent coin (5, c, 3 )  unless it can invert f1. 

Proof: The Shop cannot find an TA such that CA = fl(rA); since corn is a 
commitment of CA and not r A ,  the commitment cannot give any help. Therefore, 
he cannot find another representation of the challenge used for that coin. The 
rest of the proof is analogous to the proof of Theorem 3, with the small difference 
that the Shop in the first case instead will be able to  invert fi. 0 

Thus, we have proved that rip-spending can be safely introduced in any 
payment protocol with a challenge of sufficient length. 

6 Conclusion 

We have shown how coins can be rip-spent in order to  achieve fairness in payment 
protocols. We have given an efficient solution based on an existing payment 
protocol, and then a general solution for any challenge-based scheme with large 
enough challenge. 

There are many alternative settings and extensions to the protocol we have 
looked at .  For example, we can obtain extensions to multi-spendable coins and 
divisible coins without any further changes to  the protocol; for each rip-spent 
coin or rip-spent share of coin, the spender will have lost his ability to fully 
spend this coin or share of coin without being charged with over-spending. 

Similarly, observers can be used at the same time as coin ripping. An observer 
is a tamper-safe piece of hardware that keeps part of the coins to  prevent over- 
spending. It will only answer the correct number of challenges for each coin, 
e.g., one challenge for a one-spendable coin, two for a two-spendable, etc. Since 
only one challenge will need to be answered for each one-spendable coin, even 
if it is ripped and spent in two parts, the observer will not be affected. The 
ripping algorithm described can be located entirely in the non-observer part of 
the device. 

We note that the efficiency will be basically unchanged with ripping of coins. 
We will have to  communicate one extra message, the “opening up” of the hidden 
information, and both parties will have to compute one extra function. Also, 
they will have to  store the rip-spent coin along with some tag specifying the 
transaction involved until the second part will be released. 

7 Acknowledgements 

Thanks to  David Chaum for suggesting the problem and Russell Impagliazzo, 
Stefan Brands, Niels Ferguson, Giovanni Di Crescenzo and Karin Hogstedt for 
valuable feedback. 



229 

References 

1. S. Brands, “An Efficient Off-line Electronic Cash System Based On The Repre- 
sentation Problem,” CWI Technical Report CS-R9323, April 11, 1993 

2. S. Brands, “Untraceable Off-line Cash in Wallet with Observers,” Crypto ’93, pp. 

3. S. Brands, “An Efficient Off-line Electronic Cash System Based On The Repre- 
sentation Problem”, CWI Technical Report CS-Rg323, April 11, 1993. Can be 
obtained by ftp from ftp.cwi.nl, directory pub/CWIreports/AA, filename CS- 
R9323.ps.Z. 

4. D. Chaum, “Achieving Electronic Privacy,” Scientific American, August 1992, pp. 

5. D. Chaum, A. Fiat, M. Naor, “Untraceable Electronic Cash,” Crypto ’88, pp. 

6. D. Chaum, T. Pedersen, ‘‘Wallet databases with observers,” Crypto ’92, pp. 89- 

7. R. Cramer, T. Pedersen, “Improved Privacy In Wallets With Observers,” Euro- 

8. N .  Ferguson, “Single term off-line coins,” Eurocrypt ’93, pp. 318-328 
9. N.  Ferguson, “Extensions of Single-term Coins,” Crypto ’93, pp. 292-301 

302-318 

96-101 

319-327 

105 

crypt ’93, pp. 329-343 

10. N .  Ferguson, “Single term off-line coins,” Technical Report CS-R9318, CWI, Am- 
sterdam, 1993. Anonymous ftp: ftp.cwi.nl:/pub/CWIreports/AA/CS-R9318.ps.Z 

11. M. Franklin, M. Yung, “Secure and efficient off-line digital money,” Automata 
Languages and Programming, 20th International Colloquium, ICALP ’93, pp. 

12. S. Goldwasser, S. Micali, R. Rivest, “A ‘Paradoxical’ Solution to the Signature 
Problem”, 25th Annual Symposium on Foundations of Computer Science, 1984, 

265-276 

pp. 441-448 
13. T .  Okamoto, K.  Ohta, “Universal Electronic Cash,” Crypto ’91, pp. 324-337 

8 Appendix: Another Approach for Fairness 

Another method for achieving fairness is to  let the Shop and the payer, Alice, 
agree on a contract C , the Shop pick a random value T ,  and use c = h ( C , r )  
as the challenge] where h is a collision-free hash function. When Alice receives 
the item paid for, she will give a signature u = S A ~ ~ ~ ~ ( T )  as a receipt. We will 
assume that this signature and the delivery will be simultaneous. (Note that 
this need not be assumed for ripped coins.) Here, we will require S A l i c e  to be 
a signature function that is not safe against existential forgery, i.e., for which 
it will be possible to find correct message-signature pairs for random messages. 
This holds for RSA since we can set u and then calculate r = ueAtics modulo 
N A l i c e  

If the Shop cashes the coin but does not deliver the item ordered, then Alice 
can go to the Bank and show the Bank (C, r )  as a proof that she has paid. The 
Bank finds the spent coin protocol (2, c, F) for which c = h(C, T )  and asks the 
Shop to  show the receipt u that  the ordered item was received. If the receiver of 



230 

the payment cannot give the Bank U, then the receiver must not have delivered 
the item ordered, and the payer wins the case; if the receiver has been given the 
receipt u, then he shows this to  the Bank and the payer loses the case. 

Theorem 7: It is not possible to win a case for a contract that  was never agreed 
on, or where the receipt of delivery was given to the Shop. 

Proof: This holds since h is collision-free, meaning that it will not be possible to 
find two pairs ( T ,  C), (r’, C’) such that h(C’, T ‘ )  = h(C, r ) .  Thus, it is not possible 
to  find a new contract for a certain challenge, and therefore, Alice cannot falsely 
claim that the Shop did not follow thc contract used for the challenge. 0 

Theorem 8: The privacy of the payment scheme will not be compromised by 
the use of signed receipts. 

Proof: We will show that The Shop can produce a transcript (TI S, C, T ,  U) such 
that for an arbitrary supposed payer Alice 

c = h(C, T )  i u = SAl iee (r )r  

and (F, c , ~ )  is a correct transcript for a spent coin. 

performs the following steps: 
Let (2,s) be the representation of a coin withdrawn by the  Shop. The Shop 

1. Select a random u .  
2. Calculate T = u e A z n r e .  

3.  Set an arbitrary contract C. 
4. Calculate a challenge c = h(C, T ) .  

5. Spend thc withdrawn coin using the challenge c .  

It is not possible to  see that the coin was withdrawn by the Shop and not 
Alice; therefore, and because of the random invertibility of the signature function 
S A ~ ; ~ ~ ,  the Shop can fake transcripts by using his own coins. Thus, he cannot 
prove that Alice in fact did buy something from him, and the protocol is privacy 
preserving with the use of contracts if it is privacy preserving without. 0 


	Introduction
	Our Requirements
	Intuition
	Coin-Ripping for a Specific Protocol
	The General Solution
	Conclusion
	Acknowledgements
	References
	Appendix: Another Approach for Fairness

